
Deformable Neural Radiance Fields using RGB and Event Cameras

Qi Ma1 Danda Pani Paudel1,3 Ajad Chhatkuli1 Luc Van Gool1,2,3

1Computer Vision Lab, ETH Zurich 2VISICS, ESAT/PSI, KU Leuven 3INSAIT, Sofia University

Abstract

Modeling Neural Radiance Fields for fast-moving de-
formable objects from visual data alone is a challenging
problem. A major issue arises due to the high deforma-
tion and low acquisition rates. To address this problem,
we propose to use event cameras that offer very fast ac-
quisition of visual change in an asynchronous manner. In
this work, we develop a novel method to model the de-
formable neural radiance fields using RGB and event cam-
eras. The proposed method uses the asynchronous stream
of events and calibrated sparse RGB frames. In our setup,
the camera pose at the individual events –required to in-
tegrate them into the radiance fields– remains unknown.
Our method jointly optimizes these poses and the radiance
field. This happens efficiently by leveraging the collection
of events at once and actively sampling the events during
learning. Experiments conducted on both realistically ren-
dered graphics and real-world datasets demonstrate a sig-
nificant benefit of the proposed method over the state-of-
the-art and the compared baseline. This shows a promising
direction for modeling deformable neural radiance fields
in real-world dynamic scenes. We release our code at:
https://qimaqi.github.io/DE-NeRF.github.io/

1. Introduction

Neural Radiance Fields (NeRFs) have shown great suc-
cess in synthesizing photorealistic images by implicitly rep-
resenting rigid 3D scenes. Modeling non-rigid scenes in
such manner is a much more difficult task. Recently, sev-
eral methods have been proposed to model dynamic neural
radiance fields. They aim to model rather slowly deforming
radiance fields [5, 15, 16, 6, 30]. The slow deformation as-
sumption is insufficient in scenarios involving fast-moving
objects or, equivalently, low frame- rate cameras. In other
words, the existing methods cannot capture fast-deforming
radiance fields due to the limited frame rate of RGB cam-
eras. To address this problem, we propose to add an event
camera that provides information about the radiance change
asynchronously.

Event cameras capture radiance changes, also in the

Time

Figure 1. Our framework takes the aligned frames and events cap-
tured by a dual RGB-Event camera setup as input. Our method
captures fast-moving objects and is capable of rendering a free-
viewpoint representation at given timestamps. The figures show
the flames’ reconstruction with high quality and correct geometry.

presence of fast motions. However, harnessing this bene-
fit comes with its own challenges, mainly due to (i) the un-
known absolute radiance at the event location and (ii) the
unknown pose of the camera at the time of the event. The
former challenge can be addressed by using a hybrid system
of RGB and event cameras. We address the latter challenge
of pose determination with a novel method.

Previous methods to deal with the pose of event cameras
either do not treat the events to be asynchronous [10, 9]
or assume that the event camera’s pose is known at all
times [21]. We advocate that the event streams must be
treated asynchronously to maximally utilize their temporal
precision, in keeping with earlier work [23]. On the other
hand, we argue that the assumption of known poses for all
asynchronous events is simply impractical. Instead, we as-
sume that only the poses of subsequent RGB frames are
known. The poses of the events are derived from their as-
sociated time stamps, by learning to map time to the evolv-
ing camera poses. During this process, the known poses of
the RGB frames and the non-rigid deformation prior of the
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scene under investigation are jointly utilized.
In this work, we use moving calibrated stereo of RGB

and event cameras. Using the known poses of sparse RGB
frames only, we want to model the 3D radiance field of de-
formable objects. To the best of our knowledge, there are
thus far no methods leveraging event cameras to model de-
formable neural radiance fields. Therefore, we first estab-
lish a baseline method – which we refer to as DE-baseline –
inspired by two notable works on deformable NeRF [15]
and event-based NeRF [21]. Later, we propose a novel
method that significantly improves this baseline. The pro-
posed method learns to map the time stamp of an event to
a camera pose such that each event’s ray can be backpro-
jected to the 3D space, without requiring the continuous
pose of the asynchronous events. The main idea of this
paper is then to constrain the radiance field using the mea-
sured events. To do so, we re-create the events solely from
the radiance field. Any error due to mismatches between re-
created and measured events is backpropagated to supervise
the implicit radiance field represention. This radiance field
is augmented by sparse and calibrated RGB image frames.
The major contributions of this paper are as follows,

• We show the benefit of using event cameras to model
the deformable neural radiance fields for the first time.

