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Figure 1. Overview and reconstruction results of the Occ-SDF hybrid neural scene representation. Aided with the feature rendering

scheme (Sec. 4) and the hybrid representation (Sec. 5), our method yields results with more detailed structures in room-level scenes

compared to the state-of-the-art, particularly for those low intensities and detailed structures.

Abstract

Implicit neural rendering, using signed distance function
(SDF) representation with geometric priors like depth or
surface normal, has made impressive strides in the surface
reconstruction of large-scale scenes. However, applying
this method to reconstruct a room-level scene from images
may miss structures in low-intensity areas and/or small, thin
objects. We have conducted experiments on three datasets
to identify limitations of the original color rendering loss
and priors-embedded SDF scene representation.

Our findings show that the color rendering loss creates
an optimization bias against low-intensity areas, resulting
in gradient vanishing and leaving these areas unoptimized.
To address this issue, we propose a feature-based color ren-
dering loss that utilizes non-zero feature values to bring
back optimization signals. Additionally, the SDF represen-
tation can be influenced by objects along a ray path, dis-
rupting the monotonic change of SDF values when a single

object is present. Accordingly, we explore using the occu-
pancy representation, which encodes each point separately
and is unaffected by objects along a querying ray. Our ex-
perimental results demonstrate that the joint forces of the
feature-based rendering loss and Occ-SDF hybrid repre-
sentation scheme can provide high-quality reconstruction
results, especially in challenging room-level scenarios. The
code is available at https://github.com/shawLyu/Occ-SDF-
Hybrid

1. Introduction
Reconstructing a 3D scene from a series of multi-view

images is a crucial problem in the realm of computer vi-

sion. This process has widespread applications in various

fields such as animation, gaming, and virtual/augmented re-

ality (VR/AR). The recent trend is to represent a 3D scene

as an implicit function parameterized by a neural network

[13, 19, 26, 21], whose optimization is supervised by ex-
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plicit 3D data like point cloud or real SDF value. Recent

advancements in neural radiance field (NeRF) [14] further

enable learning an implicit 3D representation from purely

sparse posed images [35, 15].

However, when it comes to producing high-quality

novel-view synthesis, these methods frequently utilize vol-

ume density [14] to represent the 3D geometry. Unfor-

tunately, this approach does not adequately constrain the

3D geometry in the presence of ambiguities [18], ulti-

mately leading to poor surface reconstructions (as depicted

in Fig. 1: Volume Density).

Accordingly, research efforts have been made to exploit

geometry-friendly representations, including signed dis-

tance function (SDF) [32, 34, 19] or occupancy [18], whose

zero-level set can be extracted to become the concerned 3D

surface. Albeit improving quality, they consider the recon-

struction only of a single object, thereby, the performance

degrades dramatically when applied to scene-level surface

reconstruction, i.e., representing a room (Fig. 1: SDF). An

attribute is that reconstructing texture-less areas often suf-

fers from ambiguous visual cues with only RGB loss as

the regularization. To address this problem, recent research

has attempted to incorporate semantic [8] or geometric pri-

ors (depth/normal [36, 31] constraints) to further regularize

scene-level reconstruction. With SDF-based representation

and geometric priors [36], the reconstruction quality has

been greatly improved (Fig. 1: SDF + Geometry Priors), es-

pecially concerning large flat areas and objects. However, it

still cannot faithfully reconstruct the 3D scene with missing

structures in low-intensity dark areas and small/thin objects

(Fig. 1: SDF + Geometry Priors).

The above observation motivates us to dive into bridg-

ing the remaining missing blocks of existing neural surface

representation methods. Notably, we focus on the SDF-

based representation as it achieves state-of-the-art perfor-

mance and has been widely adopted. Our analysis suggests

that both the RGB color rendering formulation and SDF

representation have clear limitations preventing existing so-

lutions from fully unleashing the potential of implicit neural

surface representation for large-scale room-level scenes.

First, the color itself can show a significant impact on

the optimization of geometric representation relying on the

original RGB-based rendering formula [14], namely color

bias. In particular, dark pixels with small intensity values

will make the partial derivation of the loss with respect to

the corresponding SDF value become zero, corrupting the

optimization and resulting in missing structures in dark ar-

eas (see for example in Fig. 1: Low Intensities). Accord-

ingly, herein instead of directly calculating the weighted

color, we first compute weighted features and then use a

learnable multi-layer perceptron (MLP) to decode the final

rendering color. In such a way, we would still be able to

effectively optimize the corresponding geometry represen-

tation as long as the feature vector contains non-zero values.

