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Abstract

Scene Text Image Super-resolution (STISR) aims to re-
cover high-resolution (HR) scene text images with visu-
ally pleasant and readable text content from the given low-
resolution (LR) input. Most existing works focus on recov-
ering English texts, which have relatively simple charac-
ter structures, while little work has been done on the more
challenging Chinese texts with diverse and complex char-
acter structures. In this paper, we propose a real-world
Chinese-English benchmark dataset, namely Real-CE, for
the task of STISR with the emphasis on restoring struc-
turally complex Chinese characters. The benchmark pro-
vides 1,935/783 real-world LR-HR text image pairs (con-
tains 33,789 text lines in total) for training/testing in 2×
and 4× zooming modes, complemented by detailed annota-
tions, including detection boxes and text transcripts. More-
over, we design an edge-aware learning method, which
provides structural supervision in image and feature do-
mains, to effectively reconstruct the dense structures of Chi-
nese characters. We conduct experiments on the proposed
Real-CE benchmark and evaluate the existing STISR mod-
els with and without our edge-aware loss. The bench-
mark, including data and source code, is available at
https://github.com/mjq11302010044/Real-CE.

1. Introduction
Text images are different from natural images in that the

main contents are composed of words and characters to ex-
press different meanings and ideas. Due to limited sen-
sor resolution and long photographing distance, the cap-
tured text images often have degraded quality with blurry
and noisy contents, impairing the readability of the text.
Therefore, scene text image super-resolution (STISR) is de-
manded to reconstruct clear and legible text contents.

STISR has long been studied in the computer vision
community [30, 40, 36, 31]. The traditional STISR methods
investigate various priors on text restoration and hand-craft
the text super-resolution process [1, 8]. Since the manu-
ally designed priors cannot represent the complex text struc-

tures and degradation process, the traditional methods have
limited performance. Deep learning based STISR meth-
ods train convolutional neural networks (CNNs) on datasets
with low-resolution (LR) and high-resolution (HR) text im-
age pairs, which can learn the complex text priors through
data and reconstruct high-quality text images.

In deep learning based STISR [30, 40, 36, 31], datasets
play an important role in model training and evaluation, be-
cause the image pairs encode the text transformation from
low to high resolution. In the early stage, synthetic datasets
are widely used [30, 40, 31], in which high-quality text
images are collected as HR ground truths, and the LR
images are generated by imposing synthetic degradations
(e.g., bicubic downsampling or blurring) on the HR images.
Since the real-world degradations are quite different from
the synthetic ones, the STISR models trained on the syn-
thetic datasets have limited performance on real-world LR
text images. To alleviate this problem, Wang et al. [35] built
a real-world text image dataset called TextZoom. The LR
and HR text images in TextZoom are captured with differ-
ent camera focal lengths and undergo the real-world degra-
dation process. TextZoom provides a benchmark for the
STISR task, which allows standardized evaluation of STISR
methods in terms of text recognition precision.

Though the TextZoom dataset has largely facilitated the
research of real-world STISR [35, 4, 25, 6, 46, 26, 47], it
has some limitations. First, TextZoom only contains En-
glish texts composed of limited number of characters (i.e.,
26 letters) with simple stroke structures. As a result, mod-
els trained on TextZoom will produce inferior results on
structurally complex characters like Chinese. Examples are
shown in Figure 1(b). One can see that the model trained
on TextZoom produces visually unpleasant artifacts on the
reconstructed Chinese texts. This is because Chinese texts
have a much larger number of characters, and many of them
have complex structures. Thus, it is a more challenging
task for performing STISR on Chinese texts. Moreover,
TextZoom focuses on small and fixed-size text images (i.e.,
32 × 128), and thus the models trained on TextZoom can-
not generalize to texts with various resolutions. Therefore,
new dataset and benchmark are highly demanded for the re-
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(d) HR(a) Bicubic (b) TextZoom (c) Real-CE

Figure 1. Comparison of STISR results on Chinese text images by methods trained on TextZoom and Real-CE datasets. From left to right
are (a) bicubic LR images, STISR outputs by RRDB model [38] trained on (b) TextZoom [35] and (c) our Real-CE, and (d) the ground-truth
HR text images. Please zoom in for more details.

