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Abstract

In Parallel Continual Learning (PCL), the parallel multi-
ple tasks start and end training unpredictably, thus suffering
from both training conflict and catastrophic forgetting issues.
The two issues are raised because the gradients from parallel
tasks differ in directions and magnitudes. Thus, in this paper,
we formulate the PCL into a minimum distance optimization
problem among gradients and propose an explicit Asymmet-
ric Gradient Distance (AGD) to evaluate the gradient dis-
crepancy in PCL. AGD considers both gradient magnitude
ratios and directions, and has a tolerance when updating
with a small gradient of inverse direction, which reduces
the imbalanced influence of gradients on parallel task train-
ing. Moreover, we present a novel Maximum Discrepancy
Optimization (MaxDO) strategy to minimize the maximum
discrepancy among multiple gradients. Solving by MaxDO
with AGD, parallel training reduces the influence of the
training conflict and suppresses the catastrophic forgetting
of finished tasks. Extensive experiments validate the effec-
tiveness of our approach on three image recognition datasets
in task-incremental and class-incremental PCL. Our code is
available at https://github.com/fanlyu/maxdo.

1. Introduction

Continual Learning (CL) [25, 27, 31, 43], aims to contin-
uously learn new knowledge from a sequence of tasks with
non-overlapping data streams over a lifelong time. In the era
of Internet of Things, people are using many smart devices,
where multi-source data and tasks would be accessed at any
time. A CL system should respond to parallel data streams
from multiple devices. We study Parallel Continual Learn-
ing (PCL), as shown in Fig. 1, where an unfixed number of
tasks are trained in a parallel way at any time. Specifically,
according to the access time of each task, PCL builds an
adaptive number of parallel data pipes, thus enabling instant
response to new-coming tasks without pending.
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Due to the parallel data streams from different tasks, PCL
suffers from not only the catastrophic forgetting but the train-
ing conflict among parallel tasks. Most existing methods in
CL are proposed to tackle the catastrophic forgetting [19, 25],
including regularization-based [25, 8, 16, 51, 1], rehearsal-
based [31, 9, 21, 4, 41, 36], and architecture-based [33, 49,
39, 38] methods. In PCL, the training processes of differ-
ent tasks are diverse, i.e., each task starts and ends training
unpredictably (see Fig. 1). Thereby the gradient from differ-
ent task differs in direction and magnitude [50] and may be
neutralized. The gradient discrepancies lead to catastrophic
forgetting and training conflict issues, which may fail the
learning of some tasks. At any time in PCL, therefore, we
present that the problem can be formulated to find an optimal
gradient in a minimum distance multi-objective optimization,
where each objective is to minimize the distance to a target
gradient. In general, the distance metric is proportional to
the effect of the optimal gradient on the corresponding task.

In most situations, the mentioned distance metric D be-
tween gradients is set to symmetric intuitively, such as the
Euclidean distance and cosine distance. In other words, we
usually have D(x,y) = D(y,x) for any x and y. However,
the gradient influence is imbalanced among parallel tasks in
the gradient descent. For example, in Fig. 1, at the marked
time, we have three gradients with diverse directions and
magnitudes, and updating with any of them provides differ-
ent influences to the other two. In the minimum distance
problem, the optimal solution should have the minimum
negative influence on all parallel tasks, but using symmetric
metrics means the influences are optimized indistinguishably
at the same time. Due to the fact that the gradients are with
wide differences, the solution may have large biases, which
would get the near-fitting task out of its local minimum but
has less impact on a new-coming task.

To measure the gradient discrepancy, we hold the opinion
that the distance metric in the min-distance problem should
be asymmetric. First, though the metric is bound up with
both the gradient magnitude and direction, the influences on
model training from gradients should be asymmetric, where
the model should have more tolerance to small gradients
even if they indicate an inverse direction. Second, because
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Figure 1. Overview of the proposed method in PCL. Left: PCL trains parallel tasks according to their access time without pending. Middle:
At any time, gradients from different tasks (corresponding colors) have unpredicted direction and magnitude (the length of vectors). Right:
We formulate PCL into a min-distance problem and propose an asymmetric distance for effective optimization.

gradients are with different magnitudes, the discrepancy
between two large gradients is often set to larger than that be-
tween small gradients when using symmetric distance, such
as Euclidean distance. Directly optimizing using magnitude-
aware distance values may lead to the solution close to large
gradients and thus hinder the kepping of old tasks. To mit-
igate the bias from the magnitude difference, it is better to
employ the magnitude ratio instead of magnitude itself.