Second, the vanilla SDF-based neural rendering only

considers a single ray directly passing through the object

surface from the empty space and ignores objects along the

ray [32, 34]. This configuration violates scene-level geom-

etry where the existence of multiple objects clearly affects

the distributions of SDF (Fig. 5(a)). Meanwhile, the op-

timization of thin structures and small objects, which nat-

urally has small sampling probability, will be greatly de-

graded by this violation even with correct geometry prior

and the structure will be erased to minimize the global ge-

ometry loss (Fig. 1: Detailed Structures).

In addition, although occupancy-based representations

are likely to generate unwanted structure and cannot war-

rant a smooth surface reconstruction (Fig. 1), they are often

sufficiently robust to objects along the ray and free from

object interference in scene-level data. Therefore, during

optimization, we propose to describe the room-level scene

using occupancy in conjunction with signed distance func-

tions (SDFs) to compensate for each other’s defects.

The technical contributions are as follows:

• We explore an improved feature rendering scheme to

overcome the problem of vanishing gradients in neu-

ral implicit reconstruction brought by the vanilla color

space rendering formula.

• We carefully investigate insights and limitations in ex-

isting SDF and occupancy representations, and accord-

ingly propose a hybrid representation mingling SDF

with occupancy, dubbed Occ-SDF Hybrid, to resolve

surfaces with thin structures and small objects.

• We conduct a large body of qualitative and quantitative

experiments against state-of-the-art, indicating that our

Occ-SDF hybrid formula can yield a higher-fidelity

room-level scene representation, particularly with suc-

cessfully resolving small and dark objects.

2. Related Work
Multi-view Stereo Conventional algorithms [1, 25, 4] al-

ways split the reconstruction into two steps. First, the

feature-matching method [22, 17, 24] is applied to esti-

mate the depth of each frame. Then, the resulting depth

maps [12] are used to reconstruct the final scene. Notably,

the reconstruction may suffer from poor performance in

texture-less areas. Learning-based approaches are mainly

divided into two categories. Typically, neural networks are

embedded into the traditional reconstruction pipeline to re-

place specific modules, like feature matching [23, 37, 30],

depth estimation [33], or depth fusion [5]. These methods

often suffer from depth inconsistency problems due to the

separately estimated depth maps. Alternatively, neural net-

works are designed to directly regress input images to trun-
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cated signed distance functions (TSDFs) [16, 28], but the

reconstruction results often lack enough fine details.

Neural Scene Representation Recently, coordinate-based

neural representations can faithfully model a 3D scene with

only posed images. Approaches with an implicit differen-

tiable renderer [35] only use volume density as scene rep-

resentation which can not extract 3D scenes directly. To

address this issue, occupancy-based representation [18] and

SDF-based representation [32, 34] are proposed to facilitate

3D reconstruction. Notably, these methods already achieve

great performance for object-level scenes but exhibit poorly

for room-level scenes, especially in texture-less areas. For

the room-level scenes, several existing approaches [9, 39]

have demonstrated the ability to employ learned shape pri-

ors derived from extensive data to reconstruct scenes from

incomplete or noisy point clouds. However, these meth-

ods face limitations when it comes to reconstructing scenes

solely from image data.

Priors for Indoor Scene Reconstruction Existing methods

have attempted to introduce priors to resolve higher-fidelity

surfaces in texture-less areas. Manhattan-SDF [8] follows

semantic-NeRF[38] to estimate the volume density and se-

mantic label at the same time, and then uses Manhattan-

World assumption to regularize the geometry in floor and

wall regions. NeuRIS [31] and MonoSDF [36] directly ex-

ploit the depth and normal predicted from an off-the-shelf

neural network to regularize the geometry of each point, but

in many cases, thin structures would disappear. NeuRIS

[31] proposes a dynamic scheme to eliminate the wrong su-

pervision signal from inaccurate estimated results, however,

based on our investigation that fine structures are still lost

even with the correct geometry for supervision. In all, we

seek to explore a feature rendering scheme and a hybrid rep-

resentation to overcome the above problems.

