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Figure 1: We propose a motion imitator that can naturally recover from falls and walk to far-away reference motion, perpetually controlling
simulated avatars without requiring reset. Left: real-time avatars from video, where the blue humanoid recovers from a fall. Right: Imitating
3 disjoint clips of motion generated from language, where our controller fills in the blank. The color gradient indicates the passage of time.

Abstract

We present a physics-based humanoid controller that
achieves high-fidelity motion imitation and fault-tolerant
behavior in the presence of noisy input (e.g. pose estimates
from video or generated from language) and unexpected
falls. Our controller scales up to learning ten thousand mo-
tion clips without using any external stabilizing forces and
learns to naturally recover from fail-state. Given reference
motion, our controller can perpetually control simulated
avatars without requiring resets. At its core, we propose the
progressive multiplicative control policy (PMCP), which
dynamically allocates new network capacity to learn harder
and harder motion sequences. PMCP allows efficient scal-
ing for learning from large-scale motion databases and
adding new tasks, such as fail-state recovery, without catas-
trophic forgetting. We demonstrate the effectiveness of our
controller by using it to imitate noisy poses from video-
based pose estimators and language-based motion gener-
ators in a live and real-time multi-person avatar use case.

1. Introduction
Physics-based motion imitation has captured the imag-

ination of vision and graphics communities due to its po-

tential for creating realistic human motion, enabling plau-
sible environmental interactions, and advancing virtual
avatar technologies of the future. However, controlling
high-degree-of-freedom (DOF) humanoids in simulation
presents significant challenges, as they can fall, trip, or de-
viate from their reference motions, and struggle to recover.
For example, controlling simulated humanoids using poses
estimated from noisy video observations can often lead hu-
manoids to fall to the ground[48, 49, 20, 22]. These lim-
itations prevent the widespread adoption of physics-based
methods, as current control policies cannot handle noisy ob-
servations such as video or language.

In order to apply physically simulated humanoids for
avatars, the first major challenge is learning a motion im-
itator (controller) that can faithfully reproduce human-like
motion with a high success rate. While reinforcement learn-
ing (RL)-based imitation policies have shown promising re-
sults, successfully imitating motion from a large dataset,
such as AMASS (ten thousand clips, 40 hours of motion),
with a single policy has yet to be achieved. Attempts to use
larger or a mixture of expert policies have been met with
some success [43, 45], although they have not yet scaled to
the largest dataset. Therefore, researchers have resorted to
using external forces to help stabilize the humanoid. Resid-

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

10895



ual force control (RFC) [50] has helped to create motion
imitators that can mimic up to 97% of the AMASS dataset
[20], and has seen successful applications in human pose es-
timation from video[52, 21, 11] and language-based motion
generation [51]. However, the external force compromises
physical realism by acting as a “hand of God” that puppets
the humanoid, leading to artifacts such as flying and float-
ing. One might argue that, with RFC, the realism of sim-
ulation is compromised, as the model can freely apply a
non-physical force on the humanoid.

Another important aspect of controlling simulated hu-
manoids is how to handle noisy input and failure cases. In
this work, we consider human poses estimated from video
or language input. Especially with respect to video input,
artifacts such as floating [51], foot sliding [55], and phys-
ically impossible poses are prevalent in popular pose esti-
mation methods due to occlusion, challenging view point
and lighting, fast motions etc. To handle these cases, most
physics-based methods resort to resetting the humanoid
when a failure condition is triggered [22, 20, 49]. How-
ever, resetting successfully requires a high-quality reference
pose, which is often difficult to obtain due to the noisy na-
ture of the pose estimates, leading to a vicious cycle of
falling and resetting to unreliable poses. Thus, it is im-
portant to have a controller that can gracefully handle un-
expected falls and noisy input, naturally recover from fail-
state, and resume imitation.

In this work, our aim is to create a humanoid controller
specifically designed to control real-time virtual avatars,
where video observations of a human user are used to con-
trol the avatar. We design the Perpetual Humanoid Con-
troller (PHC), a single policy that achieves a high success
rate on motion imitation and can recover from fail-state nat-
urally. We propose a progressive multiplicative control pol-
icy (PMCP) to learn from motion sequences in the entire
AMASS dataset without suffering catastrophic forgetting.
By treating harder and harder motion sequences as a dif-
ferent “task” and gradually allocating new network capac-
ity to learn, PMCP retains its ability to imitate easier mo-
tion clips when learning harder ones. PMCP also allows the
controller to learn fail-state recovery tasks without compro-
mising its motion imitation capabilities. Additionally, we
adopt Adversarial Motion Prior (AMP)[33] throughout our
pipeline and ensure natural and human-like behavior during
fail-state recovery. Furthermore, while most motion imi-
tation methods require both estimates of link position and
rotation as input, we show that we can design controllers
that require only the link positions. This input can be gen-
erated more easily by vision-based 3D keypoint estimators
or 3D pose estimates from VR controllers.