search of STISR on Chinese text images.
To tackle the above-mentioned problems, in this work

we develop a novel real-world Chinese-English benchmark
dataset, termed Real-CE, for the training and evaluation of
STISR models on both Chinese and English texts. The
benchmark provides 1, 935 real-world LR-HR image pairs
for training, and 783 for testing (261 and 522 pairs for 4×
and 2× zooming modes, respectively). It contains 24, 666
Chinese text lines and 9, 123 English text lines in total with
different sizes. Detailed annotations on the image pairs, in-
cluding detection boxes and text transcripts, are also pro-
vided to assist the training and evaluation. We also de-
sign the evaluation process to adapt to different sizes of text
lines, aiming to preserve the visual quality of SR text im-
ages from resizing. Furthermore, we propose an edge-aware
learning method for the reconstruction of Chinese texts with
complex stroke structures. The text edge map is introduced
as the network input as well as a structural loss in the train-
ing process, enhancing the learning on text structural re-
gions. Experimental results show that models trained on our
Real-CE data achieve superior performance over TextZoom
on Chinese text super-resolution (as shown in Figure 1(c))
and the edge-aware learning can further promote the recon-
struction quality on text regions.

The paper is organized as follows. Section 2 reviews the
works on STISR research. Section 3 introduces the Real-
CE benchmark in detail. Section 4 describes the edge-aware
learning method. Section 5 shows the experimental results
on the benchmark and Section 6 concludes the paper.

2. Related Work

Our work is related to single image super-resolution
(SISR), scene text image super-resolution (STISR), and En-
glish and Chinese text recognition, as reviewed below.

SISR. SISR estimates a high-resolution (HR) output by
intaking the low-resolution (LR) image as input. Traditional
approaches apply manually-designed priors for this task in

terms of statistical information [14], self-similarity [28] and
sparsity [41]. Recent deep-learning methods employ con-
volutional neural networks (CNNs) for SISR and achieve
significantly better performance. As a pioneer work, SR-
CNN [11] adopts a three-layer CNN to perform HR estima-
tion. Later on, more elaborate designs on network architec-
ture further upgrade the SISR performance, including resid-
ual connection [22], Laplacian pyramid [19], dense connec-
tion block [38] and the Transformer architecture [21, 44].
Adversarial learning techniques have also been applied for
more photo-realistic results [20, 37].

STISR benchmarks and methods. STISR focuses on
scene text images. It aims to reconstruct the text shape by
upgrading the image resolution in order to benefit the down-
stream recognition task. The early methods of STISR di-
rectly adopt the CNN architectures used in general SISR
tasks. In [12], Dong et al. adopted SRCNN [11] to text im-
ages, and achieved state-of-the-art performance in ICDAR
2015 competition [30]. PlugNet [29] employs a pluggable
super-resolution unit to learn the semantics in LR images
in feature domain. TextSR [36] utilizes the text recogni-
tion loss to supervise SR recovery learning and improve the
text recognition. Aiming to learn text image deblurring and
super-resolution, Xu et al. [40] and Quan et al. [31] col-
lected high-quality document text data to evaluate synthetic
image deblurring and super-resolution.

To address real-world STISR problems, Wang et al.
[35] built an STISR benchmark, namely TextZoom, which
provides the LR and HR text image pairs extracted from
real-world SISR datasets [43, 2]. They also proposed
TSRN [35] by applying the sequential residual block to
model the sequential semantics in image features. SC-
GAN [40] adopts GAN loss to supervise the STISR model
for more realistic text images. Quan et al. [31] proposed a
cascading network for reconstructing high-quality text im-
ages in both high-frequency domain and image domain.
Chen et al. [4, 6], Zhao et al. [46] and Ma et al. [26] up-
graded the network block structures to enhance the STISR
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performance with transformer-based networks or text prior.
However, current STISR methods are designed only for

English-based text line images (i.e., the TextZoom) with
many limitations. We therefore make an attempt to build
a bilingual benchmark to fill in the blank.