• We develop a novel method that learns the continuous
pose of event cameras which is robust also to inaccu-
rate RGB poses, exploits a collection of events at once,
and performs active sampling to maximally utilize the
asynchronous event streams.

• The proposed method significantly outperforms exist-
ing methods and our baseline on both realistically ren-
dered, but artificial scenes and on real-world datasets.

2. Related Works
Dynamic NeRF: Dynamic NeRFs [17, 15, 16, 25] ad-
dress the challenging problem of representing static, dy-
namic or non-rigid scenes using radiance fields [14]. Sev-
eral works on dynamic NeRF use model-based approaches,
e.g., representing human body, hands or faces [30, 31, 33].
Model-free approaches on the other hand, learn a generic
deformation function in order to represent non-rigid cam-
era projections or 3D scenes, which is also our interest in
this work. Early work D-NERF [17] uses a chosen canoni-
cal view to map deformed scenes using a time conditioned
function represented by Multi-layer Perceptrons (MLPs).
Non-rigidNERF [26] instead deforms the viewing rays and
thus the projections instead of the 3D surface, thus, the ap-
proach does not directly provide the 3D of the deformed
scene. Nerfies [15] train a time conditioned deformation
function much like D-NERF [17], albeit with an unknown
canonical template-based neural field representation [35].

Furthermore, it also regularizes the deformation field using
a coarse-to-fine strategy. As the deformation is defined on
3D space, it can effectively render depths of the non-rigid
scene at different time values. HyperNERF [16] introduces
shape embeddings in higher dimensions in order to handle
topological changes. A very recent work [25] trains NERF
for streambale rendering while representing static, rigid and
non-rigid scene elements separately.

Event cameras for 3D Vision. Event cameras for 3D re-
construction and camera tracking were presented in [10],
based on a probabilistic framework for disparity estimation.
Later, [3] addressed camera tracking through a generative
modeling of events and maximum likelihood estimation of
camera motion. Other contributions have proposed solu-
tions for direct sparse [7] and stereo [37] visual odometry.
[18] solves semi-dense multi-view stereo from known poses
– by exploiting object silhouettes seen by a moving camera.
Similarly, [36] tackles semi-dense stereo-based 3D recon-
struction by also solving for the camera motion. [1] re-
constructs shapes as a shape from silhouette problem and
handles single object reconstruction through synthetic data
training. [29] presents a shape from silhouette solution with
high quality. Recently, [32] solves non-rigid 3D recon-
struction from contours using event cameras. These have
also been used for 3D hand pose analysis [22].

Event NeRF. Unlike traditional approaches for 3D recon-
struction, NERF-based 3D reconstruction in event cameras
is largely under-explored. The generative model-based view
synthesis together with surface density estimation in NERF
requires highly accurate camera poses and careful optimiza-
tion, thus rendering its application in event cameras highly
challenging. Recent work Event-NERF [21] makes use of
a single colour event camera in order to optimize radiance
fields, while assuming that the background colour is known
in advance. It introduces random temporal window sam-
pling in order to provide diverse supervision. E-NERF [11]
presents a NERF method for event frames or events with
RGB images in synthetic scenes. The method proposes a
normalized loss function in order to handle varying con-
trast threshold of event cameras. In particular, the method
effectively solves deblurring of images using events. An-
other parallel work Ev-NERF [8] also proposes an event-
based NERF method, which uses a threshold-bound loss
in order to address the lack of RGB images. The event-
to-frame method such as E2VID [20] was employed easily
with frame-based NeRF, revealing poor performance that
aligns with the findings in our work. All of the previ-
ous methods consider the scene to be static, with various
assumptions on the contrast threshold of the event cam-
era [8, 21]. A natural question is thus, can event cameras
be used to construct NERF to obtain high quality 3D recon-
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struction with dynamic objects or scenes, where events can
provide a significant edge over conventional cameras? If
so, how can we tackle highly challenging non-rigid scenes
not addressed by any previous methods? In the following
sections we answer these two questions with our proposed
method and experiments.