To summarize, our contributions are as follows: (1) we
propose a Perpetual Humanoid Controller that can success-
fully imitate 98.9% of the AMASS dataset without applying

any external forces; (2) we propose the progressive multi-
plicative control policy to learn from a large motion dataset
without catastrophic forgetting and unlock additional capa-
bilities such as fail-state recovery; (3) our controller is task-
agnostic and is compatible with off-the-shelf video-based
pose estimators as a drop-in solution. We demonstrate the
capabilities of our controller by evaluating on both Motion
Capture (MoCap) and estimated motion from videos. We
also show a live (30 fps) demo of driving perpetually simu-
lated avatars using a webcam video as input.

2. Related Works

Physics-based Motion Imitation. Governed by the laws
of physics, simulated characters [30, 29, 31, 33, 32, 6,
43, 50, 26, 12, 2, 10, 44, 11] have the distinct advantage
of creating natural human motion, human-to-human inter-
action [18, 46], and human-object interactions [26, 32].
Since most modern physics simulators are not differen-
tiable, training these simulated agents requires RL, which
is time-consuming & costly. As a result, most of the work
focuses on small-scale use cases such as interactive con-
trol based on user input [43, 2, 33, 32], playing sports
[46, 18, 26], or other modular tasks (reaching goals [47],
dribbling [33], moving around [30], etc.). On the other
hand, imitating large-scale motion datasets is a challeng-
ing yet fundamental task, as an agent that can imitate ref-
erence motion can be easily paired with a motion generator
to achieve different tasks. From learning to imitate a sin-
gle clip [29] to datasets [45, 43, 6, 42], motion imitators
have demonstrated their impressive ability to imitate refer-
ence motion, but are often limited to imitating high-quality
MoCap data. Among them, ScaDiver [45] uses a mixture
of expert policy to scale up to the CMU MoCap dataset and
achieves a success rate of around 80% measured by time
to failure. Unicon[43] shows qualitative results in imita-
tion and transfer, but does not quantify the imitator’s ability
to imitate clips from datasets. MoCapAct[42] first learns
single-clip experts on the CMU MoCap dataset, and distills
them into a single that achieves around 80% of the experts’
performance. The effort closest to ours is UHC [20], which
successfully imitates 97% of the AMASS dataset. How-
ever, UHC uses residual force control [49], which applies a
non-physical force at the root of the humanoid to help bal-
ance. Although effective in preventing the humanoid from
falling, RFC reduces physical realism and creates artifacts
such as floating and swinging, especially when motion se-
quences become challenging [20, 21]. Compared to UHC,
our controller does not utilize any external force.

Fail-state Recovery for Simulated Characters. As simu-
lated characters can easily fall when losing balance, many
approaches [37, 49, 32, 40, 6] have been proposed to help
recovery. PhysCap [37] uses a floating-base humanoid that
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does not require balancing. This compromises physical re-
alism, as the humanoid is no longer properly simulated.
Egopose [49] designs a fail-safe mechanism to reset the hu-
manoid to the kinematic pose when it is about to fall, lead-
ing to potential teleport behavior in which the humanoid
keeps resetting to unreliable kinematic poses. NeruoMoCon
[13] utilizes sampling-based control and reruns the sam-
pling process if the humanoid falls. Although effective, this
approach does not guarantee success and prohibits real-time
use cases. Another natural approach is to use an additional
recovery policy [6] when the humanoid has deviated from
the reference motion. However, since such a recovery pol-
icy no longer has access to the reference motion, it produces
unnatural behavior, such as high-frequency jitters. To com-
bat this, ASE [32] demonstrates the ability to rise naturally
from the ground for a sword-swinging policy. While im-
pressive, in motion imitation the policy not only needs to
get up from the ground, but also goes back to tracking the
reference motion. In this work, we propose a comprehen-
sive solution to the fail-state recovery problem in motion
imitation: our PHC can rise from fallen state and naturally
walks back to the reference motion and resume imitation.

Progressive Reinforcement Learning. When learning
from data containing diverse patterns, catastrophic forget-
ting [8, 25] is observed when attempting to perform multi-
task or transfer learning by fine-tuning. Various approaches
[7, 15, 16] have been proposed to combat this phenomenon,
such as regularizing the weights of the network [16], learn-
ing multiple experts [15], or increasing the capacity using
a mixture of experts [54, 36, 45] or multiplicative con-
trol [31]. A paradigm has been studied in transfer learn-
ing and domain adaption as progressive learning [5, 4] or
curriculum learning [1]. Recently, progressive reinforce-
ment learning [3] has been proposed to distill skills from
multiple expert policies. It aims to find a policy that best
matches the action distribution of experts instead of finding
an optimal mix of experts. Progressive Neural Networks
(PNN) [34] proposes to avoid catastrophic forgetting by
freezing the weights of the previously learned subnetworks
and initializing additional subnetworks to learn new tasks.
The experiences from previous subnetworks are forwarded
through lateral connections. PNN requires manually choos-
ing which subnetwork to use based on the task, preventing it
from being used in motion imitation since reference motion
does not have the concept of task labels.