Scene text recognition. Scene text recognition (STR)
aims to recognize the semantic meaning in the text image by
predicting the characters or the whole word [18, 15, 17, 23].
It can be considered as an image-to-sequence problem.
CRNN [32] uses recurrent neural networks to model seman-
tic information. Recently, attention-based methods have
achieved great success due to their robustness against shape
variations of text images [9, 10, 33]. However, most meth-
ods are proposed for English text, and Chinese scene text
recognition receives less attention [13, 16, 7]. To promote
research along this line, Chen et al. [5] attempted to bench-
mark the Chinese scene text recognition with unified input
and evaluation metrics. In this paper, text recognizers in
both languages are adopted for evaluating text recognition
after STISR.

3. Real-CE Benchmark
The proposed benchmark includes a dataset with Chi-

nese and English LR-HR text image pairs and an evaluation
protocol with five metrics.

3.1. Dataset Construction

The dataset is constructed by several steps, including
data collection, registration, text cropping and text labeling,
which are illustrated in Figure 2.

Data collection. We adopt iPhone 11 pro and iPhone 12
pro for text image collection. Both of them are equipped
with camera modules of three fixed focal lengths (13 mm,
26 mm and 52 mm), which allow us to capture the same
scene with different focal lengths simultaneously. Im-
age pairs collected by these devices enable the training of
STISR models in 2× (from 13 mm to 26 mm, and from
26 mm to 52 mm) and 4× (from 13 mm to 52 mm) zoom-
ing modes. We capture the Chinese and English text im-
ages from various scenes and resources, including band and
curve outdoor street signboards, subway notifications, de-
formed books and hospital billboards, so that the diversity
of text contents, presentation and lighting conditions can be
ensured. Since the three cameras may have different image
processing pipelines, we use CameraPixels app 1 to align
the colors and brightness of the three captured images. Fig-
ure 3 shows some typical scenes in the collected dataset.

Image registration. We adopt the image registration
method proposed in Cai et al. [2] for the alignment of LR
and HR text image pairs. Specifically, we take the images
captured by 52mm lens as the ground-truth HR images since

1https://apps.apple.com/us/app/camerapixels-pro/id1148178499

Figure 2. The pipeline of data processing. From top to bottom: the
center area of the LR image is first registered to the HR image,
then the corresponding text regions in the HR and LR images are
cropped and manually aligned; finally, the text lines are annotated
and the transcripts are labeled.

they have the best quality, and iteratively register shorter-
lens LR counterparts to it. The algorithm also enables finer-
grained adjustment, which reduces the color and brightness
differences between the LR-HR image pairs.

Text region cropping. Though the text images are cen-
tered on text content, they still contain a large proportion of
background area. We therefore crop the central text region
from the LR and HR images to exclude background areas,
followed by a manual adjustment to ensure accurate LR-HR
image pair alignment.

Text labeling. Besides the HR ground truths, we pro-
vide two extra text labels, including detection boxes and text
transcripts. The detection boxes provide the location of the
text areas, while the text transcripts record the semantics of
the texts. For the detection box annotation, we first apply
some text detection methods (e.g., RRPN [27, 24]) to pro-
vide a coarse detection result, then we refine the detection
results manually to provide a precise boundary of each text
line in the cropped text region. For the text transcripts an-
notation, we employ a text recognizer pretrained in Chinese
and English [32, 5] to obtain the initial transcripts, followed
by a manual refinement. With precise text labeling, STISR
models can be evaluated from the aspect of text recognition
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(c) hospital billboard

(a) street signs and boards

(d) books(b) subway notifications

Figure 3. Typical scenes in our collected Real-CE dataset.

Region Text line
SR factor 4× 2× 4× 2×
train 645 1, 290 7, 849 15, 698

test 261 522 3, 414 6, 828

Max resolution 4, 032× 3, 024 1, 156× 2, 883

Min resolution 228× 396 16× 22

Chinese - 8, 222 16, 444

English - 3, 041 6, 082

Table 1. Statistics of the constructed Real-CE dataset.

on the test set of our Real-CE benchmark.

3.2. Dataset Statistics

Our dataset contains both 2× and 4× zooming modes for
training and testing. The detailed statistics of our dataset are
shown in Table 1. Our Real-CE dataset contains 33, 789 text
line pairs. In particular, 24, 666 of them are Chinese texts
while the rest are English texts.