3. Overview and Preliminary

Our goal is to examine the limitations of existing im-

plicit neural surface representations and explore practical

solutions for accurately reconstructing large-scale, room-

level 3D geometry with fine details from a set of cali-

brated images. First, we find that the well-adopted color-

based rendering formula in [36, 31] will induce optimiza-

tion bias against low-intensity areas, leaving these areas

under-optimized and resulting in missing reconstructions

(Sec. 4.1). Accordingly, we propose a simple yet effec-

tive feature-based rendering formula to address the prob-

lem (Sec. 4.2). Second, our analysis shows that the SDF-

based neural surface representation violates scene-level ge-

ometry supervised signal and thus prevents the model from

obtaining accurate reconstructions, making the model tends

to sacrifice small and thin structures (Sec. 5.2). Motivated

by this, we propose a hybrid representation mingling occu-
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Figure 2. Network architecture. The geometry network takes 3D

position (x, y, z) after positional encoding(PE) as input and output

both SDF and occupancy value. The appearance network takes

view direction (θ, φ) as input and outputs two types of color, the

direct color is used in Eq. (4) to directly obtain the pixel color and

the decoded color is calculated via the rendering formula (Eq. (8)).

pancy and SDF for accurate reconstruction (Sec. 5.3).

We here describe the mathematical preliminary on the

state-of-the-art surface representation, namely SDF-based

Neural Scene Representation [34], for 3D reconstruction.

For implicit neural reconstruction, we can represent the

scene as a signed distance function (SDF) field, which is a

continuous function f that calculates the distance between

each point and its closest surface

1Ω(p) =

{
1 if p ∈ Ω
0 if p /∈ Ω

,

f(p) = (−1)1Ω(p) min
y∈M

‖p− y‖ ,
(1)

where 1Ω(p) is an indicator function to represent whether

the space at position p is occupied, M = ∂Ω is the bound-

ary surface of occupied space and || · || is the standard Eu-

clidean 2-norm. Following the VolSDF [34], we use an

MLP to represent the function f and convert the SDF value

to Laplace density with the following function

σi(pi) = αΨβ (−f(pi)) , (2)

where α, β > 0 are learnable parameters, and Ψβ is the

cumulative distribution function (CDF) with zero mean and

the β scale is defined as

Ψβ(s) =

⎧⎨
⎩

1
2 exp

(
s
β

)
, if s ≤ 0

1− 1
2 exp

(
− s

β

)
, if s > 0

. (3)

Color Rendering Formula According to the rendering for-

mula [14], the color for the current ray r is rendered by

Ĉ(r) =
M∑
i=1

T r
i αiĉ

r
i , (4)

where T r
i and αi represent the transmittance and alpha
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value (a.k.a opacity), respectively, of sampled point. And

M represent the number of the sampled point along the ray

r. They can be computed by

T r
i =

i−1∏
j=1

(1− αi), αi = 1− exp(−σr
i δ

r
i ) , (5)

where δir is the distance between adjacent sample points.

Finally, given the rendered color Ĉ(r), the SDF field will

be optimized from sparsely sampled images by minimizing

the color-based rendering loss as

Lrgb =
∑
r∈R

||Ĉ(r)− C(r)||1 , (6)

where C(r) is the ground-truth color associated with the

sampled ray r.

4. Feature Rendering Formula

4.1. Problem of Color-based Rendering

Given the SDF-based scene representation and the color-

based rendering loss Lrgb in Sec. 3, we analyze the deriva-

tive of Lrgb to the opacity αi of a point pi. Note that for a

single point pi, as αr
i are the same regardless of the rays, we

thus omit its dependency on ray r and use αi for simplicity.

For a point pi, the derivative of the color loss function to its

opacity αi is

∂Lrgb

∂αi
=±

⎛
⎝i−1∏

j=1

(1− αj)ci −
N∑

k=i+1

ckαk

k−1∏
j=1,j �=i

(1− αj)

⎞
⎠, (7)

which indicates that when we optimize the SDF value of pi,

the gradient is determined by the color of the current point

pi and points behind it (ck and k ∈ {i + 1, ..., N}), and

opacity of all points on the entire ray except for the current

point (αj and j ∈ {1, 2, ...N} & j �= i). Notably, when

processing a dark region, saying that the ci approaches zero,

the first term of Eq. (7) will be close to zero. Similarly,

if points behind pi have low opacity (αk and k ∈ {i +
1, ..., N}), the gradient with respect to the SDF value will

be small, causing the vanishing problem in dark regions.

More generally, the gradient of SDF values can be affected

by the color itself, resulting in a biased optimization process

that tends to favor high color intensities.