3. Events in the Radiance Field
We represent the pose of the events as a function of time

P(t). At any time t, the 6DoF pose is parameterized by the
screw axis S = (r(t); v(t)) ∈ R6 where the rotation ma-
trix and translation vectors can be recovered by Rodrigues’s
formula [13]. Without loss of generality, we avoid repre-
senting the pose of the RGB camera separately. Whenever
needed, the RGB camera’s pose is related to P(t) using the
known camera extrinsic parameters between the RGB and
event cameras. A tuple e = (x, t) is an event triggered
at 2D location x and time t. An event camera measures
a set of such tuples, say E = {ei}. At a sparse set of
time stamps, say Ts = {tj}, RGB images with known pose
R = {(Ij ,P(tj))} are recorded. We are now interested to
model the deformable radiance field only using R and E .

We model the radiance field using the implicit neu-
ral representation, with the help of a neural network
ϕθ : (X, d, t) → (c, σ) parameterized by θ. Here, any 3D
point X, in the world coordinate frame, seen from the view-
ing direction d at time t is mapped to its color c and density
σ. The goal of this paper is to learn θ( from E and R with
the object deformation prior. We embed the deformation
prior in the network architecture. In the following, we first
present the role of an event e in learning θ. An overview of
mapping events to radiance is illustrated in Figure 2.

Ray samplingPoseNet Deformation Radiance

Events to 3D Rays Deformable Radiance 

Figure 2. Events to radiance mapping. The 2D points x and time
t are first mapped to the 3D points X along the viewing direction
d, using pose P(t). Each sampled point is mapped to the canonical
space by deformation and decoded into color c and density σ.

3.1. Mapping Events to 3D Rays

Pose from PoseNet. Every event e ∈ E is first mapped to
the corresponding pose P(t), of the camera at the time when
the event was triggered. We realize this mapping using the
multi-layer perceptron, PoseNet as shown in Figure 3 which
maps time to screw axis representation (t) → (r; v). This
neural network generates a continuous pose as a function
of time, making it very suitable to handle asynchronous
events. The knowledge of the camera pose at the event’s

Figure 3. Time to Pose mapping. We exploit the implicit neural
representation to optimize the camera pose as a continuous func-
tion of time. The time t ∈ R is firstly normalized to [−1, 1] and
then pass to sinusoidal encoder with L = 10 of encoded frequen-
cies per axis. The output of network is mapped to rotation and
translation using Rodrigues’s formula.

time and location allows us to backproject the event into
the 3D space represented in the world frame. Unlike other
Event-based NeRF that employ trajectory interpolation or
turntable poses, we address the joint problem of learning
neural 3D representation and refining imperfect event poses
similar to[12] .

Sampling event rays. Once the event is backprojected, a
set of points are sampled along the ray, as in the standard
setting of NeRF training. Then, a trio of a sampled point,
viewing direction and event time is formed to infer its radi-
ance and density. Let the 3D point X, direction d, and time t
be such a trio. During inferring radiance and density for this
trio, the deformation prior is used in network architecture.

3.2. Event Rays in the Deformable Radiance Field

For the deformable radiance field, we assume that there
exists a mapping from the deformed surface to a canoni-
cal one, as in [35, 15]. Therefore, we first learn to map
the 3D point X observed at time t to its canonical posi-
tion X′, by learning the inverse deformation field ω(X, t),
such that X′ = X+ ω(X, t). We realize this inverse defor-
mation field using a multi-layer perceptron. The canoni-
cal representation X′ is then mapped to the color and den-
sity values using another multi-layer perceptron, that ad-
ditionally receives the viewing direction as input. The ar-
rangement of these two perceptrons, as shown in Figure 2
helps us to realize the deformable radiance mapping net-
work ϕθ : (X, d, t) → (c, σ), where θ is the union of param-
eters of two sub-networks.