Text region pairs. Our dataset contains 2, 718 text re-
gion pairs, 1, 935 of which are training pairs and the rest
are testing pairs. Among the testing pairs, there are 261
pairs for 4× (13mm to 52mm ) zooming and another 522
pairs for 2× (26mm to 52mm and 13mm to 26mm ) zoom-
ing evaluation. All the cropped HR text regions are ranged
from size of 228× 396 to 4, 032× 3, 024. Each text region
contains one or more text lines.

Text lines. The text semantics and language are distin-
guished with text lines. Text boxes and recognition are also
annotated by lines. There are 23, 547 text lines for train-
ing, 3, 414 text lines for 4× zooming evaluation, and 6, 828
text lines for 2× zooming evaluation. The size of text lines
ranges from 16× 22 to 1, 156× 2, 883. The category of the
characters in Real-CE is 3, 755 in total.

南油小学
Nanyou Prlmary School

南商路
Nanshang Road

SR
Crop & Resize

SR

Recognition Recognition

(a) TextZoom Evaluation (b) Real-CE Evaluation

南油八学
lyou Dlmary Scbool

南商路
Nanshang Rontl

Crop & Resize

Figure 4. Comparison of the TextZoom evaluation and Real-CE
evaluation protocols. Wrong recognition results are in red. Please
zoom in for more details.

3.3. Evaluation Protocol

To evaluate the performance of STISR models on Real-
CE, we employ 5 metrics, including structural similar-
ity index measure (SSIM) [39], peak signal-to-noise ra-
tio (PSNR), learned perceptual image patch similarity
(LPIPS) [42], normalized edit distance (NED) and word ac-
curacy (ACC). Among them, PSNR, SSIM and LPIPS mea-
sure the errors between the reconstructed HR images and
the ground truths. In particular, PSNR and SSIM are eval-
uated in image space while LPIPS is evaluated in feature
space. ACC and NED employ text recognition models to
evaluate the recognition accuracy of the reconstructed HR
images. Here we adopt pre-trained CRNN [32, 5] as the text
recognition model for evaluation. Particularly, ACC com-
putes the word-level accuracy of the predicted sequence.
NED between the predicted text sequence P and the ground
truth text image label G are computed as follows:

NED(P,G) = 1−
ED(P,G)

max(|P |, |G|)
, (1)

where ED(·) stands for the edit distance calculation, |P |
and |G| refer to the length of the prediction and the ground-
truth label. Therefore, the predicted sequence is more ac-
curate and closer to the ground-truth label when the NED
is larger. When we measure long texts, the ACC index
may not fully reflect the recognition correctness at character
level, while NED can measure it in a finer-grained manner.

In the testing process, the trained STISR models are per-
formed on the original LR text region image to obtain the
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reconstructed HR images first. Then the text lines in re-
constructed HR images are cropped and kept in their orig-
inal ratio for recognition evaluation in terms of ACC and
NED. The evaluation process is illustrated in Figure 4 (b).
Compared with the evaluation protocol of TextZoom [35]
(see Figure 4 (a)), which trains and evaluates text lines with
fixed sizes and shapes, our protocol can avoid the text de-
formation brought by the resizing operation. As shown in
Figure 4 (a), such an arrangement is unfriendly for Chinese
long text in Real-CE (often presented as sentences), result-
ing in low reconstruction quality and recognition accuracy.

4. Text Edge-aware STISR
Different from English characters, Chinese characters

are composed of more basic radical-level parts (one can re-
fer to [5] for more details) and have more complicated inter-
nal structures. Therefore, elaborated designs are needed to
enhance the model capacity for Chinese text reconstruction.
In this section, we propose an edge-aware learning method,
which uses the text edge map as input and an edge-aware
loss for supervision.

4.1. Text Edge Map

The text information in an image is inevitably blended
with complex background. This will weaken the saliency of
the text structures and somehow impairs the text reconstruc-
tion process. Text edge information is helpful to tackle this
problem because it can effectively guide an STISR model
to be better aware of the text structures and strokes.

We adopt the Canny edge detector [3] to compute a text
edge map, denoted as C, in the training process. The text
edge map assigns value 1 to the text contour area and 0
to the background. Thus, the text edge map contains text
structures and excludes the background information. From
Fig. 5, one can see that the character shape and structure
may be unclear in the LR-HR image pairs, while in their
Canny edge maps, the text shapes and structures are en-
hanced. We compute edge maps for both LR and HR im-
ages in the dataset. The LR edge map CLR is concatenated
with the LR image in channel dimension as the network in-
put, which is shown in Fig. 6. With this extra input, the
STISR model can learn a stronger feature representation of
the finer-grained text structure.

