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Abstract

As a mainstream framework in the field of semi-
supervised learning (SSL), self-training via pseudo labeling
and its variants have witnessed impressive progress in semi-
supervised semantic segmentation with the recent advance
of deep neural networks. However, modern self-training
based SSL algorithms use a pre-defined constant thresh-
old to select unlabeled pixel samples that contribute to the
training, thus failing to be compatible with different learn-
ing difficulties of variant categories and different learning
status of the model. To address these issues, we propose En-
hanced Soft Label (ESL), a curriculum learning approach
to fully leverage the high-value supervisory signals implicit
in the untrustworthy pseudo label. ESL believes that pix-
els with unconfident predictions can be pretty sure about
their belonging to a subset of dominant classes though be-
ing arduous to determine the exact one. It thus contains a
Dynamic Soft Label (DSL) module to dynamically maintain
the high probability classes, keeping the label “soft” so as
to make full use of the high entropy prediction. However,
the DSL itself will inevitably introduce ambiguity between
dominant classes, thus blurring the classification boundary.
Therefore, we further propose a pixel-to-part contrastive
learning method cooperated with an unsupervised object
part grouping mechanism to improve its ability to distin-
guish between different classes. Extensive experimental re-
sults on Pascal VOC 2012 and Cityscapes show that our
approach achieves remarkable improvements over existing
state-of-the-art approaches.

1. Introduction
In recent years, the powerful feature representation ca-

pability of deep learning has allowed us to witness tremen-
dous progress in visual understanding tasks represented by
semantic segmentation [5, 6, 13, 28, 34, 48, 50]. How-
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Figure 1. (a) An unlabeled image with entropy map, where warm
color means high entropy. (b) The prediction of a high entropy
pixel marked in the white cross in (a). As seen, despite the diffi-
culty to distinguish this pixel between dominant classes (person,
background and boat), the model is pretty sure that it belongs to
one of the dominant classes.

ever, as a notorious “data hungry” model, deep learning’s
powerful feature representation relies on a large amount of
high-quality annotated data. For semantic segmentation,
the acquisition of pixel-level data annotations is unbear-
ably time-consuming and labor-intensive. Therefore, with
the development of semantic segmentation, the need for
data-efficient semantic segmentation methods is extremely
urgent. With the development of semi-supervised learn-
ing [3, 29, 32, 39, 42, 47], semi-supervised semantic seg-
mentation [7, 24, 27, 30, 43] which focuses on the study of
using massive unlabeled images to assist a small amount of
labeled data to improve the performance of semantic seg-
mentation, has thus emerged as promising approaches to
reduce the need for annotations and has gained extensive
research attention.

The core challenge of semi-supervised semantic segmen-
tation is to make full use of unlabeled images. Self-training
via pseudo labeling [15, 25, 43, 44, 45] and its variants have
developed into a mainstream learning paradigm in this field.
These methods usually leverage all labeled images to train
a model in a fully-supervised manner and generate pseudo
labels for all unlabeled images based on the trained model.
Then, they re-train the model from scratch using all labeled
images with ground-truth labels and unlabeled images with
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pseudo labels. Since pseudo-labels inevitably contain noise,
simply applying them to model training is bound to trigger
the confirmation bias problem [2], i.e. overfitting to the in-
correct pseudo labels. To mitigate such issues, existing ap-
proaches usually just preserve high-confidence predictions,
while low-confidence predictions are discarded. However,
the selection of the involved training pixels depends on the
appropriate threshold setting, which is hard to be compat-
ible with various learning difficulties of variant categories
and different learning status of the model.