Motivated by this, in this paper, we propose an explicit
measurement for the learning from gradient discrepancy in
PCL, named Asymmetric Gradient Distance (AGD), which
considers gradient magnitude ratios and directions, and sets
a tolerance for smaller gradients. As shown in Fig. 1, the
proposed AGD is used in solving the minimum distance
problem with multiple gradients from parallel tasks. Then,
we propose an effective optimization strategy for minimizing
the gradient discrepancy to avoid self-interference. We name
the strategy Maximum Discrepancy Optimization (MaxDO),
which minimizes the maximum discrepancy from each gra-
dient to the others. Moreover, to address the catastrophic
forgetting issue, we follow the rehearsal strategy [31] in tra-
ditional CL and build an extra memory data stream. The
rehearsal data stream is used to provide a gradient of finished
tasks in MaxDO. Solving by MaxDO with AGD, parallel
training mitigates the impacts of the diverse training process
and slows the catastrophic forgetting of finished tasks. Ex-
tensive results on three datasets show the superiority and
effectiveness of our approach.

Our main contributions are three-fold:
(1) We formulate the PCL into a minimum distance problem

and compare symmetric and asymmetric distances. We
show that symmetric metrics are not effective in solving
the problem and suggest asymmetric metrics.

(2) We propose an asymmetric metric, named AGD, to eval-
uate the gradient discrepancy, which is proportional to
the gradient magnitude ratios and directions. AGD mea-
sures the imbalance of gradient influence in PCL.

(3) We propose MaxDO for minimizing gradient discrep-
ancy of different tasks, which maximumly reduces the

asymmetric discrepancy from a gradient to the others.
MaxDO avoids the self-interference among gradients
and reduces training conflict and catastrophic forgetting.

2. Related Work
2.1. Continual Learning

Continual Learning (CL) represents receiving data from
new domains continually. In traditional CL, the new domains
show up one by one, say serial CL. CL methods can be
classified into three kinds. (1) Rehearsal [31, 9, 21, 4, 41, 36,
32], which saves or generates data of old tasks for retraining
together with the current training. (2) Regularization [25, 8,
16, 51, 1, 17], which leverages extra regularization terms to
consolidate previous knowledge when learning new tasks.
(3) Dynamic architecture [33, 49, 39, 38], which freezes task-
specific parameters and grows new branches for new tasks
automatically. However, most of the existing CL methods
are designed for reducing catastrophic forgetting in the serial
scenario. Contrastively, in PCL, we need to tackle not only
catastrophic forgetting but training conflict among parallel
tasks, which is somehow related to multi-task learning.

2.2. Multi-Task Learning

Multi-Task Learning (MTL) [7] is used to address multi-
ple tasks with a single model from one to many domains. Tra-
ditional MTL solutions can be mainly grouped into feature-
based and parameter-based approaches [52]. The feature-
based approaches focus on learning common feature repre-
sentations for multiple tasks [34, 45]. The parameter-based
approaches use model parameters in a task to help learn
model parameters in other tasks [44, 5, 23]. Recently, some
MTL methods propose to find an optimal gradient for updat-
ing and can be categorized into three types. (1) Learning-
based methods [11], which learn a set of weights by back-
propagation. (2) Solving-based methods [40, 29], solve the
problem by finding an optimal gradient that is not dominated
by the gradient from any task. (3) Calculating-based meth-
ods [30, 24, 12, 46, 50, 20, 28] compute the gradient weights
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by combining gradients or losses of all tasks. Inspired by
MTL, we also formulate the problem into finding an optimal
gradient. Specifically, we consider that the optimal gradient
should have a small distance to all gradients.

2.3. Asymmetric Metric

In most situations in neural network, the distance is set
to symmetric, e.g., the Euclidean distance. However, the
symmetric metric is not always suitable for finding the opti-
mal gradient (see the next section for details). Asymmetric
metric [14, 35], also known as quasi-metric [14] or pseudo
metric [18, 6], is a generalization of a metric but the symme-
try axiom is eliminated in the definition of metric spaces. A
classical example of asymmetric metric is the taxicab geom-
etry topology including one-way streets, where a path from
point A to B has different streets compared to a path from
B to A. In this paper, we propose to measure the gradient
discrepancy using an asymmetric metric and raise a novel
optimization strategy to minimize the maximum discrepancy.

3. Our Approach
3.1. Parallel Continual Learning

On a timeline, given a sequence of T tasks with parallel
data streams {D1, · · · ,DT } for continual training, and each
data stream can be accessed and suspended at any time. For
simplest, we assume each data stream is i.i.d., and tasks are
accessed in order from 1 to T and there exists no real gap that
no data stream flows on the timeline. Note that traditional
CL is an edge situation of PCL that all tasks are nose-to-tail.
A PCL model contains a shared backbone with parameter θ
to learn task-agnostic knowledge and adaptively incremen-
tal number of task-specific classifiers with parameters θi.
When a new task is accessed, a corresponding task-specific
classifier will be constructed.