The above analysis is also supported by our experiments

below. As shown in Fig. 3, we sample rays in the dark

regions and the light regions separately and accordingly

record the trend of gradient norms in these two regions dur-

ing the optimization. In the beginning, the gradient norms

from these two regions are similar; and the gradient norm

in the dark region (red solid line) decreases as the number

of training epochs increases, while the gradient norm in the

light region remains stable (blue solid line), indicating the

dark areas contribute much less to the optimization process.

As the optimization process proceeds, if these points are

Figure 3. The trend for the gradient. The mean and variance

of gradient norm (shadowed curves for variance) corresponding to

light and dark regions during optimization.

predicted as dark colors (cri → 0), it would lead to the gra-

dient reduction effects as analyzed in Eq. (7). The shadowed

regions keep the same trend as the mean values, further af-

firming our earlier analysis. Note that the gradient of points

in these areas will not equal zero due to the influence of

other loss functions, like depth consistency loss.

4.2. Feature-based Rendering

To resolve the aforementioned problem, we propose

feature-based color rendering loss. As shown in Fig. 2, the

Appearance network outputs two predictions for each point

i along a ray r: one is the color vector ĉri , and the other is the

hidden feature F r
i . For direct color ĉri , we utilize Eq. (4) to

obtain the target pixel color Ĉc(r). And the hidden feature

F i
r is used to render the ray feature F̂ (r) by

F̂ (r) =
M∑
i=1

T r
i αiF

r
i . (8)

The ray feature F̂r is further decoded by a decoder D to

yield the decoded target pixel color,

ĈF (r) = D(F̂ (r)) , (9)

where the decoder D is a single-layer perceptron with 256

nodes. Finally, the decoded color ĈF (r) from the rendered

feature is used to construct the feature-based color render-

ing loss. As such, the optimization of these dark regions

would not be affected by the color itself. As long as there

are non-zero values in the rendered feature, there will be

non-zero gradients with respect to the volume density of

the concerned point. As shown in Fig. 3 (dashed lines), the

gradient norm is not influenced by the intensity of colors.

5. Hybrid Representation Scheme

5.1. Incorporating Geometry Prior Matters

It is clear that for room-level scene reconstruction, ge-

ometry priors are essential. Existing methods [31, 36] ren-

der depth D̂(r) and normal N̂(r) of the surface intersecting
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the current ray as

D̂(r) =
M∑
i=1

T r
i α

r
i t

r
i and N̂(r) =

M∑
i=1

T r
i α

r
i n̂

r
i , (10)

where T̂ i
r and α̂i

r have the same meaning as Eq. (4), tri is the

distance the ray passing and nr
i is the normal of point pi.

Next, these methods use depth and normal maps estimated

from pre-trained models, such as Omnidata [10], to directly

supervise the rendered depth D̂(r) and normal N̂(r) using

Eq. (11) and Eq. (12), respectively. Overall, the depth loss

function is defined as

Ldepth =
∑
r∈R

||(wD̂(r) + q)− D̄(r)||2 , (11)

where w and q are the scale and shift computed by the

least-squares method [6] to solve scale-ambiguity problem

for monocular depth prediction methods. And the normal

loss function is

Lnormal=
∑
r∈R

||N̂(r)− N̄(r)||1+||1− N̂(r)T N̄(r)||1 , (12)

where N̄(r) is the predicted monocular normal transformed

to the same coordinate system with angular.

As shown in Fig. 1, we note that these geometry pri-

ors benefit the reconstruction of better surfaces in texture-

less and sparse-viewed areas. However, thin structures and

small objects, such as the yellow flower in Fig. 4, cannot

be faithfully reconstructed with geometry priors. Recently,

NeuRIS [31] put forward a hypothesis that this phenomenon

arises from the inaccurate geometry supervisory signal (i.e.

depth and surface normal). However, according to our ex-

periment on Replica synthetic dataset, this problem still ex-

ists even though we use the perfect ground-truth depth, nor-

mal, and RGB to provide supervisory signals (see Fig. 4).