4.2. Edge-aware Loss

We propose an edge-aware loss based on the computed
edge map. First, the STISR model is modified to output
both the reconstructed HR text image ÎH and an estimated
HR text edge map ĈH . This estimated text edge map is
used in the training stage to gain extra supervision, but is
discarded in the testing stage. The EA loss is computed
between the estimated text edge map and the ground truth
edge map at pixel level and feature level.

Figure 5. LR-HR RGB images (top) and their Canny edge maps
(bottom). Foreground edges are drawn in black, and background
in white for better visualization.

SR
Model

LR Input
SR Output HR

Figure 6. Illustration of the edge-aware STISR model learning.
The edge map of the LR image is extracted and input to the net-
work, and the edge map of the HR image is used to supervise the
network training.

At pixel level, we adopt the L1 loss in image domain
between the estimated HR edge map ĈH and the ground
truth HR text map CH . Therefore, the EA loss at the pixel
level LP

EA is calculated as:

LP
EA = |CH − ĈH |. (2)

Besides the pixel-level supervision, we compute the fea-
ture level EA loss LF

EA as follows:

LF
EA = |F(ÎH) · F(ĈH)−F(IH) · F(CH)|, (3)

where F denotes a pretrained feature extractor network
(VGG19 [34] is used in this paper). F(ÎH) and F(IH)
denote the feature representation of the estimated and the
ground truth HR text images, respectively. F(ĈH) and
F(CH) denote the feature representation of the estimated
and the ground truth HR text edge maps, respectively.
The image features are weighted by the edge features
via element-wise multiplication (e.g., F(ÎH) · F(ĈH)) to
strengthen the structural areas. Finally, an L1 loss is im-
posed on the strengthened features between the estimated
and ground truth ones. One can view the supplementary
file for more detailed analysis.

Finally, together with the L1 loss on RGB images and
EA loss terms, the overall loss function L is formulated as:

L = L1 + αLP
EA + βLF

EA, (4)

where α and β are balancing parameters.

19456



SR factor 4× 2×
Approach train set PSNR ↑ SSIM ↑ LPIPS ↓ ACC ↑ NED ↑ PSNR ↑ SSIM ↑ LPIPS ↓ ACC ↑ NED ↑
Bicubic 19.65 0.6684 0.3987 0.2759 0.6173 20.82 0.7106 0.2100 0.3475 0.6982

SI
SR

M
et

ho
ds

SRRes [20]
TZ [35] 19.72 0.6808 0.3872 0.2201 0.5992 20.28 0.6762 0.3467 0.2742 0.6401
RS [2] 18.60 0.6576 0.3736 0.2642 0.6087 19.10 0.6872 0.3244 0.2977 0.6671
RC 20.22 0.7224 0.2665 0.2879 0.6361 20.72 0.7360 0.2116 0.3499 0.6996

RRDB [38]
TZ [35] 18.95 0.6575 0.4495 0.1463 0.3776 19.43 0.6899 0.3887 0.1962 0.4665
RS [2] 19.59 0.6703 0.2765 0.2590 0.6201 20.34 0.7312 0.2267 0.3307 0.6772
RC 20.23 0.7231 0.2626 0.2920 0.6421 21.10 0.7535 0.2065 0.3494 0.7003

EDSR [22]
TZ [35] 18.88 0.6512 0.4860 0.0799 0.3414 19.32 0.6904 0.4012 0.1369 0.4077
RS [2] 19.59 0.6728 0.3295 0.2702 0.6231 20.02 0.7291 0.2837 0.3189 0.6708
RC 20.16 0.7195 0.2883 0.2882 0.6330 20.74 0.7448 0.2258 0.3468 0.6954

RCAN [45]
TZ [35] 18.97 0.6277 0.4816 0.0810 0.3424 19.48 0.6488 0.4075 0.1507 0.5420
RS [2] 19.55 0.6661 0.3475 0.2450 0.5989 20.05 0.7044 0.2806 0.2968 0.6776
RC 20.33 0.7232 0.2878 0.2879 0.6321 20.98 0.7435 0.2173 0.3484 0.7006