In PCL, a task will be forgotten by learning any other
tasks when its data stream ends. To avoid forgetting, we
leverage the popular rehearsal strategy [31, 9, 21, 4, 41,
36] in our training. Rehearsal builds an extra data stream
sampled from all seen tasks and retrains them to suppress the
forgetting of finished tasks. For convenience, we denote the
rehearsal data stream asD0. At time t, we use Tt to represent
the activated data streams (including D0). Together with the
rehearsal data stream, PCL training yields the following
dynamic multi-objective empirical risk minimization:

min
θ,{θi|i∈Tt}

{ℓi (Di) |i ∈ Tt} . (1)

Because the task-specific classifiers are updated by their own
gradients θi ← θi − αi∇θi

ℓi (∀i ∈ Tt) with step size αi,
we focus on the update of the shared backbone θ. At any
PCL step, the goal of dynamic MOO is to optimize multiple
objectives simultaneously while updating only once, and

the only update of the shared parameters depends on the
gradients of all in-training tasks. It will exit an uncertain
number of tasks, and each task will provide a task-specific
gradient on the shared parameter θ. Let gi = ∇θℓi and α be
a step size for optimization. The problem of the backbone
update can be formulated as follows:

θ ← θ − αd∗, where d∗ = f({gi|∀i ∈ Tt}). (2)

The key question is how to compute the optimal gradient d∗

via the function f(·). In this paper, we define the function
f(·) as a min-distance multi-objective problem by minimiz-
ing the gradient distance from all in-training tasks:

d∗ = argmin
d

{D(d,gi) | ∀i ∈ T }, (3)

where we need to identify what distance metric D is used
to measure gradient discrepancy. The motivation of Eq. (3)
is that for the task i in PCL, its own gradient gi is the most
qualified update direction for itself. The solution d∗ should
be as close to every gradient as possible.

A related but different task is Federated Continual Learn-
ing (FCL) [48, 42]. Most FCL methods primarily focus on
serial training, involving multiple clients in training a shared
task at the same time. It is meaningful to study Federated
PCL in the future for the advancement of privacy protection.

3.2. Measuring Asymmetric Gradient Discrepancy

To measure gradient discrepancy, the Euclidean Distance
(EuDist, D(x,y) = ∥x − y∥ ∈ [0,∞)) and Cosine Dis-
tance (CosDist, D(x,y) = 1 − x⊤y

∥x∥∥y∥ ∈ [0, 2]) are the
two most popular choices. Both of them are symmetric, i.e.,
D(x,y) = D(y,x). A symmetric metric D(x,y) means
the forward influence (x to y) and backward influence (y to
x) are equal. For example, given two in-training tasks A and
B, the distance D(gA,gB) represents both the effect of gA on
task B and gB on task A because of D(gA,gB) = D(gB,gA).
Note that large distance from gA to gB means large negative
influence on the training of task B with gA.

However, the model update is highly related to gradient
magnitude and direction, which are asymmetric to model
updating. The influence of the gradient gA on task B may be
quite different from that of the gradient gB on task A. In pre-
vious studies [31, 9, 50], the two tasks are treated as conflict
when ⟨gA,gB⟩ < 0. In PCL, due to the diverse training pro-
cess, gradients from parallel tasks are diverse in magnitude
and direction. When ∥gA∥ ≪ ∥gB∥, the gradient gA will
have little negative influence on task B even if ⟨gA,gB⟩ < 0;
when ∥gA∥ ≫ ∥gB∥ (e.g., a new task A is accessed when
task B has been trained for some time near convergence), the
update produces huge impact on task B even if ⟨gA,gB⟩ > 0.
Using traditional symmetric distances can hardly represent
the asymmetric update influence difference.

To effectively measure gradient discrepancy in PCL, we
introduce the asymmetric metric.

11413



(a) z = 1− x⊤y
∥x∥∥y∥

(b) z = ∥x− y∥, ∥y∥ = 0.2 (c) z = ∥x−y∥
∥y∥+∥x−y∥

Figure 2. The measures of two gradient discrepancy from x to y. Note that the x- and y-axes are the angle (i.e., ∠x,y) between x and y,
and the magnitude ratio ∥x∥

∥y∥ , respectively. (a) Cosine distance; (b) Euclidean distance where ∥y∥ = 0.2 as an example; (c) Asymmetric
gradient distance. Please see Appendix for the contours.

Lemma 1 (Asymmetric Metric [14]) D : X × X → R is
an asymmetric metric (a.k.a. quasi-metric [47]) if D satisfies

(1) D(x,y) ≥ 0 and ∀x ∈ Rd, D(x,x) = 0;
(2) D(x, z) ≤ D(x,y) +D(y, z),∀x,y, z ∈ Rd.

The asymmetric metric does not require the symmetric
property, i.e., D(x,y) = D(y,x). Based on the definition,
in this paper, we design an asymmetric metric to measure
gradient discrepancy named Asymmetric Gradient Distance.

Definition 1 (Asymmetric Gradient Distance (AGD))
Given two gradient gA and gB, the asymmetric gradient
distance is defined as

D̂(gA,gB) =


0 , if gA = gB = 0,

∥gA − gB∥
∥gB∥+ ∥gA − gB∥

, Otherwise.