5.2. Problem of SDF Formula with Geometry Prior

To dive into the SDF representation and explore its limi-

tations for surface reconstruction with geometric priors, we

create a simplified scenario and simulate object occlusions

as shown in Fig. 5(a). The ground-truth SDF intersecting

with a horizontal plane is shown in Fig. 5(a), and the SDF

distribution along a ray r intersecting with the blue cube at

point ps is shown in Fig. 5(c). There are many local minima

and maxima due to the existence of multiple objects, which

differs from the single-object scenario following a mono-

tonic function (blue line in Fig. 5(c)). To examine depth

priors for surface reconstruction, we employ the approach

proposed in MonoSDF [36] to calculate the depth of ps fol-

lowing Eq. (10) subject to the ground-truth SDF.

However, even with the ground-truth SDF, the estimated

depth value (1.59, the red vertical plot in Fig. 5(e)) still de-

viates from the true depth value (2.94, the green vertical

plot in Fig. 5(e)) when multiple objects exist. According

to Eq. (10), the estimated normal value would suffer from

Pseudo Ground Truth MonoSDF Error

Figure 4. Illustration of failure cases of state-of-the-arts. Even

though applying the perfect pseudo ground-truth geometry to su-

pervise the model, existing room-level reconstruction methods

like [36] can still fail to resolve accurate 3D structures.

the same problem. This implies that existing methods in-

corporating geometry priors [36, 31] to guide the learning

of the SDF representation may not necessarily encourage

the model to learn the true SDF for scene-level surface re-

construction. In turn, because small objects or thin struc-

tures usually have low sampling probability during training,

the minimization of Ldepth will encourage the model to pre-

dict SDF ignoring small objects along the ray r such that

the estimated SDF will produce depth values closer to the

depth supervision (see Fig. 5(e)) and minimize the overall

loss function, attempting to mimic the single object scenario

(right part in Fig. 5). In sum, the supervision from geomet-

ric priors tends to sacrifice the reconstruction of small ob-

jects to preserve large surface reconstruction, which aligns

also with our observation presented in Fig. 4.

5.3. Hybrid Occupancy-SDF Representation

The problem above is essentially caused by the SDF rep-

resentation, which describes the geometry of a scene as a

whole and thus suffers from the interference of other ob-

jects, especially small objects, and thin structures are prone

to be removed to preserve large structures.

Unlike the SDF representation, occupancy represents

each point separately and thus is free from the interference

of objects in this challenging scenario. However, occupancy

representation only focuses on the intersecting point ignor-

ing the constraint of neighborhood points. Thus, the recon-

struction results represented by occupancy will have many

floaters and useless structures, as shown in Fig. 1, which can

be eliminated in SDF by Eikonal loss [7]. This inspires us

to investigate a hybrid of occupancy and SDF as a represen-

tation for neural surface reconstruction as shown in Fig. 2.

The geometry network θ outputs both SDF and occupancy.

Specifically, the occupancy represents surfaces as the de-
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(a) Schematic of the toy 3D structure for the multi-object scene (left) and single object scene (object).
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Figure 5. Toy experiments for the room-level scene. The left part of 5(a), where we stand in front of the yellow cylinder to observe the

entire scene, is a widespread scenario for room-level scale scenes. Unlike the single object scenario, where the distribution of SDF value

is a monotonic decreasing function from the observed position to the object, the room-level scenario has complex distributions with multi

peaks/valleys along the single ray (5(c)). Following the Laplace density function [34], the density distributions of different situations are

shown in 5(d), where room-level scenes have a secondary peak near small objects but the single object scene only has one peak. It is

because of the existence of this peak, the weights in the room-level scene (5(e)) exhibit a multi-model distribution, while for the single

object case a uni-modal distribution. As such, we note that the rendering depth D̂ deviates from the ground truth in the room-level scene

but is close to the ground truth depth object-level scene. 5(b) means the effect of supervised signal in three different representations.

cision boundary of a binary occupancy classifier, parameter-

ized by a neural network θ

oθ(p) : R3 → [0, 1] , (13)

where p is a 3D point. The occupancy representation as-

sumes that objects are solid, thus we can rewrite the neural

rendering formula [14] to

Ĉ(r) =

M∑
i=1

o(pi)
∏
j<i

(1− o(xj))c(pi, d) , (14)

which replaces the opacity α to a discrete occupancy indi-

cator variable o ∈ 0, 1, where o = 0 indicates the free space

while o = 1 the occupied space. Thus, this representation

will not be affected by the objects along the ray, and the

rendering depth will be consistent with ground-truth depth

in ground-truth occupancy space. Note that the occupancy-

based representation is introduced to facilitate optimization.

During inference, the SDF is used for reconstruction.