ELAN [44]
TZ [35] 19.21 0.6459 0.3796 0.1778 0.4764 20.10 0.6653 0.3241 0.2254 0.5467
RS [2] 19.60 0.6660 0.3348 0.2674 0.6228 20.48 0.6907 0.2732 0.3104 0.6642
RC 20.39 0.7299 0.2892 0.2953 0.6404 21.16 0.7480 0.2201 0.3508 0.6992

ST
IS

R
M

et
ho

ds

TSRN [35]
TZ [35] 17.47 0.4853 0.1990 0.1796 0.3874 18.73 0.5676 0.1855 0.2471 0.4622
RS [2] 17.83 0.4899 0.2154 0.1733 0.3759 19.06 0.5322 0.1892 0.2675 0.4526
RC 18.11 0.4850 0.1981 0.2316 0.4159 18.99 0.5233 0.1677 0.2854 0.4809

TPGSR [25]
TZ [35] 17.37 0.4913 0.1896 0.2076 0.3842 17.99 0.5312 0.1686 0.2655 0.4423
RS [2] 17.65 0.4772 0.1947 0.2203 0.3930 18.56 0.5462 0.1754 0.2952 0.4658
RC 18.07 0.4758 0.1843 0.2326 0.4123 18.83 0.5562 0.1661 0.3007 0.4913

TBSRN [4]
TZ [35] 17.59 0.4919 0.1767 0.2246 0.4133 18.41 0.5456 0.1588 0.2905 0.4896
RS [2] 17.69 0.4762 0.1849 0.2235 0.4021 18.69 0.5309 0.1666 0.2895 0.4644
RC 18.33 0.4826 0.1715 0.2527 0.4444 19.01 0.5366 0.1652 0.3181 0.5294

TATT [26]
TZ [35] 17.43 0.5010 0.2003 0.2100 0.3926 18.24 0.5667 0.1827 0.2755 0.4993
RS [2] 17.66 0.4993 0.2256 0.2092 0.3916 18.47 0.5253 0.1930 0.2749 0.4702
RC 17.96 0.4904 0.1804 0.2330 0.4342 19.06 0.5772 0.1590 0.3127 0.5240

HR - - - 0.4807 0.8342 - - - 0.4514 0.8038

Table 2. Experimental results on Real-CE test set with SISR and STISR models trained on different training sets. TZ, RS and RC refer
to TextZoom [35], RealSR [2] and Real-CE datasets, respectively. It should be noted that the evaluated metric scores of SISR and STISR
methods are very different because SISR models intake global images as input, while STISR models intake text lines as input.

5. Experimental Results

In this section, we first validate the effectiveness of our
established Real-CE dataset by comparing STISR models
trained on it and other text image datasets, and then validate
the proposed EA loss in improving STISR model perfor-
mance. All models are all trained with the Adam optimizer.
When trained on our Real-CE training set, the number of
epochs is set to 400. The learning rate is set to 2× 10−4. In
the calculation of LEA, we adopt the Conv5 4 features of
pre-trained VGG19 [34]. The balancing parameters α and
β in Eq. (4) are set to 1 and 5 × 10−4, respectively (one
can refer to supplementary file for the parameter selection
details). When computing recognition-based metrics, we
first crop the text lines from the global text image and then
rescale the cropped SR text line image to fit the recognizer.

5.1. Effectiveness of Real-CE Dataset

In this section, we perform experiments to validate the
advantages of the proposed Real-CE dataset over exist-
ing real-world SR datasets, including TextZoom [35] and
RealSR [2]. TextZoom is built for real-world English
text super-resolution, which lacks dense character struc-
tures in the dataset. RealSR is built for real-world natu-
ral image super-resolution. We evaluate five state-of-the-
art SISR models and four state-of-the-art STISR models on
the three datasets. The five SISR models are SRRes [20],

RRDB [38], EDSR [22], RCAN [45] and ELAN [44],
where the first four are CNN-based models and the last
one is a transformer-based model. The four STISR models
are TSRN [35], TPGSR [25], TBSRN [4] and TATT [26],
where the first two are CNN-based models, and the rest are
transformer-based models.