3.3. Rendering Event Ray for Supervision

Let Ie ∈ R be the nearest available RGB image for any
event e ∈ E . This nearest association is made by comparing
the times in tuple (x, t) and the sparse set of time stamps Ts.
We then count the effective number of events ne = np

e−nn
e ,

for np
e positive and nn

e negative number of events which oc-
curred between the time intervals of Ie and e acquisitions.
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The contrast threshold parameter τ is considered as known.
Following the standard volume-rendering [14] strategy, we
render the color Ivr(e) for each event. The rendered color
Ivr(e) is then compared against the RGB image’s color at
the event location Ie(x), while considering the number of
intermediate events. More precisely, the event loss for the
deformable neural radiance field supervision given by,

Levent =
∑
e∈E

∥Ie(x). exp(neτ)− Ivr(e)∥, (1)

where τ is the intensity threshold for events to trigger.
Note that τ = ∆L/ne, for logarithmic change in radiance
∆L. It goes without saying that when the events are only
monochromatic, the above loss is computed after accord-
ingly converting the 3-dimensional colors to monochrome.

3.4. Sampling of Events

While using the loss function derived in (1), we em-
ploy two strategies for event sampling namely, (i) void and
(ii) active. The former aims for better visual consistency
whereas the latter improves computational efficiency.

Void sampling. For some arbitrary time stamp t, we ran-
domly select a 2D location x where no event takes place
since the last RGB image is acquired. It is intuitive that the
color changes minimally for these void events. To impose
this constraint, we sample 5% void events and set their ef-
fective event count ne = 0. We augment this set of void
events to E , while computing the loss of (1).

Active sampling. In the case of the rigid scene and mov-
ing camera, it is apparent that the events may not play a
significant role in our setup. Instead, they merely intro-
duce the computation burden. The same can be said for the
rigid or mostly-rigid parts of the non-rigid scenes. There-
fore, we prioritize using events that are generated from the
deformable parts. However, such knowledge is not avail-
able to us. Therefore, we actively select the desired events
during learning. During this, we follow two steps: (i) For
tj ∈ Ts, we occasionally render the magnitude of the de-
formation ω(X, tj) from Pj ∈ R. (ii) The probability of
sampling events near Ij is then set directly proportional to
the rendered deformation magnitude at the event’s location.

4. Method Overview
In this section, we present the complete pipeline of our

method, as shown in Figure 4. As can be seen, the events are
continuously recorded whereas the images are only sparse
along the temporal dimension. These sparse images help
us to capture the global structure of the radiance field. The
finer structures, both in space and time, are then enhanced

by using the events. These two aspects however are opti-
mized jointly in an end-to-end manner.

4.1. RGB Cameras for Deformable Fields

We supervise the deformable implicit neural radiance
field, ϕθ : (X, d, t) → (c, σ) also using the photometric loss
for RGB cameras. When the time-stamp of the calibrated
camera is given, the photometric loss is rather straightfor-
ward. Let Ivr(Pj , tj) be the RGB image rendered from
pose Pj for time tj ∈ Tj , the photometric loss for RGB
cameras is given by,

Lrgb =
∑
Ij∈R

∥Ij − Ivr(Pj , tj)∥. (2)

Note that the rendered image is the function of both pose
and time-stamp of the corresponding image Ij , as the ra-
diance field is temporally deforming. The above loss func-
tion supervises the deforming field only sparsely in time,
from the RGB images’ poses at the corresponding acquisi-
tion time.

4.2. Sparse Poses for Dense Events

Recall that the sparse pairs of camera pose and time
(Pj , tj) for tj ∈ Ts are available in our setting. We use
this information in two ways: (i) each Pj is directly used to
cast the rays and render the image required for Lrgb com-
putation in (2); (ii) the sparse pairs (Pj , tj) are used in the
time-to-pose mapping network PoseNet. Instead of predict-
ing the pose directly from time, we predict the residual pose,
where the initial pose for a given event is obtained by local
temporal interpolation of available RGB poses.

4.3. The Algorithm

We summarize the loss computation of our method in
Algorithm 1. Using the derived loss, three multilayer per-
ceptrons, each for PoseNet, deformation field, and radiance
in the canonical frame, are trained. Further implementation
details of our method are presented in the next section.