To understand why and how the hybrid representation

helps optimize the SDF field for accurate reconstruction,

we conduct the following empirical analysis, using the sce-

nario shown in Fig. 5(a). Here, the orange ray hits a surface

point Q of the large blue cube and the blue ray hits the sur-

face point P on the small cylinder. During optimization, the

depth/normal loss for point Q along the orange ray will en-

courage the model to predict a large SDF value (absolute)

of point P (Fig. 5(b)) which violates the reconstruction of

the small cylinder where a small SDF value is desired. In

contrast, point Q has no effects on point P with occupancy

representation. The hybrid representation joins the forces

of SDF and occupancy representations, aiming to use oc-

cupancy representation to help overcome the issues of SDF

representation in optimization. Although the depth/normal

loss from the SDF presentation for point Q still has a nega-

tive impact on the optimization of point P . The additional

occupancy representation will force the network to predict

a large occupancy value for a point P and thus will indi-

rectly regularize the network to predict a small SDF value

(see Fig. 5(b): the blue up arrow in “Hybrid”). We admit

that this hybrid representation can only alleviate this prob-

lem, and our study is more empirical. Fundamental issues

arise from insufficient neural scene representation, which

requires further research efforts. We explore further why

this combination would bring notable benefits to the sup-

plementary with an example.

6. Experiments

Optimization. In the training stage, we minimize the loss

L =Lsdf
rgb + λ1LsdfF

rgb + λ2Leik + λ3Locc
depth

+ λ4Lsdf
depth + λ5Locc

normal + λ6Lsdf
normal,

(15)

where Lrgb means color-based rendering loss following

Eq. (6) but only to SDF representation. The rendering

color computed by the feature rendering formula (Eq. (8)
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and Eq. (9)) is denoted to LsdfF
rgb . Notably, Leik means the

eikonal loss [7], Ldepth means the depth rendering loss fol-

lowing Eq. (11), and Lnormal means the normal rendering

loss following Eq. (12). We apply them for both represen-

tations, where the superscript occ indicates the loss com-

puted by occupancy-based representation, while the sdf by

SDF-based representation. The network is optimized by

the Adam optimizer with a learning rate of 5e−4. We set

weights λ1, λ2, λ3, λ4, λ5, λ6 to 1, 0.05, 0.5, 0.1, 0.1, 0.05,

respectively. The network architecture and sampling strat-

egy are detailed in the supplement.

Datasets. We use three datasets to assess the performance

of our algorithm. ScanNet [2] is a real-world dataset that

provides 1,513 scenes captured with Kinect V1 RGB-D

camera. The BundleFusion [3] is applied to provide high-

quality camera poses and surface reconstructions. For each

scene, we uniformly sample roughly 500 frames to train our

network. Tanks and Temples [11] is a real-world, large-

scale scene dataset. We use four indoor scenes from their

advanced split and run on the official server. Replica [27]

is a synthetic dataset that provides 18 scenes, with each pro-

viding dense geometry, HDR textures, and semantic annota-

tions. We select 8 scenes and use the Habitat simulator [29]

to render RGB images following MonoSDF [36] splits. No-

tably, we conduct ablation studies on this dataset.

Compared Methods. (1) UNISURF [18] is an occupancy-

based method that unifies surface rendering and volume ren-

dering for neural scene reconstruction. We implement the

UNISURF* with normal and depth priors for a fair com-

parison. (2) MonoSDF [36] is an SDF-based method that

adds depth and normal constraints on VolSDF [34]. (3)

Manhattan-SDF [8] is an SDF-based method that adds

a semantic branch and uses the Manhattan constraint to

regularize the geometry in floor and wall regions. (4)

COLMAP [25] is a classical multi-view stereo method with

Poisson surface reconstruction. (5) NeuRIS [31] is an SDF-

based method that introduces pseudo normal prior to the

NeUS [32] architecture. Meanwhile, it leverages multi-

view consistency to eliminate the wrong supervision signal

from inaccurate estimated results. (6) NICER-SLAM [39]

is an SDF-based dense SLAM system that uses locally im-

plicit map representation and can simultaneously optimize

for camera poses and a hierarchical neural implicit map rep-

resentation. (7) LIG [9] uses the local implicit grid rep-

resentation to reconstruct the large-scale scene from par-

tial or noise point clouds. (8) Convolutional Occupancy
network(Conv-Occ) [21] is a locally implicit representa-

tion that integrates local information to get better recon-

struction results from noisy point cloud.