3. Method

We define the reference pose as q̂t ≜ (θ̂t, p̂t), consisting
of 3D joint rotation θ̂t ∈ RJ×6 and position p̂t ∈ RJ×3 of
all J links on the humanoid (we use the 6 DoF rotation rep-
resentation [53]). From reference poses q̂1:T , one can com-
pute the reference velocities ˆ̇q1:T through finite difference,

where ˆ̇qt ≜ (ω̂t, v̂t) consist of angular ω̂t ∈ RJ×3 and lin-
ear velocities v̂t ∈ RJ×3. We differentiate rotation-based
and keypoint-based motion imitation by input: rotation-
based imitation relies on reference poses q̂1:T (both rota-
tion and keypoints), while keypoint-based imitation only re-
quires 3D keypoints p̂1:T . As a notation convention, we use
·̃ to represent kinematic quantities (without physics simu-
lation) from pose estimator/keypoint detectors, ·̂ to denote
ground truth quantities from Motion Capture (MoCap), and
normal symbols without accents for values from the physics
simulation. We use “imitate”, “track”, and “mimic” refer-
ence motion interchangeably. In Sec.3.1, we first set up the
preliminary of our main framework. Sec.3.2 describes our
progressive multiplicative control policy to learn to imitate a
large dataset of human motion and recover from fail-states.
Finally, in Sec.3.3, we briefly describe how we connect our
task-agnostic controller to off-the-shelf video pose estima-
tors and generators for real-time use cases.

3.1. Goal Conditioned Motion Imitation with Ad-
versarial Motion Prior

Our controller follows the general framework of goal-
conditioned RL (Fig.3), where a goal-conditioned policy
πPHC is tasked to imitate reference motion q̂1:t or keypoints
p̂1:T . Similar to prior work [20, 29], we formulate the task
as a Markov Decision Process (MDP) defined by the tuple
M = ⟨S,A, T ,R, γ⟩ of states, actions, transition dynam-
ics, reward function, and discount factor. The physics sim-
ulation determines state st ∈ S and transition dynamics T
while our policy πPHC computes per-step action at ∈ A.
Based on the simulation state st and reference motion q̂t,
the reward function R computes a reward rt = R(st, q̂t)
as the learning signal for our policy. The policy’s goal is to
maximize the discounted reward E

[∑T
t=1 γ

t−1rt

]
, and we

use the proximal policy gradient (PPO) [35] to learn πPHC.
State. The simulation state st ≜ (sp

t , s
g
t) consists of hu-

manoid proprioception sp
t and the goal state sg

t . Propriocep-
tion sp

t ≜ (qt, q̇t,β) contains the 3D body pose qt, velocity
q̇t, and (optionally) body shapes β. When trained with dif-
ferent body shapes, β contains information about the length
of the limb of each body link [22]. For rotation-based mo-
tion imitation, the goal state sg

t is defined as the difference
between the next time step reference quantitives and their
simulated counterpart:

sg-rot
t ≜ (θ̂t+1⊖θt, p̂t+1−pt, v̂t+1−vt, ω̂t−ωt, θ̂t+1, p̂t+1)

where ⊖ calculates the rotation difference. For keypoint-
only imtiation, the goal state becomes

sg-kp
t ≜ (p̂t+1 − pt, v̂t+1 − vt, p̂t+1).

All of the above quantities in sg
t and sp

t are normalized with
respect to the humanoid’s current facing direction and root
position [47, 20].
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Figure 2: Our progressive training procedure to train primitives P(1),P(2), · · · ,P(K) by gradually learning harder and harder sequences.
Fail recovery P(F ) is trained in the end on simple locomotion data; a composer is then trained to combine these frozen primitives.

Figure 3: Goal-conditioned RL framework with Adversarial Mo-
tion Prior. Each primitive P(k) and composer C is trained using
the same procedure, and here we visualize the final product πPHC.

Reward. Unlike prior motion tracking policies that only
use a motion imitation reward, we use the recently proposed
Adversarial Motion Prior [33] and include a discriminator
reward term throughout our framework. Including the dis-
criminator term helps our controller produce stable and nat-
ural motion and is especially crucial in learning natural fail-
state recovery behaviors. Specifically, our reward is defined
as the sum of a task reward rg

t , a style reward ramp
t , and an

additional energy penalty renergy
t [29]:

rt = 0.5rg
t + 0.5ramp

t + renergy
t . (1)

For the discriminator, we use the same observations, loss
formulation, and gradient penalty as AMP [33]. The energy
penalty is expressed as −0.0005 ·

∑
j∈ joints |µjωj |2 where

µj and ωj correspond to the joint torque and the joint angu-
lar velocity, respectively. The energy penalty [9] regulates
the policy and prevents high-frequency jitter of the foot that
can manifest in a policy trained without external force (see
Sec.4.1). The task reward is defined based on the current
training objective, which can be chosen by switching the
reward function for motion imitation Rimitation and fail-state
recovery Rrecover. For motion tracking, we use:

rg-imitation
t = Rimitation(st, q̂t) = wjpe

−100∥p̂t−pt∥

+ wjre
−10∥q̂t⊖qt∥ + wjve

−0.1∥v̂t−vt∥ + wjωe
−0.1∥ω̂t−ωt∥

(2)

where we measure the difference between the translation, rotation,
linear velocity, and angular velocity of the rigid body for all links
in the humanoid. For fail-state recovery, we define the reward
rg-recover
t in Eq.3.