Algorithm 1 Ltotal = computeTotalLosse(R, E , λ)
1. Render the warp field ω(X, t) at time tj from nearby Pj .
2. Sample active events Ea ⊂ E using the rendered wrap field.
3. Sample void events Ev and set Etotal = Ea ∪ Ev .
4. For each event e ∈ Etotal, obtain the pose using PoseNet.
5. Render event ray Ivr(e) with event pose and pixel location.
6. Compute event loss Levent for Etotal using (1).
7. Sample each ray from Ij ∈ R and render Ivr(Pj , tj).
8. Compute the photometric loss Lrgb using (2).
9. Return Ltotal = Levent + λLrgb
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Figure 4. Overview of the proposed method. Notations A.n can be referred to step n accordingly in Algorithm 1.

5. Implementation Details

For the Pose correction network (PoseNet), we use two
8-layer MLPs with the hidden size 256 to learn the trans-
lation and rotation residuals. We initialize translation and
rotation using cubic spherical linear interpolations, respec-
tively. We use a 6-layer MLPs with a width 128 for the
deformation network and output 8 dimension latent codes.
We utilize coarse-to-fine regularization to modulate the po-
sitional encoding components, as suggested in [15]. We
train on 4 NVIDIA GeForce RTX 2080 Ti using 64 coarse
rays and 128 fine ray samples. λ=10 is used for RGB loss
and in supplementary Tab. 3 we show sensitivity analysis
on different λ.

Synthetic Data. Due to the absence of publicly available
benchmarks or relevant synthetic event stream datasets and
the insufficient number of monocular frames provided by
works such as [15] [16][14] to simulate events, we create
our own datasets with varying degrees and types of mo-
tion using Blender and simulate events using ESIM[19]. We
synthesize 3 different scenes. Non-rigid Lego: We created
a 360-degree camera path around the Lego with the mov-
ing ‘blade’ for two cycles of upward and downward motion
which is 4 times faster than [17]. The challenge posed by
this dataset is to determine whether the model is capable of
effectively acquiring knowledge on the locally-rigid trans-
formation of the blade, and discerning it from the stationary
component. Campfire: In contrast to Lego, the majority
part of the burning campfire dataset is dynamic. The chal-
lenge lies in the ability to learn the variations of flame con-
tours and colour from highly varying unordered boundaries.
Fluid: Water flowing out from pipes hitting the ground with
a lot of splashes. The reconstruction of water flow presents

the most challenging data, due to its intricate shape varia-
tions, colour variations, and the effects of light and shad-
ows. To produce high-temporal resolution events we use
Blender to render thousands of continuous frames. In con-
trast to the approach in [15], which employs a prior based
on static 3D background points for regularization, we con-
figure the synthetic dataset’s background as white, thereby
utilizing it as a means to regularize the background during
the training process of the radiance field[14]. All poses are
accurate for all synthetic datasets, and the τ of events is also
recorded.

Real Data. We evaluate our method on the public datasets
which contain dynamic scenes. a) HS-ERGB: We evaluate
our method to model deformation on High-Speed Events
and RGB dataset [27] which include challenging dynamic
scenes such as a rotating Umbrella as well as the Can-
dle and Fountain. Note that in this dataset the camera is
static so we disable the PoseNet for residual learning. This
dataset provides high-resolution event stream and RGB im-
ages. The extrinsics between RGB and event cameras, as
well as the pixel-wise alignments, are also provided. b)
CED: To evaluate our method on the human subject we
use the dynamic Selfie sequence in Color Event Camera
Dataset [24] which contains both colour frames and colour
events from the DAVIS 346C. c) EVIMOv2: We choose
the EVIMOv2 Dataset to evaluate our method on the dy-
namic scenes with moving cameras. The dataset[4] pro-
vides millimeter-accurate object poses from a Vicon motion
capture system. We use the Samsung DVS Gen3 camera
with Flea3 (RGB) as they share most of the field of view.
We downsample the rgb frame from 2080×1552 to half and
align the frame with events using the depth provided by the
Vicon pose estimate and 3D scanning. We selected two se-
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quences, namely the Toycar with a moderate moving speed
and the Quadcopter with a high motion speed.