All the STISR and SISR models are trained on Real-CE,
TextZoom and RealSR, respectively, and tested on the test-
ing set of Real-CE. Since SISR models generally support
arbitrary input sizes, the original test images are set as the
input, and the PNSR, SSIM and LPIPS metrics are com-
puted on the original sizes. Note that this is the default
evaluation protocol of our benchmark, as described in Sec-
tion 3.3. However, most of the STISR models [35, 25, 4, 26]
only support inputs with fixed sizes. Thus, we first crop and
reshape the test images to a fixed size as the network input,
and then the network outputs are compared with the resized
ground truth images to compute PNSR, SSIM and LPIPS.

The quantitative results of compared SISR and STISR
models are shown in Table 2. One can see that, the models
trained on TextZoom obtain inferior performance in terms
of image-based metrics and recognition-based metrics. This
is because the training data in TextZoom lacks complex
character structures, and hence the trained models cannot
handle the complex Chinese texts in Real-CE test set. More-
over, by using TextZoom, the SR models can only be trained
with data of fixed sizes, which are hard to be generalized to

19457



Figure 7. STISR results of different models trained on different training datasets. Note that SISR models (EDSR [37], RRDB [38] and
ELAN [44]) intake global images as input and follow the Real-CE inference protocol, while STISR models like TSRN [35], TBSRN [4]
and TATT [26] can only take text line as input.

SR factor 4× 2×
Approach L1 LP

EA LF
EA PSNR ↑ SSIM ↑ LPIPS ↓ ACC ↑ NED ↑ PSNR ↑ SSIM ↑ LPIPS ↓ ACC ↑ NED ↑

Bicubic - - - 19.65 0.6684 0.3987 0.2759 0.6173 20.82 0.7106 0.2100 0.3475 0.6982

SI
SR

M
et

ho
ds

SRRes [20]
✓ × × 20.22 0.7224 0.2665 0.2879 0.6361 20.72 0.7360 0.2116 0.3499 0.6996
✓ ✓ × 20.30 0.7219 0.2722 0.2909 0.6373 21.23 0.7551 0.2022 0.3496 0.7013
✓ ✓ ✓ 20.18 0.7102 0.2041 0.2917 0.6454 21.09 0.7489 0.1875 0.3540 0.7080

RRDB [38]
✓ × × 20.23 0.7231 0.2626 0.2920 0.6421 21.10 0.7535 0.2065 0.3494 0.7003
✓ ✓ × 20.42 0.7303 0.2630 0.2914 0.6399 21.21 0.7559 0.2010 0.3575 0.7063
✓ ✓ ✓ 20.14 0.7210 0.2031 0.3093 0.6622 21.00 0.7517 0.1852 0.3549 0.7130

ELAN [44]
✓ × × 20.39 0.7299 0.2892 0.2953 0.6404 21.16 0.7480 0.2201 0.3508 0.6992
✓ ✓ × 20.47 0.7330 0.2767 0.2982 0.6441 21.29 0.7557 0.1989 0.3549 0.7047
✓ ✓ ✓ 20.21 0.7245 0.2071 0.3061 0.6567 21.10 0.7479 0.1835 0.3524 0.7073

ST
IS

R
M

et
ho

ds

TBSRN [4]
✓ × × 18.33 0.4826 0.1715 0.2527 0.4444 19.01 0.5366 0.1652 0.3181 0.5294
✓ ✓ × 18.46 0.4881 0.1699 0.2555 0.4483 19.10 0.5378 0.1662 0.3185 0.5364
✓ ✓ ✓ 18.20 0.4796 0.1431 0.2615 0.4531 18.97 0.5334 0.1307 0.3289 0.5450

TATT [26]
✓ × × 17.96 0.4904 0.1804 0.2330 0.4342 19.06 0.5772 0.1590 0.3127 0.5240
✓ ✓ × 18.12 0.4916 0.1786 0.2324 0.4306 19.17 0.5825 0.1604 0.3166 0.5360
✓ ✓ ✓ 17.89 0.4822 0.1546 0.2417 0.4549 19.02 0.5723 0.1475 0.3239 0.5491

HR - - - - - - 0.4807 0.8342 - - - 0.4514 0.8038

Table 3. Comparison of SISR and STISR models trained on Real-CE with different losses.

other text image sizes. The models trained on RealSR [2]
also obtain inferior results, since RealSR is basically estab-
lished for natural image SISR. In contrast, the STISR and
SISR models trained on our Real-CE dataset show much
better text recovery performance on all evaluation metrics.
In addition, it should be noted that the evaluated metric
scores of SISR and STISR methods are very different be-
cause SISR models intake global images as input, while
STISR models intake text line as input.