Action. We use a proportional derivative (PD) controller at each
DoF of the humanoid and the action at specifies the PD target.
With the target joint set as qd

t = at, the torque applied at each joint
is τ i = kp ◦ (at − qt)−kd ◦ q̇t. Notice that this is different from
the residual action representation [50, 20, 28] used in prior motion
imitation methods, where the action is added to the reference pose:
qd
t = q̂t + at to speed up training. As our PHC needs to remain

robust to noisy and ill-posed reference motion, we remove such a
dependency on reference motion in our action space. We do not
use any external forces [50] or meta-PD control[52].

Control Policy and Discriminator. Our control policy
πPHC(at|st) = N (µ(st), σ) represents a Gaussian distribu-
tion with fixed diagonal covariance. The AMP discriminator
D(sp

t−10:t) computes a real and fake value based on the current
prioproception of the humanoid. All of our networks (discrimi-
nator, primitive, value function, and discriminator) are two-layer
multilayer perceptrons (MLP) with dimensions [1024, 512].

Humanoid. Our humanoid controller can support any human
kinematic structure, and we use the SMPL [19] kinematic struc-
ture following prior arts [52, 20, 21]. The SMPL body contains 24
rigid bodies, of which 23 are actuated, resulting in an action space
of at ∈ R23×3. The body proportion can vary based on a body
shape parameter β ∈ R10.

Initialization and Relaxed Early Termination. We use reference
state initialization (RSI) [29] during training and randomly select a
starting point for a motion clip for imitation. For early termination,
we follow UHC [20] and terminate the episode when the joints are
more than 0.5 meters globally on average from the reference mo-
tion. Unlike UHC, we remove the ankle and toe joints from the
termination condition. As observed by RFC [50], there exists a
dynamics mismatch between simulated humanoids and real hu-
mans, especially since the real human foot is multisegment [27].
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Thus, it is not possible for the simulated humanoid to have the
exact same foot movement as MoCap, and blindly following the
reference foot movement may lead to the humanoid losing bal-
ance. Thus, we propose Relaxed Early Termination (RET), which
allows the humanoid’s ankle and toes to slightly deviate from the
MoCap motion to remain balanced. Notice that the humanoid still
receives imitation and discriminator rewards for these body parts,
which prevents these joints from moving in a nonhuman manner.
We show that though this is a small detail, it is conducive to achiev-
ing a good motion imitation success rate.

Hard Negative Mining. When learning from a large motion
dataset, it is essential to train on harder sequences in the later
stages of training to gather more informative experiences. We use
a similar hard negative mining procedure as in UHC [20] and de-
fine hard sequences by whether or not our controller can success-
fully imitate this sequence. From a motion dataset Q̂, we find
hard sequences Q̂hard ⊆ Q̂ by evaluating our model over the en-
tire dataset and choosing sequences that our policy fails to imitate.

3.2. Progressive Multiplicative Control Policy
As training continues, we notice that the performance of the

model plateaus as it forgets older sequences when learning new
ones. Hard negative mining alleviates the problem to a certain
extent, yet suffers from the same issue. Introducing new tasks,
such as fail-state recovery, may further degrade imitation perfor-
mance due to catastrophic forgetting. These effects are more con-
cretely categorized in the Appendix (App. C). Thus, we propose a
progressive multiplicative control policy (PMCP), which allocates
new subnetworks (primitives P) to learn harder sequences.

Progressive Neural Networks (PNN). A PNN [34] starts with a
single primitive network P(1) trained on the full dataset Q̂. Once
P(1) is trained to convergence on the entire motion dataset Q̂ us-
ing the imitation task, we create a subset of hard motions by eval-
uating P(1) on Q̂. We define convergence as the success rate on
Q̂

(k)
hard no longer increases. The sequences that P(1) fails on is

formed as Q̂(1)
hard. We then freeze the parameters of P(1) and cre-

ate a new primitive P(2) (randomly initialized) along with lateral
connections that connect each layer of P(1) to P(2). For more in-
formation about PNN, please refer to our supplementary material.
During training, we construct each Q̂

(k)
hard by selecting the failed

sequences from the previous step Q̂
(k−1)
hard , resulting in a smaller

and smaller hard subset: Q̂(k)
hard ⊆ Q̂

(k−1)
hard . In this way, we ensure

that each newly initiated primitive P(k) is responsible for learn-
ing a new and harder subset of motion sequences, as can be seen
in Fig.2. Notice that this is different from hard-negative mining
in UHC [20], as we initialize a new primitive P(k+1) to train.
Since the original PNN is proposed to solve completely new tasks
(such as different Atari games), a lateral connection mechanism
is proposed to allow later tasks to choose between reuse, modify,
or discard prior experiences. However, mimicking human motion
is highly correlated, where fitting to harder sequences Q̂

(k)
hard can

effectively draw experiences from previous motor control experi-
ences. Thus, we also consider a variant of PNN where there are no
lateral connections, but the new primitives are initialized from the
weights of the prior layer. This weight sharing scheme is similar to
fine-tuning on the harder motion sequences using a new primitive
P(k+1) and preserve P(k)’s ability to imitate learned sequences.