Notably, local implicit representation [9, 21] can only

reconstruct the scene from point clouds, thus we re-

implement them using point clouds generated from scale-

aligned pseudo depth and utilize the provided pretrained

models for evaluation. And we directly obtain the results

from the main paper of NICER-SLAM [39].

Metrics. All meshes are evaluated by 5 standard metrics

defined in [16]: Accuracy, Completeness, Precision, Recall,
and F-score. Their definition will be discussed in the sup-

plementaryary. For the Replica dataset, we also report the

normal consistency following [13, 8, 20]. For the Tanks

and Temples dataset, we use the official server to evaluate

our results and report the F-score for selected scenes.

6.1. Main Results

We compare our method with state-of-the-art methods

on three benchmark datasets.

Method Acc ↓ Comp ↓ C-L1 ↓ Prec ↑ Recall ↑ F-score ↑
COLMAP [25] 0.047 0.235 0.141 71.1 44.1 53.7

UNISURF [18] 0.554 0.164 0.359 21.2 36.2 26.7

VolSDF [34] 0.414 0.120 0.267 32.1 39.4 34.6

NeUS [32] 0.179 0.208 0.194 31.3 27.5 29.1

Manhattan-SDF [8] 0.072 0.068 0.070 62.1 56.8 60.2

NeuRIS [31] 0.050 0.049 0.050 71.7 66.9 69.2

MonoSDF [36] 0.035 0.048 0.042 79.9 68.1 73.3

Ours 0.039 0.041 0.040 80.0 76.0 77.9

Table 1. Quantitative assessments of the proposed model against

previous works on the ScanNet dataset.

Results on ScanNet Dataset. We conducted a com-

parative analysis of our proposed approach against exist-

ing implicit reconstruction methods, including Manhattan-

SDF [8], NeuRIS [31] and MonoSDF [36] using the Scan-

Net dataset. As revealed in Table 1, our proposed method

outperforms state-of-the-art methods, with a significant in-

crease in F-score by 4.6. Additionally, in terms of Re-

call, our method substantially outperforms MonoSDF by

7.9 without needing extra data. Overall, our approach

performs on par with the state-of-art methods in “Acc”,

“Chamfer-L1(C-L1)” and “Prec” and obtain notable per-

formance gains in “Comp”, “Recall” and “F-score”. This

is because these metrics (”Comp” and ”Recall”) are better

metrics in evaluating how complete and accurate in captur-

ing the shape and details of the scene being reconstructed.

Further, Fig. 6 reveals that our method can attain more com-

plete reconstructions with details and for low pixel intensi-

ties regions.

Auditorium Ballroom Courtroom Museum Mean

MonoSDF 3.09 2.47 10.00 5.10 5.165

Ours 5.22 5.42 13.99 8.59 8.305
MonoSDF* 3.17 3.70 13.75 5.68 6.58

Ours* 6.19 7.33 19.80 11.85 11.295

Table 2. Quantitative assessments of the proposed model against

Monosdf on the Tanks and Temples dataset. The evaluation met-

rics for the Tanks and Temples dataset are F-score. * means that

the hash-grid structure is adopted.

Results on Tanks and Temples Dataset. For challeng-

ing large-scale indoor scenes, we conduct experiments on
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(MLP)
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MonoSDF (Grids)

Ours (Grids)
Figure 6. Reconstruction results on representative datasets of Replica (left), ScanNet (middle), and Tanks and Temples (right). The

ground truth is presented on the bottom-most. Red boxes in sub-figures highlight those areas where distinctive differences can be observed.

the advanced Tanks and Temples dataset [11], which fea-

tures more complicated structures. As alternative meth-

ods of neural reconstruction from images are not assessed

on this dataset, we implement the best-performing method

MonoSDF and compare with it. Thus, the MonoSDF and

two versions of our method are implemented. Specifically,

one adopts the pure MLP architecture while the other uses

the hash grids as the input representation. The quantitative

assessments (Table 2) reveal that our method shows better

performance on this dataset, regardless of whether an MLP

or hash-grid structure is used. And our hybrid representa-

tion exhibits excellent generalization abilities across differ-

ent implicit structures. Overall, our compelling experimen-

tal results on the Tanks and Temples dataset further validate

the robustness and versatility of the proposed method in re-

constructing complex and challenging indoor scenes.