Whenever the contrast threshold τ is not available (or
unreliable) for real data, we estimate per-pixel positive and
negative thresholds by comparing nearby RGB images and
the intermediate event counts [2]. We also filter out mis-
matched events during this process. For all sequences, we
subsample the original high-speed video for training and
use the intermediate frames for validation.

Baselines. Since there exists no method that exploits
event cameras to model deformable radiance fields, we es-
tablish a new baseline method – which we refer to as DE-
baseline. This baseline is inspired by two notable works
on deformable NeRF [15] and event-based NeRF [21]. For
DE-Baseline, we sample one ray each for two neighbouring
events. Sampled rays are passed through the deformable
radiance field, as in our method, using the exact same net-
work. Then, we compute the event loss proposed in [11],
together with the photometric loss of (2), for supervision.
Similarly to [11] we use the normalized brightness incre-
ments loss [7] for real-world cases. In our real data experi-
ments, we found that the normalized event loss is detrimen-
tal to PSNR. This aligns with the observation of [11], which
can largely be attributed to noisy events.

We also compare our method against two state-of-the-art
methods, namely, Nerfies [15] and HyperNeRF [16], that
aim to model the deformable scenes in RGB-only settings.
In order to highlight the difficulty, we report the results with
the well-known rigid NeRF method [14]. Drawing inspi-
ration from other event-based NeRF we also report results
using events-to-frame method as reference.

Evaluation Matric. We evaluate our method in learning
high-speed dynamic scenes using the following metrics: (i)
MSE (with a factor of ×10−3), (ii) Peak signal-to-noise
ratio, (iii) The structural similarity (SSIM) [28], and (iv)
Learned Perceptual Image Patch Similarity (LPIPS) [34] us-
ing VGG. We also follow [38] to calculate the pose error
using ATE-RMSE.

6. Experiments
In this section, we provide quantitative and qualitative

evaluations. In Table 1 and Table 2, we report the qualita-
tive results for novel view rendering in synthetic and real-
world datasets. Our method outperforms all other meth-
ods in all MSE, PSNR, SSIM, and LPIPS metrics, thanks to
its ability to model fast-moving deformable scenes. This is
particularly highlighted in the Lego, Campfire, and Candle
datasets. On Campfire, our method not only successfully
learns the direction of flame contour changes, with the head
of the flame pointing left in the novel view, but also learns

Figure 5. Comparison of rendered depths on three datasets of Ta-
bles 1&2. Our method (DE-NeRF) provides very realistic depths.

the depth changes caused by the flame variations. On Can-
dle, our method correctly learns the flame’s depth. Sim-
ilar improvements in performance can be observed in all
datasets. Although Fulid is a very challenging (due to the
used deformation prior violation), our method still offers a
noticeable improvement. Some qualitative results on var-
ious datasets are presented in Figure 5 and Table 3. For
more visualization please refer to Table 5 in supplementary
materials.

The DE-Baseline performs well on synthetic datasets.
However, this method needs a large number of samples be-
tween the current timestamps and the closest frame. [11]
uses a batch size of 30k pairs of events with NVIDIA A40
which is memory and computationally inefficient. In ad-
dition, we found that DE-baseline performs numerically
worse than Nerfie across all metrics on most real-world
data, but with better visual quality. This is similar to the
conclusion of the prior work [11].

Additionally, we provide comparison with events-to-
frame method [20]. We reconstruct the intensity image and
training them together with RGB images using 2. For static
camera setup the background trigger no events so we re-
port results only for the segmented dynamic part. As Ta-
ble 5 shows the events-to-frame based method exhibits poor
performance, primarily attributed to challenges such as un-
known absolute intensity during reconstruction, as well as
domin shifts and artifacts.