Algo 1: Learn Progressive Multiplicative Control Policy
1 Function TrainPPO(π, Q̂(k), D, V , R):
2 while not converged do
3 M ← ∅ initialize sampling memory ;
4 while M not full do
5 q̂1:T ← sample motion from Q̂ ;
6 for t← 1...T do
7 st ←

(
sp
t, s

g
t

)
;

8 at ← π(at|st) ;
9 st+1 ← T (st+1|st,at) // simulation ;

10 rt ←R(st, q̂t+1) ;
11 store (st,at, rt, st+1) into memory M ;

12 P(k),V ← PPO update using experiences collected in M ;
13 D ← Discriminator update using experiences collected in M

14 return π ;

15 Input: Ground truth motion dataset Q̂ ;

16 D, V , Q̂(1)
hard ← Q̂ // Initialize discriminator, value

function, and dataset ;
17 for k ← 1...K do
18 Initialize P(k)// Lateral connection/weight sharing ;

19 P(k) ← TrainPPO(P(k), Q̂(k+1)
hard , D, V , Rimitation) ;

20 Q̂
(k+1)
hard ← eval( P(k), Q̂(k) ) ;

21 P(k) ← freeze P(k) ;

22 P(F ) ← TrainPPO(P(F ), Qloco, D, V , Rrecover)
// Fail-state Recovery ;

23 πPHC ← {P(1) · · ·P(K),P(F ),C} ;
24 πPHC ← TrainPPO(πPHC, Q̂, D, V , {Rimitation,Rrecover})

// Train Composer ;

Fail-state Recovery. In addition to learning harder sequences,
we also learn new tasks, such as recovering from fail-state. We
define three types of fail-state: 1) fallen on the ground; 2) far-
away from the reference motion (> 0.5m); 3) their combination:
fallen and faraway. In these situations, the humanoid should get
up from the ground, approach the reference motion in a natural
way, and resume motion imitation. For this new task, we initialize
a primitive P(F ) at the end of the primitive stack. P(F ) shares
the same input and output space as P(1) · · ·P(k), but since the
reference motion does not provide useful information about fail-
state recovery (the humanoid should not attempt to imitate the ref-
erence motion when lying on the ground), we modify the state
space during fail-state recovery to remove all information about
the reference motion except the root. For the reference joint rota-
tion θ̂t = [θ̂0

t , θ̂
1
t , · · · θ̂J

t ] where θ̂i
t corresponds to the ith joint, we

construct θ̂′
t = [θ̂0

t ,θ
1
t , · · ·θj

t ] where all joint rotations except the
root are replaced with simulated values (without ·̂). This amounts
to setting the non-root joint goals to be identity when computing
the goal states: sg-Fail

t ≜ (θ̂′
t⊖θt, p̂

′
t−pt, v̂

′
t−vt, ω̂

′
t−ωt, θ̂

′
t, p̂

′
t).

sg-Fail
t thus collapse from an imitation objective to a point-goal [47]

objective where the only information provided is the relative posi-
tion and orientation of the target root. When the reference root is
too far (> 5m), we normalize p̂′

t − pt as 5×(p̂′
t−pt)

∥p̂′
t−pt∥2

to clamp the
goal position. Once the humanoid is close enough (e.g. < 0.5m ),
the goal will switch back to full-motion imitation:

sg
t =

{
sg
t ∥p̂0

t − p0
t∥2 ≤ 0.5

sg-Fail
t otherwise.

(3)

To create fallen states, we follow ASE [32] and randomly drop
the humanoid on the ground at the beginning of the episode. The
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Figure 4: (a) Imitating high-quality MoCap – spin and kick. (b) Recover from fallen state and go back to reference motion (indicated by
red dots). (b) Imitating noisy motion estimated from video. (c) Imitating motion generated from language. (d) Using poses estimated from
a webcam stream for a real-time simulated avatar.

faraway state can be created by initializing the humanoid 2 ∼ 5
meters from the reference motion. The reward for fail-state recov-
ery consists of the AMP reward ramp

t , point-goal reward rg-point
t , and

energy penality renergy
t , calculated by the reward function Rrecover:

rg-recover
t = Rrecover(st, q̂t) = 0.5rg-point

t + 0.5ramp
t + 0.1renergy

t ,
(4)

The point-goal reward is formulated as rg-point
t = (dt−1 − dt)

where dt is the distance between the root reference and simulated
root at the time step t [47]. For training P(F ), we use a hand-
picked subset of the AMASS dataset named Qloco where it con-
tains mainly walking and running sequences. Learning using only
Qloco coaxes the discriminator D and the AMP reward ramp

t to bias
toward simple locomotion such as walking and running. We do not
initialize a new value function and discriminator while training the
primitives and continuously fine-tune the existing ones.