Figure 7 visualizes the SR results of some representative
SISR and STISR models trained on the three datasets. For

convenience, we input different images to different mod-
els for more comprehensive evaluation. One can see that
the text recovery results by models trained on TextZoom
are blurry and contain visual artifacts. This is because
TextZoom lacks training data with complex Chinese charac-
ter structures. Besides, TextZoom only supports fixed-size
training and the trained model cannot generalize to other
sizes of testing data. The results of models trained on Re-
alSR have fewer artifacts but are blurry with mixed strokes.
In contrast, the results of models trained on Real-CE dataset
have clear edges and are highly readable on both Chinese
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(a) Bicubic (e) HR(b) (c) (d)

Figure 8. STISR results of RRDB models trained with different losses.

Figure 9. Examples of failure cases by our method.

and English characters. More visual results can be found in
the supplementary material.

For comparisons on the STISR models trained on syn-
thetic LR-HR data and our Real-CE data, please also refer
to the supplementary material.

5.2. Effectiveness of the EA Loss

We then validate the effectiveness of our proposed EA
losses by testing SISR and STISR models with different
combinations of L1, LP

EA and LF
EA losses. Here we employ

three SISR models, including SRRes [20], RRDB [38] and
ELAN [44], and two STISR models, including TBSRN [4]
and TATT [26], in the experiments. The evaluation metrics
are the same as that in Section 5.1.

Quantitative evaluation results of the losses are shown
in Table 3. One can see that compared with the models
trained with the L1 loss only, models trained with L1 and
LP
EA demonstrate enhanced PSNR/SSIM scores. This is

because LP
EA provides pixel-wise supervision on edge ar-

eas, resulting in improved pixel-wise metrics. However,
the improvements on perceptual metrics (i.e., LPIPS) and
recognition metrics are still limited. By further adding LF

EA

loss into training, all models demonstrate notable improve-
ment on LPIPS and recognition accuracy, especially on 4×
results. This indicates that the character structural infor-
mation is important for text legibility. Since the character
structures can be well enhanced by using LF

EA in training,
the text recognition is significantly improved.

By using the RRDB model, we visualize the STISR re-
sults by different losses in Figure 8. One can see that
RRDB trained with only the L1 loss shows limited improve-

ment compared with the bicubic interpolation. By includ-
ing LP

EA loss in training, the reconstructed text images are
much enhanced with clearer character edges, as shown in
Figure 8(c). By further incorporating the LF

EA loss, a sig-
nificant enhancement in terms of edge clarity and local con-
trast can be observed, which greatly improves the legibility
of Chinese text contents, as shown in Figure 8(d). More vi-
sualization results can be found in the supplementary file.

5.3. Failure Cases

Our proposed method may fail when the character has
very low resolution and intricate structures, as shown in Fig-
ure 9. Though the output still has clear edges, some of the
tiny strokes are wrong. This is because the tiny strokes are
very obscure in the low-resolution input text image. In such
cases, semantic information can be incorporated to assist
the text restoration, which will be our future work.

6. Conclusions
In this paper, we established a Chinese-English bench-

mark, namely Real-CE, for scene text image super-
resolution (STISR) model training. It contained 1,935 train-
ing and 783 testing images. The text region pairs contained
33,789 text lines, among which 24,666 were Chinese texts
with complex structures. We further proposed an edge-
aware (EA) learning method for the restoration of Chinese
texts, which computed a text edge map from the given in-
put image and employed an EA loss to guide the STISR
model learning process. Experimental results demonstrated
that the models trained on our Real-CE dataset can recover
clearer and more readable Chinese texts than other STISR
datasets, and the EA learning scheme can effectively im-
prove text image quality. The Real-CE dataset provided a
valuable benchmark for researcher to investigate the chal-
lenging Chinese text image recovery problems.
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