In Definition 1, we consider the edge situation when gA =
gB = 0 to meet the definition of the asymmetric metric
in Lemma 1. In AGD, gradient directions and magnitudes
are considered. Instead of using gradient magnitude value
difference, we use magnitude ratio difference to avoid the
diverse training of different tasks in PCL. Therefore, we
derive the corollary of the magnitude ratio:

Corollary 1 D̂(gA,gB) is an asymmetric metric and holds

lim
∥gA∥
∥gB∥→∞

D̂(gA,gB) = 1, lim
∥gA∥
∥gB∥→0

D̂(gA,gB) =
1

2
.

We illustrate why AGD is qualified to evaluate the gradient
discrepancy according to the definition and corollary. In Def-
inition 1, we use AGD to represent the influence of gA on
task B rather than the inverse. This is the key difference from
the symmetric metrics such as Euclidean distance. Specifi-
cally, gA may make task B worse if D̂(gA,gB) is large (close

to 1). If D̂(gA,gB) is close to 0, gA and gB has less conflict.
Moreover, Corollary 1 involves that when ∥gA∥ ≪ ∥gB∥,
AGD has a tolerance 1

2 even if ⟨gA,gB⟩ < 0, which means
the impact of gA on task B is mild. This is because updat-
ing with a zero gradient will neither improve nor damage
the performance. Even though, we prefer positive influence
rather than non-influence. Thus, we define that the distance
D̂(gA,gB) in this situation is the mid-level ( 12 ) in the value
range([0,1]). See different tolerances in our experiments.

Moreover, we compare AGD (Fig. 2(c)) with Euclidean
and cosine distance in Fig. 2. First, the cosine distance
(Fig. 2(a)) is magnitude irrelevant, which ignores the mag-
nitude difference in PCL. Second, the Euclidean distance
(Fig. 2(b)) depends heavily on the magnitude value differ-
ence, but ignores that the gradient influence on the model
update is asymmetric. For example, when ∥x∥ → 0, EuDist
will get large if we have large ∥y∥ without any tolerance,
which ignores the non-influence of zero gradient.

3.3. Maximum Discrepancy Optimization

At time t, let the optimal solution to Problem (3) be d∗,
where Tt is the index set of in-training tasks (T for simplic-
ity). However, directly optimizing the problem is difficult
due to the large decision space that has the same dimension
as θ. Following [28, 40], we use linear scalarization to solve
the transformed problem that allows only optimizing deci-
sion variable w ∈ R|T |. That is, let d =

∑
i∈T wigi, where

∀wi ≥ 0 and
∑

i∈T wi = 1, we have

w∗ = argmin
w

D̂

∑
j

wjgj ,gi

∣∣∣∀i ∈ T
 . (4)

Each objective of the dual problem will be highly affected
by the minimum discrepancy, i.e., each gradient itself. For
example, by minimizing objective D̂(

∑
j wjgj ,gi), weight

wi is more like to be activated than others. Thus, multiple
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Figure 3. Schematic of Maximum Discrepancy Optimization. Given multiple gradients {gi|∀i ∈ T } (|T | = 4 for example) (1) A weight
matrix W is initialized with 1

|T | for each entry. (2) For each row, the off-diagonal entries are used to weighted gradients and optimized for
minimum AGD to the target gradient. (3) The diagonal entries (■) are used to optimize with min-norm with MGDA. (4) The final weight
matrix is reduced by each column for the final weights (w′). See Sec. 3.3 for details.

Algorithm 1: MaxDO (■) in PCL
Input: Parameters θ, θ1:T ; Step sizes α, α1:T

Output: θ, θ1:T
1 for t in timeline do
2 Tt ← in-training task index;
3 for i ∈ Tt do
4 Bi ∼ Di;
5 θi ← θi − αi∇θi

ℓi (Bi);
6 gi = ∇θℓi (Bi);
7 end

8

W∗ ← Optimization by Eq. (5);
d∗ ← Final graident from Eq. (6);

9 θ ← θ − αd∗;
10 end

objectives will be compromised by multiple self-interference
but fail to reduce the maximum discrepancy in the dual
problem optimization.