Multiplicative Control. Once each primitive has been learned,
we obtain {P(1) · · ·P(K),P(F )}, with each primitive capable
of imitating a subset of the dataset Q̂. In Progressive Networks
[34], task switching is performed manually. In motion imita-
tion, however, the boundary between hard and easy sequences is
blurred. Thus, we utilize Multiplicative Control Policy (MCP)
[31] and train an additional composer C to dynamically combine
the learned primitives. Essentially, we use the pretrained primi-
tives as a informed search space for the composer C, and C only
needs to select which primitives to activate for imitation. Specif-
ically, our composer C(w1:K+1

t |st) consumes the same input as
the primitives and outputs a weight vector w1:K+1

t ∈ Rk+1 to ac-
tivate the primitives. Combining our composer and primitives, we
have the PHC’s output distribution:

πPHC(at | st) =
1

C(st)

k∏
i

P(i)
(a

(i)
t | st)

C(st), C(st) ≥ 0. (5)

As each P(k) is an independent Gaussian, the action distribution:

N

 1∑k
l

Ci(st)

σ
j
l
(st)

k∑
i

Ci(st)

σj
i (st)

µ
j
i (st), σ

j
(st) =

(
k∑
i

Ci(st)

σj
i (st)

)−1
 ,

(6)

where µj
i (st) corresponds to the P (i)’s j th action dimension. Un-

like a Mixture of Expert policies that only activates one at a time
(top-1 MOE), MCP combines the actors’ distribution and activates
all actors at the same (similar to top-inf MOE). Unlike MCP, we
progressively train our primitives and make the composer and ac-
tor share the same input space. Since primitives are independently
trained for different harder sequences, we observe that the com-
posite policy sees a significant boost in performance. During com-
poser training, we interleave fail-state recovery training. The train-
ing process is described in Alg.1 and Fig.2.

3.3. Connecting with Motion Estimators
Our PHC is task-agnostic as it only requires the next time-

step reference pose q̃t or the keypoint p̃t for motion tracking.
Thus, we can use any off-the-shelf video-based human pose esti-
mator or generator compatible with the SMPL kinematic structure.
For driving simulated avatars from videos, we employ HybrIK
[17] and MeTRAbs [39, 38], both of which estimate in the met-
ric space with the important distinction that HybrIK outputs joint
rotation θ̃t while MeTRAbs only outputs 3D keypoints p̃t. For
language-based motion generation, we use the Motion Diffusion
Model (MDM) [41]. MDM generates disjoint motion sequences
based on prompts, and we use our controller’s recovery ability to
achieve in-betweening.

4. Experiments
We evaluate and ablate our humanoid controller’s ability to im-

itate high-quality MoCap sequences and noisy motion sequences
estimated from videos in Sec.4.1. In Sec.4.2, we test our con-
troller’s ability to recovery from fail-state. As motion is best in
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Table 1: Quantitative results on imitating MoCap motion sequences (* indicates removing sequences containing human-object interaction).
AMASS-Train*, AMASS-Test*, and H36M-Motion* contains 11313, 140, and 140 high-quality MoCap sequences, respectively.

AMASS-Train* AMASS-Test* H36M-Motion*

Method RFC Succ ↑ Eg-mpjpe ↓ Empjpe ↓ Eacc ↓ Evel ↓ Succ ↑ Eg-mpjpe ↓ Empjpe ↓ Eacc ↓ Evel ↓ Succ ↑ Eg-mpjpe ↓ Empjpe ↓ Eacc ↓ Evel ↓
UHC ✓ 97.0 % 36.4 25.1 4.4 5.9 96.4 % 50.0 31.2 9.7 12.1 87.0% 59.7 35.4 4.9 7.4

UHC ✗ 84.5 % 62.7 39.6 10.9 10.9 62.6% 58.2 98.1 22.8 21.9 23.6% 133.14 67.4 14.9 17.2
Ours ✗ 98.9 % 37.5 26.9 3.3 4.9 96.4% 47.4 30.9 6.8 9.1 92.9% 50.3 33.3 3.7 5.5
Ours-kp ✗ 98.7% 40.7 32.3 3.5 5.5 97.1% 53.1 39.5 7.5 10.4 95.7% 49.5 39.2 3.7 5.8

Table 2: Motion imitation on noisy motion. We use HybrIK[17]
to estimate the joint rotations θ̃t and uses MeTRAbs [39] for
global 3D keypoints p̃t. HybrIK + MeTRAbs (root): using joint
rotations θ̃t from HybrIK and root position p̃0

t from MeTRAbs.
MeTRAbs (all keypoints): using all keypoints p̃t from MeTRAbs,
only applicabile to our keypoint-based controller.

H36M-Test-Video*

Method RFC Pose Estimate Succ ↑ Eg-mpjpe ↓ Empjpe ↓
UHC ✓ HybrIK + MeTRAbs (root) 58.1% 75.5 49.3

UHC ✗ HybrIK + MeTRAbs (root) 18.1% 126.1 67.1
Ours ✗ HybrIK + MeTRAbs (root) 88.7% 55.4 34.7
Ours-kp ✗ HybrIK + MeTRAbs (root) 90.0% 55.8 41.0
Ours-kp ✗ MeTRAbs (all keypoints) 91.9% 55.7 41.1

videos, we provide extensive qualitative results in the supplemen-
tary materials. All experiments are run three times and averaged.