It can be observed that our method has limited improve-
ment on fluid and fountain, which is likely due to the dif-
ficulty in simulating fluid solely based on the warping ra-
diance field. Furthermore learning depth for water is also
challenging due to the shading effect of water. Our method
achieved effectively reconstruction of the left person’s head
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Lego Campfire Fluid

Methods MSE ↓ PSNR↑ SSIM↑ LPIPS ↓ MSE↓ PSNR↑ SSIM↑ LPIPS ↓ MSE↓ PSNR↑ SSIM↑ LPIPS ↓
NeRF [14] 5.54 22.11 0.89 0.229 7.11 21.01 0.85 0.206 3.52 24.94 0.83 0.324
HyperNeRF [16] 4.40 24.28 0.94 0.080 5.27 22.94 0.93 0.152 3.14 25.17 0.85 0.303
Nerfies [15] 2.90 25.97 0.96 0.089 5.13 23.11 0.92 0.154 2.47 25.25 0.87 0.300
DE-Baseline 2.10 27.12 0.97 0.093 4.45 23.76 0.93 0.143 2.51 26.07 0.87 0.296

DE-Nerf(Ours) 0.32 35.04 0.99 0.034 1.95 27.56 0.96 0.115 1.91 26.92 0.91 0.289

Table 1. Comparison of our method against the state-of-the-art and the established baseline, on realistically rendered artificial scenes.

(Static-cameras) Umbrella Candle Fountain

Methods MSE ↓ PSNR↑ SSIM↑ LPIPS ↓ MSE↓ PSNR↑ SSIM↑ LPIPS ↓ MSE↓ PSNR↑ SSIM↑ LPIPS ↓
NeRF [14] 2.72 25.41 0.81 0.471 11.0 19.42 0.86 0.333 6.54 21.89 0.48 0.600
HyperNeRF [16] 2.14 26.72 0.85 0.432 4.01 27.04 0.94 0.283 5.31 22.80 0.52 0.688
Nerfies [15] 1.77 28.30 0.89 0.358 4.23 26.08 0.93 0.293 3.95 24.06 0.66 0.552
DE-Baseline 2.04 27.19 0.86 0.432 4.75 25.72 0.93 0.246 4.13 23.87 0.55 0.610

DE-NeRF (Ours) 0.45 33.44 0.95 0.341 0.38 34.22 0.97 0.242 3.11 25.13 0.71 0.546

(Moving-cameras) Selfie Toycar Quadcopter

Methods MSE↓ PSNR↑ SSIM↑ LPIPS ↓ MSE↓ PSNR↑ SSIM↑ LPIPS ↓ MSE↓ PSNR↑ SSIM↑ LPIPS ↓
NeRF [14] 6.25 22.41 0.83 0.382 3.93 24.17 0.85 0.406 7.49 21.25 0.77 0.553
HyperNeRF [16] 3.76 25.02 0.90 0.334 1.41 31.45 0.94 0.242 2.66 27.62 0.92 0.263
Nerfies [15] 2.77 25.85 0.91 0.303 0.87 33.09 0.96 0.217 2.25 28.69 0.93 0.244
DE-Baseline 3.79 24.39 0.89 0.396 1.14 31.99 0.95 0.223 3.01 27.54 0.90 0.265

DE-NeRF (Ours) 1.80 27.74 0.94 0.224 0.54 34.17 0.98 0.201 1.53 29.95 0.95 0.210

Table 2. Real data experiments on two cases: static camera with dynamic scene (top); and moving camera with dynamic scene (bottom).
In all six real-world diverse datasets our method performs significantly better than the state-of-the-art methods and established baseline.

movement on the Selfie dataset.

6.1. Ablation Study

We ablate our method for void sampling, active sam-
pling, and pose refinement. The obtained results are pre-
sented in Table 4. Our findings indicate that solely rely-
ing on with-event location sampling leads to a slight de-
cline in performance. This result may be attributed to the
small sampling window utilized in our study (the entire
trajectory was divided into 200 windows) , which necessi-
tates that with-event methods provide sufficient information
for brightness changes over time. Additionally, our results
show that active sampling improves the performance in ex-
periments with 25 and 50 RGB views, with a minimal effect
for 10 views. This is expected because for sparse views, the
main source of error is triggered by bad events pose estima-
tion from interpolation. As Figure 7 shows adopting active
sampling allows for taking advantage of more events trig-
gered by deformation, thereby efficiently learning the warp
field. Compared to random sampling, our method achieves
more accurate depth in the 10 views case. Finally, our re-
sults demonstrate that the use of pose refinement techniques
enhances the performance for 10 views cases and leads to
further improvements for 25 and 50 views.