As shown in Fig. 3, we propose Maximum Discrep-
ancy Optimization (MaxDO) to reduce the maximum gradi-
ent discrepancy. Specifically, instead of the weight vector
w ∈ R|T |, we optimize a weight matrix W ∈ R|T |×|T |,
in which ∀Wij ≥ 0. W can be combined by a diago-
nal vector ẁ = [W1,1, · · · ,W|T |,|T |] and an off-diagonal
matrix W̃ = W − Diag(ẁ), where

∑
i∈T ẁi = 1 and∑

j∈T W̃ij = 1,∀i. Thus,
∑

i,j∈T Wij = |T | + 1 and
the two weights are independent and can be optimized with-
out disturbance as follows: (1) W̃, computed by Stochastic
Gradient Descent (SGD), is used to make up the maximum
gradient discrepancy. The objectives of any two rows in
W̃ are different. For row i, to formulate the maximum
discrepancy of gradient gi, the objective is the combina-

tion of non-diagonal entries. The weighted other gradients
should be with the smallest asymmetric distance to gi. (2)
ẁ is obtained by the Multiple Gradient Descent Algorithm
(MGDA) [15], which is to obtain a weighted gradient that
does not damage any tasks with a min-norm optimization.
The objective of MGDA is 0 and the resulting point satisfies
the Karush–Kuhn–Tucker condition or the solution gives a
Pareto descent direction that improves all tasks. See Ap-
pendix for more details of MGDA. For each off-diagonal
entry of the i-th column, their sum means the effect of the
gradient gi reducing the maximum discrepancy from other
gradients. MGDA is used to reduce the possible negative
effect in MaxDO. On the other hand, MaxDO reduces the
training failure of new tasks in MGDA. To sum up, our
MaxDO with AGD can be computed by

W∗ = argmin
W̃

∑
∀i∈T

D̂

∑
j ̸=i

W̃i,jgj ,gi


︸ ︷︷ ︸

SGD with Maximum Discrepancy

+ Diag

argmin
ẁ

∥∥∥∥∥∥
∑
j

ẁjgj

∥∥∥∥∥∥


︸ ︷︷ ︸
MGDA [15]

.

(5)

In Eq. (5), we can obtain an approximate solution by com-
bining the closed-form solution and the iterative solution.
Fig. 3 reveals the diagram of solving MaxDO. We project
the solution of SGD onto the feasible set (

∑
i ̸=j Wij = 1)

via softmax at each step in the multiple steps for fast con-
vergence. First, we initialize all entries of W by 1

|T | . Then,
the off-diagonal matrix is used to minimize the maximum
gradient discrepancy via SGD and the diagonal vector is op-
timized by min-norm. Finally, the final weights are reduced
to a vector by dividing |T |+ 1 to guarantee that their sum
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is 1. Note that, MaxDO is implemented only when |T | > 1,
i.e., multiple tasks are given at the current time. Otherwise,
we have d∗ = g1 for the only current task 1. Thus, the final
gradient d∗ is computed by

d∗ =


g1, |T | = 1,∑

i

 1

|T |+ 1

∑
j

W∗
j,i

gi, |T | > 1.
(6)

The detailed algorithm is shown in Algorithm 1. With the
rehearsal data stream, our algorithm learns a PCL model
through a timeline. At the time t on the timeline, given a
mini-batch B from each data stream, we compute the corre-
sponding gradients on shared and task-specific parameters.
The task-specific parameters are updated directly and the
gradients on the shared backbone are collected for computed
the final updated gradient d. By using our MaxDO, we
update the shared parameters θ with the optimal d∗.

4. Experiment
4.1. Dataset

In our experiments, 3 traditional image recognition
datasets are transformed into parallel data streams: (1) Paral-
lel Split EMNIST (PS-EMNIST). We split EMNIST [13] (62
classes) into 5 tasks and the size of the label set for each task,
i.e., the number of classes, is set to {12, 12, 12, 13, 13}. (2)
Parallel Split CIFAR-100 (PS-CIFAR-100). We split CIFAR-
100 into 10 tasks and the size of the label set for each task is
set to 10. (3) Parallel Split ImageNet-TINY (PS-ImageNet-
TINY). We split Tiny ImageNet [26] (200 classes) into 10
tasks, and the size of the label set for each task is set to 20.
We evaluate PCL on task-incremental and class-incremental
senarios. Please see Appendix for more dataset details.

All three datasets have 3 different label sets (3 different
class splits), each of which has 3 different timelines (when
to access). For each timeline, we have 3 different runs with
fixed seeds 1234, 1235, and 1236 for parameter initialization.
In other words, we have 27 different settings for each dataset,
and we report the average and standard deviation (avg ± std)
for each compared method in our experiments. Note that, we
omit all blank time that no data stream flows for simplicity.

4.2. Experiment Details

We implement our experiments using Tensorflow and
conduct on a single NVidia RTX 3090Ti GPU card. We take
a 2-layer MLP as the backbone network for PS-EMNIST and
a Resnet-18 [22] for PS-CIFAR-100 and PS-ImageNet-Tiny.
The learning rate is set to 0.003, 0.0004 and 0.0005 for PS-
EMNIST, PS-CIFAR-100 and PS-ImageNet-Tiny. The SGD
in MaxDO has a learning rate of 5. Each task is trained in a
data stream, i.e., each data point passes only once. For each
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Figure 4. Different memory sizes on PS-CIFAR-100.

task, we set the batch size to 128 per step. For any new task
in PCL, we build a new classifier, which is a fully-connected
layer with a softmax function.