Baselines. We compare with the SOTA motion imitator UHC [20]
and use the official implementation. We compare against UHC
both with and without residual force control.

Implementation Details. We uses four primitives (including fail-
state recovery) for all our evaluations. PHC can be trained on a
single NVIDIA A100 GPU; it takes around a week to train all
primitives and the composer. Once trained, the composite policy
runs at > 30 FPS. Physics simulation is carried out in NVIDIA’s
Isaac Gym [24]. The control policy is run at 30 Hz, while simula-
tion runs at 60 Hz. For evaluation, we do not consider body shape
variation and use the mean SMPL body shape.

Datasets. PHC is trained on the training split of the AMASS
[23] dataset. We follow UHC [20] and remove sequences that
are noisy or involve interactions of human objects, resulting in
11313 high-quality training sequences and 140 test sequences. To
evaluate our policy’s ability to handle unseen MoCap sequences
and noisy pose estimate from pose estimation methods, we use the
popular H36M dataset [14]. From H36M, we derive two subsets
H36M-Motion* and H36M-Test-Video*. H36M-Motion* contains
140 high-quality MoCap sequences from the entire H36M dataset.
H36M-Test-Video* contains 160 sequences of noisy poses esti-
mated from videos in the H36M test split (since SOTA pose esti-
mation methods are trained on H36M’s training split). * indicates
the removal of sequences containing human-chair interaction.

Metrics. We use a series of pose-based and physics-based metrics
to evaluate our motion imitation performance. We report the suc-
cess rate (Succ) as in UHC [20], deeming imitation unsuccessful
when, at any point during imitation, the body joints are on average

> 0.5m from the reference motion. Succ measures whether the
humanoid can track the reference motion without losing balance
or significantly lags behind. We also report the root-relative mean
per-joint position error (MPJPE) Empjpe and the global MPJPE
Eg-mpjpe (in mm), measuring our imitator’s ability to imitate the
reference motion both locally (root-relative) and globally. To show
physical realism, we also compare acceleration Eacc (mm/frame2)
and velocity Evel (mm/frame) difference between simulated and
MoCap motion. All the baseline and our methods are physically
simulated, so we do not report any foot sliding or penetration.

4.1. Motion Imitation

Motion Imitation on High-quality MoCap. Table1 reports our
motion imitation result on the AMASS train, test, and H36M-
Motion* dataset. Comparing with the baseline with RFC, our
method outperforms it on almost all metrics across training and
test datasets. On the training dataset, PHC has a better success
rate while achieving better or similar MPJPE, showcasing its abil-
ity to better imitate sequences from the training split. On test-
ing, PHC shows a high success rate on unseen MoCap sequences
from both the AMASS and H36M data. Unseen motion poses
additional challenges, as can be seen in the larger per-joint error.
UHC trained without residual force performs poorly on the test
set, showing that it lacks the ability to imitate unseen reference
motion. Noticeably, it also has a much larger acceleration error
because it uses high-frequency jitter to stay balanced. Compared
to UHC, our controller has a low acceleration error even when fac-
ing unseen motion sequences, benefiting from the energy penalty
and motion prior. Surprisingly, our keypoint-based controller is on
par and sometimes outperforms the rotation-based one. This vali-
dates that the keypoint-based motion imitator can be a simple and
strong alternative to the rotation-based ones.

Motion Imitation on Noisy Input from Video. We use off-the-
shelf pose estimators HybrIK [17] and MeTRAbs [39] to extract
joint rotation (HybrIK) and keypoints (MeTRAbs) using images
from the H36M test set. As a post-processing step, we apply a
Gaussian filter to the extracted pose and keypoints. Both HyBrIK
and MeTRAbs are per-frame models that do not use any temporal
information. Due to depth ambiguity, monocular global pose es-
timation is highly noisy [39] and suffers from severe depth-wise
jitter, posing significant challenge to motion imitators. We find
that MeTRAbs outputs better global root estimation p̃0

t , so we use
its p̃0

t combined with HybrIK’s estimated joint rotation θ̃t (Hy-
brIK + Metrabs (root)). In Table2, we report our controller and
baseline’s performance on imitating these noisy sequences. Simi-
lar to results on MoCap Imitation, PHC outperforms the baselines
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Table 3: Ablation on components of our pipeline, performed
using noisy pose estimate from HybrIK + Metrabs (root) on the
H36M-Test-Video* data. RET: relaxed early termination. MCP:
multiplicative control policy. PNN: progressive neural networks.

H36M-Test-Video*

RET MCP PNN Rotation Fail-Recover Succ ↑ Eg-mpjpe ↓ Empjpe ↓
✗ ✗ ✗ ✓ ✗ 51.2% 56.2 34.4
✓ ✗ ✗ ✓ ✗ 59.4% 60.2 37.2
✓ ✓ ✗ ✓ ✗ 66.2% 59.0 38.3
✓ ✓ ✓ ✓ ✗ 86.9% 53.1 33.7

✓ ✓ ✓ ✓ ✓ 88.7% 55.4 34.7
✓ ✓ ✓ ✗ ✓ 90.0% 55.8 41.0

by a large margin and achieves a high success rate (∼ 90%). This
validates our hypothesis that PHC is robust to noisy motion and
can be used to drive simulated avatars directly from videos. Simi-
larly, we see that keypoint-based controller (ours-kp) outperforms
rotation-based, which can be explained by 1) estimating 3D key-
point directly from images is an easier task than estimating joint
rotations, so keypoints from MeTRABs are of higher quality than
joint rotations from HybrIK; 2) our keypoint-based controller is
more robust to noisy input as it has the freedom to use any joint
configuration to try to match the keypoints.