6.2. Behaviour Analysis

We conduct several experiments on Lego to investigate
the behavior of our method. The performed studies are
summarized in Figure 6, with some graphical illustrations
in Figure 8. It can be observed that the increasing num-
ber of events impacts positively the novel view synthesis
as well as the pose estimation, in all cases. At the same
time, the lower contrast threshold, or higher sensitivity of
the event camera, also leads to better performance, as ex-
pected. The pose error in Figure 6 (right) is evaluated using
the ATE-RMSE[38]. We also provide the error obtained by
initial pose interpolation, for the reference. In Figure 9 we
report the rotation error of our method after injecting differ-
ent magnitudes of rotation noise. We found that our method
is robust to small rotation noise and can effectively reduce
large rotation noise.

7. Conclusion

In this work, we demonstrated the benefits of event cam-
eras in modelling fast deforming radiance fields. The suc-
cess of our method is contributed by the proposed novel
neural architecture design, training strategy, and the instan-
taneous nature of the asynchronous event streams. Our ex-

3596



L
e g

o
C

am
pfi

re
Fl

ui
d

U
m

br
el

la
C

an
dl

e
F o

un
ta

in
Se

lfi
e

To
yc

ar
U

AV

Ground Truth DE-NeRF(Ours) DE-Baseline Nerfies [15] NeRF [14] Depth (Ours)
Table 3. Qualitative comparisons of our method and baselines on synthetic and real-world datasets.
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Figure 6. The behaviour analysis of our method. Novel view synthesis quality vs. RGB views and number of views (left) and even contrast
threshold (τ ) for sensitivity measure (middle). The pose error measure in absolute translation error vs. number of events used (right).

Number of Views 10 25 50

Method PSNR LPIPS PSNR LPIPS PSNR LPIPS

Nerfies[15] 18.51 0.351 22.51 0.147 25.97 0.089
DE-Baseline 22.21 0.113 23.95 0.101 27.12 0.093

Ours (no void) 28.16 0.076 29.82 0.044 33.25 0.038
Ours 28.89 0.078 29.91 0.042 33.41 0.040
Ours + AS 28.85 0.102 31.83 0.039 34.60 0.038
Ours + AS + PR 32.13 0.046 32.55 0.037 35.04 0.034

Table 4. Ablation Study. We investigate the effectiveness of
void sampling, active sampling (AS) as well as pose refinement
(PR). All the proposed components contribute meaningfully to our
method. The gain of our method without additional components
comes from event integration alone performed using (1).

Figure 7. Uniform vs. active sampling techniques. Our active
sampling method uses more events from deformable regions.

- E2VID[20]+Nerfies[15] E2VID+Hyper[16] E2VID
Dataset PSNR LPIPS PSNR LPIPS PSNR LPIPS
Lego 17.12 0.46 16.40 0.50 15.17 0.38

Umbrella 25.05 0.44 24.93 0.46 25.92 0.15
Selfie 18.36 0.39 17.95 0.40 16.95 0.42

Table 5. Events-to-frame based method Comparison. We report
results using learning based events-to-frame method E2VID[20].
It can directly synthesize novel view frame using only events.
However, as depicted in the third column, the synthesized qual-
ity is deficient.

tensive experiments on diverse real and synthetic datasets
revealed very exciting results with significant performance
gain, both quantitatively and qualitatively. The success of

Figure 8. Effect of contrast thresholds on view synthesis. As ex-
pected, more sensitive event cameras lead to better representations.
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Figure 9. PoseNet robustness against injected rotation noise.

the proposed method must also be credited to the recent ad-
vancements in radiance field modeling. This is particularly
the case because the integration of event cameras in the radi-
ance field is in fact very natural. This allowed us to quickly
establish a baseline and improve it using the techniques pro-
posed in this paper. Our method opens new avenues for the
3D visual modeling of fast-moving cameras and deforming
scenes, in a relatively simple manner.

Limitations: For monochromatic events, our method oc-
casionally generates color artifacts. Our method benefits
insignificantly in very complex scenes that largely violate
the assumed deformation model. This can be seen with the
Fluids dataset. We believe this limitation can be addressed
by more sophisticated non-rigid priors for complex scenes.

Acknowledgements: Research is partly funded by VIVO
Collaboration Project on Real-time scene reconstruction.
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