To evaluate PCL, we compute the average accuracy and
forgetting, following previous continual learning studies [31,
9, 3, 2, 37]. Let et be the end time of task t and the final time
ē = max(e1, e2, · · · , eT ), the two metrics are computed as:

Aē =
1

T

T∑
t=1

atē, Fē =
1

T

T∑
t=1

atē − atet , (7)

where ajk is the mean testing accuracy of task j at time k.
Aē denotes the final average accuracy on all the tasks, and
Fē (also known as backward transfer) means the final perfor-
mance drop compared to each task that was first trained.

4.3. Main Results

We compare our method with MTL methods including
MGDA [15], GradNorm [11], DWA [30], GradDrop [12],
PCGrad [50] and RLW [28] in the PCL setting. We treat
any time on the timeline as an MTL subunit to train PCL.
All results of previous MTL methods are produced by our-
selves with the claimed design in their papers. We also
compare with some rehearsal-based SCL methods including
AGEM[9], GMED[37] and ER[10]. To adapt to the SCL
methods, we merge batches from every in-training task to
mimic a naive sequence learning that only a batch from the
current task and a batch from the memory buffer.

We show the main comparisons with the proposed meth-
ods in Tables 1 and 2 on the three datasets. We have several
major observations. First, the rehearsal strategy is useful
for reducing catastrophic forgetting in PCL for all compared
methods. As an extra data stream apart from in-training data
streams, rehearsal provides data from the finished tasks train-
ing together with other tasks to suppress forgetting. With
the rehearsal strategy, the memory may provide continual
learning of finished tasks, and even better performance can
be obtained, which results in positive forgetting values on Fē.
Second, without task-id, class-incremental PCL has worse
performance than task-incremental PCL. Surprisingly, we
find that MGDA has good performance than other methods in

11416



Table 1. Task-incremental comparisons (avg ± std) on 3 datasets.
Method Type PS-EMNIST PS-CIFAR-100 PS-ImageNet-TINY
(+ Reherasal) Aē (%) Fē (%) Aē (%) Fē (%) Aē (%) Fē (%)

AvgGrad MTL 89.344± 0.231 −5.287± 0.216 47.579± 0.089 23.691± 0.432 38.392± 0.076 0.764± 0.139
MGDA [15] MTL 84.887± 0.469 −4.301± 0.818 48.957± 0.451 25.088± 0.203 38.058± 0.740 1.465± 0.490
GradNorm [11] MTL 87.888± 0.158 −6.197± 0.183 47.210± 1.323 23.474± 0.688 38.226± 0.769 1.647± 0.667
DWA [30] MTL 88.405± 0.322 −5.452± 0.338 44.969± 0.378 22.682± 0.537 34.290± 1.099 −1.053± 0.866
PCGrad [50] MTL 89.698± 0.164 −4.921± 0.121 47.026± 0.538 23.244± 0.740 39.427± 1.275 2.017± 0.769
RLW [28] MTL 89.288± 0.218 −5.226± 0.204 47.574± 0.349 23.833± 0.117 38.531± 1.610 1.332± 1.148

AGEM [9] SCL 87.022± 0.519 −7.646± 0.483 27.379± 0.585 5.416± 0.851 28.530± 0.994 −7.070± 1.410
GMED [37] SCL 85.471± 0.324 −8.875± 0.335 49.094± 1.792 18.356± 1.345 34.495± 1.568 −0.640± 1.799
ER [10] SCL 89.106± 0.315 −5.525± 0.207 47.324± 0.584 23.330± 0.762 35.950± 0.763 −0.767± 0.591

MaxDO (AGD) PCL 90.189± 0.314 −4.258± 0.311 50.203± 0.978 24.510± 0.092 40.770± 0.354 3.119± 0.450

Table 2. Class-incremental comparisons (avg ± std) on 3 datasets.
Method Type PS-EMNIST PS-CIFAR-100 PS-ImageNet-TINY
(+ Reherasal) Aē (%) Fē (%) Aē (%) Fē (%) Aē (%) Fē (%)

AvgGrad MTL 43.823± 0.566 −44.484± 0.596 8.921± 0.276 −4.985± 0.702 7.511± 0.661 −15.825± 0.228
MGDA [15] MTL 52.823± 0.201 −7.753± 0.538 11.323± 0.282 −4.065± 0.725 8.318± 0.155 −13.118± 0.739
GradNorm [11] MTL 43.292± 0.590 −44.824± 0.688 9.477± 0.222 −4.403± 1.236 6.395± 0.130 −15.869± 0.336
DWA [30] MTL 42.734± 0.211 −38.944± 0.581 3.519± 0.116 −7.470± 0.244 3.003± 0.139 −12.774± 0.158
PCGrad [50] MTL 45.035± 0.273 −43.309± 0.176 10.140± 0.253 −5.149± 0.553 7.789± 0.237 −15.860± 0.318
RLW [28] MTL 44.595± 0.480 −43.424± 0.325 9.957± 0.135 −5.173± 0.613 7.419± 0.258 −16.079± 0.255