Ablations. Table3 shows our controller trained with various com-
ponents disabled. We perform ablation on the noisy input from
H36M-Test-Image* to better showcase the controller’s ability to
imitate noisy data. First, we study the performance of our con-
troller before training to recover from fail-state. Comparing row 1
(R1) and R2, we can see that relaxed early termination (RET) al-
lows our policy to better use the ankle and toes for balance. R2 vs
R3 shows that using MCP directly without our progressive training
process boosts the network performance due to its enlarged net-
work capacity. However, using the PMCP pipeline significantly
boosts robustness and imitation performance (R3 vs. R4). Com-
paring R4 and R5 shows that PMCP is effective in adding fail-state
recovery capability without compromising motion imitation. Fi-
nally, R5 vs. R6 shows that our keypoint-based imitator can be
on-par with rotation-based ones, offering a simpler formulation
where only keypoints is needed. For additional ablation on MOE
vs. MCP, number of primitives, please refer to the supplement.

Real-time Simulated Avatars. We demonstrate our controller’s
ability to imitate pose estimates streamed in real-time from videos.
Fig.4 shows a qualitative result on a live demonstration of using
poses estimated from an office environment. To achieve this, we
use our keypoint-based controller and MeTRAbs-estimated key-
points in a streaming fashion. The actor performs a series of mo-
tions, such as posing and jumping, and our controller can remain
stable. Fig.4 also shows our controller’s ability to imitate reference
motion generated directly from a motion language model MDM
[41]. We provide extensive qualitative results in our supplemen-
tary materials for our real-time use cases.

4.2. Fail-state Recovery
To evaluate our controller’s ability to recover from fail-state,

we measure whether our controller can successfully reach the ref-
erence motion within a certain time frame. We consider three sce-

Table 4: We measure whether our controller can recover from the
fail-states by generating these scenarios (dropping the humanoid
on the ground & far from the reference motion) and measuring the
time it takes to resume tracking.

Fallen-State Far-State Fallen + Far-State

Method Succ-5s ↑ Succ-10s ↑ Succ-5s ↑ Succ-10s ↑ Succ-5s ↑ Succ-10s ↑
Ours 95.0% 98.8% 83.7% 99.5% 93.4% 98.8%
Ours-kp 92.5% 94.6% 95.1% 96.0% 79.4% 93.2%

narios: 1) fallen on the ground, 2) far away from reference mo-
tion, and 3) fallen and far from reference. We use a single clip of
standing-still reference motion during this evaluation. We generate
fallen-states by dropping the humanoid on the ground and apply-
ing random joint torques for 150 time steps. We create the far-state
by initializing the humanoid 3 meters from the reference motion.
Experiments are run randomly 1000 trials. From Tab.4 we can
see that both of our keypoint-based and rotation-based controllers
can recover from fall state with high success rate (> 90%) even
in the challenging scenario when the humanoid is both fallen and
far away from the reference motion. For a more visual analysis of
fail-state recovery, see our supplementary videos.

5. Discussions

Limitations. While our purposed PHC can imitate human mo-
tion from MoCap and noisy input faithfully, it does not achieve a
100% success rate on the training set. Upon inspection, we find
that highly dynamic motions such as high jumping and back flip-
ping are still challenging. Although we can train single-clip con-
troller to overfit on these sequences (see the supplement), our full
controller often fails to learn these sequences. We hypothesize that
learning such highly dynamic clips (together with simpler motion)
requires more planning and intent (e.g. running up to a high jump),
which is not conveyed in the single-frame pose target q̂t+1 for our
controller. The training time is also long due to our progressive
training procedure. Furthermore, to achieve better downstream
tasks, the current disjoint process (where the video pose estimator
is unaware of the physics simulation) may be insufficient; tighter
integration with pose estimation [52, 21] and language-based mo-
tion generation [51] is needed.

Conclusion and Future Work. We introduce Perpetual Hu-
manoid Controller, a general purpose physics-based motion imi-
tator that achieves high quality motion imitation while being able
to recover from fail-states. Our controller is robust to noisy es-
timated motion from video and can be used to perpetually simu-
late a real-time avatar without requiring reset. Future directions
include 1) improving imitation capability and learning to imitate
100% of the motion sequences of the training set; 2) incorporating
terrain and scene awareness to enable human-object interaction; 3)
tighter integration with downstream tasks such as pose estimation
and motion generation, etc.

Acknowledgements. We thank Zihui Lin for her help in making
the plots in this paper. Zhengyi Luo is supported by the Meta AI
Mentorship (AIM) program.

10902



References
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