Results on Replica Dataset. Quantitative assessment re-

sults on the Replica dataset are presented in Table 3. For

this dataset, we compare our methods with both point-based

methods [21, 9] and rendering methods [39, 18, 36]. Ours

significantly surpasses existing state-of-the-art neural ren-

Method Normal C.↑ Chamfer-L1 ↓ F-score ↑
Conv-Occ [21] 85.73 6.43 58.33

LIG [9] 89.56 5.53 65.20

NICER-SLAM [39] 90.27 3.91 -

UNISURF† [18] 90.96 4.93 78.99

MonoSDF† [36] 92.11 2.94 86.18

Ours† 93.43 2.58 92.12

Table 3. Quantitative assessments of the proposed model against

prior works on the Replica dataset. Herein, † indicates the use of

geometry priors as supervision signals.

dering methods. The results reveal that the SDF-based

representation outperforms the occupancy-based ones (i.e.

UNISURF*). This is because the SDF usually enforces con-

straints on the distribution of the entire scene, benefiting to

suppressing the occurrence of floaters or unnecessary struc-

tures in occupancy-based representation. Notably, our Occ-

SDF Hybrid method can constrain the distribution of the

entire scene with SDF representation meanwhile exploiting

the occupancy representation to resolve thin structures and

small objects. Qualitative comparisons are shown in Fig. 6.
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6.2. Ablation Study

Normal C.↑ Chamfer-L1 ↓ F-score ↑
MonoSDF 92.11 2.94 86.18

+ feature 93.01 2.64 91.01

+ hybrid 93.22 2.77 90.24

full model 93.43 2.58 92.12

Table 4. Ablation study on the Replica dataset [27], where we pro-

gressively add different constraints to assess their impacts. The

MonoSDF [36] is set as the baseline model.

We conduct ablation studies on the Replica dataset as it pro-

vides ground-truth geometry. Four different configurations

are investigated to train our model, including (1) MonoSDF

with MLP settings (MonoSDF-MLP); (2) MonoSDF-MLP

with our feature-based rendering formula; (3) MonoSDF-

MLP with our hybrid representation; (4) MonoSDF-MLP

with both the feature-based rendering formula and hybrid

representation scheme (Full model).

Table 4 shows that all metrics are improved when using

the feature rendering to reconstruct this scene. Our pro-

posed feature rendering scheme addresses the difficulties in

reconstructing areas of low intensities, resulting in better

results. On the other hand, the hybrid representation also

leads to significant improvements in all metrics. Notably, it

improves the completeness of small objects and thin struc-

tures, as evidenced by the results in Fig. 6. By leveraging

both components, our model achieves an overall improve-

ment of 5.94 in F-score, along with improved normal con-

sistency and Chamfer-L1. We attribute this success to our

feature-based color rendering formula and our hybrid repre-

sentation, which addresses the color-bias issue in optimiza-

tion and difficulties in reconstructing detailed structures.

The visualization results in Fig. 6 show our model’s excel-

lent reconstruction performance, especially in low-intensity

areas and detailed structures. We will add more ablation

studies and visualize results in the supplementary.

6.3. Parameters Adjusting

As shown in Eq. (15), our method newly added three

different losses LsdfF
rgb ,Locc

depth,Locc
normal. In order to verify

the sensitivity of our method to hyperparameters, we pro-

vided the results of the experiment on the Replica dataset as

shown in Fig. 7. It is clear that our method is not very sen-

sitive to hyperparameters, and all the evaluated settings out-

perform the baseline method (C-L1: 2.94, F-score: 86.18).

It is worth noting that our approach demonstrates consistent

performance enhancement across diverse datasets using the

same parameter set, outperforming the baseline results.

7. Conclusion
We have analyzed the constraints present in current neu-

ral scene representation techniques with geometry priors,

Figure 7. Performance with different hyperparameter choices.

and have identified issues in their ability to reconstruct de-

tailed structures due to a biased optimization towards high

color intensities and the complex SDF distribution. As a re-

sult, we have developed a feature rendering scheme that bal-

ances color regions and have implemented a hybrid repre-

sentation to address the limitations of the SDF distribution.

Our approach has demonstrated the successful reconstruc-

tion of room scenes with a high-fidelity surface, including

small objects, detailed structures, and low-intensity pixel

regions. We envision our results inspire further research

on improving neural scene representation for accurate and

large-scale surface reconstruction.
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