AGEM [9] SCL 26.249± 0.511 −62.480± 0.527 3.374± 0.098 −10.462± 0.543 3.379± 0.149 −18.514± 0.516
GMED [37] SCL 22.694± 0.153 −65.805± 0.255 4.941± 0.407 −12.837± 0.710 3.386± 0.348 −19.060± 0.682
ER [10] SCL 43.474± 0.860 −44.597± 0.861 9.317± 0.339 −5.337± 0.626 6.126± 0.277 −13.686± 0.290

MaxDO (AGD) PCL 53.139± 0.156 −11.903± 0.476 12.237± 0.176 −2.280± 0.270 9.532± 0.363 −12.511± 0.610

class-incremental PCL compared with the task-incremental
scenario, which means the suppressing on catastrophic for-
getting is more important in class-incremental PCL. Third,
the compared MTL methods are designed for balanced train-
ing and ignore the diverse training process in PCL, thus
some gradients may be counteracted because of the large
gradient discrepancy when updating the model. In contrast,
our MaxDO with AGD obtains the best final accuracy AT

on three datasets and two senarios, which shows our superi-
ority in balancing plasticity and stability. For example, we
have 40.770% and 9.431% for PS-ImageNet-TINY on two
scenarios respectively, while the compared best value is only
39.427% and 8.318%. On one hand, the proposed AGD is
used to measure the asymmetric distance between gradients
to boost the effective update of each task. On the other hand,
the maximum discrepancies between multiple tasks are re-
duced. Note that, the forgetting measure of the proposed
methods may not outperform the compared methods because
we got both better new tasks and final accuracy performance,
their difference value may be small.

4.4. Rehearsal Analysis in PCL

In Fig. 4, we compare the effects of different memory
buffer sizes (per class) in rehearsal on PS-CIFAR-100. We
observe that the memory buffer size affects the remembering

of old knowledge, and a larger size means better knowledge
keeping, which is similar to traditional CL. Under the same
memory size, our method has better performance. Then, in
Table 3(a), to show the MaxDO’s effectiveness of forgetting
reduction on rehearsal gradient, we evaluate the result that
only leverages MaxDO on new tasks. In this case, the final
gradient is calculated by d = 1

2greh +
1
2gnew, where gnew is

the solution gradient via MaxDO on only new parallel tasks,
and greh means the gradient from the rehearsal data streams.
The result shows that it is necessary to put the rehearsal
gradient to the MaxDO. Otherwise, the model will get worse
accuracy and forgetting.

4.5. Comparison with Symmetric Metrics

As shown in Table 3(b), we compare AGD with three
common symmetric metrics including EuDist, CosDist, and
Normalized EuDist. EuDist, CosDist are defined in Sec. 3.2.
The vanilla EuDist depends highly on the gradient magnitude
difference, thus we also compare with its normalized version
D(x,y) = ∥x−y∥

∥x∥+∥y∥ ∈ [0, 1], namely normalized EuDist
(Norm EuDist). The results show that the three metrics can
also obtain good performance with MaxDO. However, EuD-
ist fails to reduce catastrophic forgetting effectively because
of the over-emphasizing of gradient magnitude difference.
Considering only the gradient direction difference, MaxDO
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Table 3. Reherasal experiemtns, comparisons with symmetric metrics and ablation studies in MaxDO on PS-CIFAR-100.

Experiment Method Task-increment Class-increment
Aē (%) Fē (%) Aē (%) Fē (%)

(a) Rehearsal analysis
MaxDO (w/o Rehearsal) 25.241± 0.466 3.128± 0.175 2.971± 0.048 −11.356± 0.703
MaxDO (w/o Reherasal gradient) 47.653± 1.280 23.538± 1.468 9.431± 0.469 −5.907± 0.658

(b) Symmetric metrics
MaxDO (EuDist) 49.201± 0.410 24.112± 0.197 10.189± 0.218 −7.172± 0.796
MaxDO (CosDist) 49.154± 0.570 25.094± 0.222 11.771± 0.139 −3.114± 0.681
MaxDO (Norm EuDist) 48.517± 0.336 24.386± 0.388 11.692± 0.373 −3.228± 0.822

(c) Ablation studies
MGDA [15] 48.957± 0.451 25.088± 0.203 11.323± 0.282 −4.065± 0.725
MaxDO (w/o Max-Discrepancy) 47.899± 1.022 23.874± 0.447 10.441± 0.324 −4.807± 0.573
MaxDO (w/o MGDA) 49.631± 0.431 25.816± 0.561 11.881± 0.468 −2.993± 0.964

(d) Our full method MaxDO (AGD, w/ Reherasal) 50.203± 0.274 24.510± 0.092 12.237± 0.176 −2.280± 0.270
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Figure 5. Training time comparisons.

with CosDist obtains better performance than EuDist. But
CosDist ignores the magnitude difference, which is also im-
portant in the min-distance problem, resulting in insufficient
performance. Compared to EuDist, normalized EuDist ob-
tains even worse performance. In contrast, MaxDO with
AGD considers the asymmetric influence on gradient update,
and tolerance is set to reduce the influence from small gradi-
ents to new-access tasks, which yields the best performance.

4.6. Ablation Study

We evaluate the impact of the two main components of
MaxDO in Table 3(c). First, we block the maximum discrep-
ancy in MaxDO (MaxDO (w/o Max-Discrepancy)), which
means that we solve the min-distance problem with Eq. (4)
directly. Because of the self-interference, the solution com-
bines the minimum discrepancy but fails to effectively re-
duce the discrepancy from other gradients (47.899% and
10.441% for Aē). We then block the MGDA that obtains a
weighted gradient not damage any tasks. MGDA is quite
useful in traditional MTL tasks but is not suitable in PCL
(w/o MGDA, 49.693% and 11.881% for Aē). Because of
the diverse training process of parallel tasks, gradients are
with large magnitude differences and MGDA prefers to set
large factors to small gradients. We solve the problem by
both MGDA and the maximum discrepancy, and the whole
MaxDO method with AGD outperforms the two ablated

methods (50.203% and 12.231% for Aē), where the charac-
ters of the two components are combined.

4.7. Procedure Time

In Fig. 5, we show the training time comparison on PS-
CIFAR-100. We first compare the training time for 2 to 5
parallel tasks in one iteration (Fig. 5(a)). We find that the
generation of task numbers will grow the training time, and
MaxDO needs more time than other methods because multi-
ple minimum distance optimizations are performed. Then,
we show both the final accuracy and whole training time in
Fig. 5(b). In the whole timeline, MaxDO gets slightly longer
training time than other methods but better performance.

4.8. Tolerance Analysis in AGD

In our paper, AGD is designed to have a tolerance 1
2

in Corollary 1. This is because updating with a zero gra-
dient will neither improve nor damage the performance.
Even though, we prefer positive influence rather than non-
influence. Thus, we define that the distance D̂(gA,gB) in the
situation ∥gA∥ ≪ ∥gB∥ is the mid-level in the value range.
Therefore, we study to change the tolerance and observe the
performance change. The tolerance can be controlled by
adding a factor γ > 0 at the denominator. Omitting the edge
situation, we have

D̂γ(gA,gB) =
∥gA − gB∥

γ∥gB∥+ ∥gA − gB∥
.

The experiments on different tolerances are shown in Table 4.
The results show either larger or smaller tolerances compared
to 1

2 will get the performance drop during the PCL training.

5. Conclusion
In this paper, we studied to address the training con-

flict and catastrophic forgetting issues in Parallel Continual
Learning (PCL). We presented that the two issues are rooted
in the gradient discrepancies and formulated the problem into
a minimum distance optimization among gradients. How-
ever, the distance metric is often set to be symmetric, which
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Table 4. Comparisons on different tolerance (Tol.).

γ Tol. Task-increment Class-increment
Aē (%) Fē (%) Aē (%) Fē (%)

0.2 5/6 46.118 ± 0.463 22.617 ± 0.484 11.283 ± 0.696 -3.158 ± 1.087
0.5 2/3 46.452 ± 0.113 22.874 ± 0.680 11.284 ± 0.343 -3.305 ± 0.629
1 1/2 50.203± 0.274 24.510± 0.092 12.237± 0.176 −2.280± 0.270
2 1/3 49.827 ± 0.420 25.520 ± 0.611 11.603 ± 0.506 -3.503 ± 0.687
3 1/4 48.766 ± 0.171 24.491 ± 0.406 11.389 ± 0.738 -3.234 ± 1.060
4 1/5 48.859 ± 0.627 24.714 ± 0.437 11.378 ± 0.484 -3.189 ± 0.902

is problematic in gradient descent. To evaluate the gradient
discrepancy in PCL, we proposed an explicit Asymmetric
Gradient Distance (AGD), which considers both gradient
magnitude ratios and directions and has a tolerance when up-
dating with a small gradient of inverse direction. Moreover,
we proposed a novel Maximum Discrepancy Optimization
(MaxDO) strategy to minimize the maximum discrepancy
among multiple gradients and avoid self-interference. Solv-
ing by MaxDO with AGD, the parallel training in PCL re-
duces the influence of the training conflict and slows the
catastrophic forgetting. We verified the proposed method on
three image recognition datasets. The experimental results
significantly showed the advantage of MaxDO and the effec-
tiveness of the proposed AGD. We list the latent limitation of
our method: (1) The MaxDO cannot guarantee a theoretical
Pareto optimum in the training process like MGDA, which
means a better trade-off can be obtained in the future. (2)
The MaxDO method needs more time for training.
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