In this paper, we argue that simply discarding these low-
confidence pseudo labels falls into a suboptimal trap, as
there are usually hard samples with high-value supervisory
signals that are crucial for model training. For the sake of
convenience, we first introduce the concept of dominant
classes, which generally refer to the categories with higher
probability in the prediction of a pixel, and the details are
described in Section. 3.2. The dominant classes of a pixel
contain the categories that are usually semantic similar or
spatial closer. For example, the pixel exemplified in Fig. 1 is
a hard sample located in the object boundary, which is cru-
cial for the training of the model, and its dominant classes
include person, background, and boat. While the model is
arduous to determine its exact class, it is pretty sure that the
pixel belongs to the set of the dominant classes. Simply dis-
carding such low-confidence pixel samples during training
will result in unavoidable information loss thereby leading
to inferior performance. Therefore, to fully explore the po-
tential of high entropy predictions, we design a Dynamic
Soft Label (DSL) method to dynamically maintain the high
probability classes by keeping the label as a “soft” version.
Concretely, we assign dominant classes for each pixel based
on its probability prediction and normalize its probability
score of dominant classes as a soft pseudo label, i.e. each
class in the set of dominant classes will make contributions
to the model training.

Though our proposed DSL can effectively utilize high
entropy predictions, it brings ambiguity among dominant
classes and thus blurs the classification boundary. To alle-
viate such issues, we adopt the typical contrastive learning
method [17] to boost the power of distinguishing different
classes, thereby Enhancing our dynamic Soft Label (ESL).
Some prior works [1, 41, 49] extend the popular InfoNCE
contrastive loss [17] to fully/semi-supervised semantic seg-
mentation and make significant modifications for its use
in a pixel-to-pixel paradigm or pixel-to-region paradigm.
Unfortunately, in semi-supervised semantic segmentation,
such pixel-to-pixel contrastive learning paradigm faces the
unique technical challenge of sampling error as the pseudo
labels for unlabeled images unavoidably contain noise. Al-
though the pixel-to-region contrastive learning paradigm
can alleviate this issue by averaging the class region fea-
tures, this paradigm is so coarse that it ignores intra-class

diversity and gives unfaithful sample allocation, such as
forcing a pixel of cat-eye to be similar to the whole cat.
Based on this concern, to fully explore the potential of intra-
class diversity, we dive into the object part and further pro-
pose a pixel-to-part contrastive learning method cooper-
ated with an unsupervised object-part grouping mechanism.
Concretely, we maintain several prototypes for each class
and each prototype represents a specific pattern. Then, the
whole object in an image can be grouped into several mean-
ingful parts by identifying the nearest prototype to each
pixel. The candidate positive and negative samples can be
obtained by the average pooling of the part feature. With
the proposed pixel-to-part contrastive learning method, our
DSL can be further enhanced by alleviating the ambiguity
problem between dominant classes. To sum up, our contri-
butions can be summarized in three-fold:

• We believe that simply neglecting pixels with the low-
confidence pseudo label during semi-supervised train-
ing falls into a suboptimal trap, and propose Enhanced
Soft Label (ESL), a curriculum learning approach to
fully leverage the high-value supervisory signals im-
plicitly in the untrustworthy pseudo label.

• To alleviate the ambiguity issue between dominant
classes caused by soft label, we further propose a novel
pixel-to-part contrastive learning cooperated with an
unsupervised object-part grouping mechanism to facil-
itate the learning of class boundaries.

• We evaluate our ESL on both Pascal VOC [10] and
Cityscapes [8] under different partition protocols and
demonstrate its superior performance.

2. Related Work

Semantic segmentation. Semantic segmentation has
made great progress benefitting from deep neural net-
works [18, 21, 35] and large-scale datasets [8, 9, 10].
FCN [28] first proposes a fully convolutional network to
perform semantic segmentation. Inspired by FCN, various
methods [5, 6, 12, 13, 38] attempt to model context infor-
mation by aggregating multiple pixels. DeepLabV3Plus [6]
applies a spatial pyramid pooling structure to gather multi-
scale contextual information and an encoder-decoder to
capture sharper object boundaries. ACNet [13] finds that
the context demands are varying from different pixels and
proposes to capture pixel-aware contexts by a competi-
tive fusion of global context and local context. Some re-
cent works, like Segmenter [34] and SETR [48], explore
transformer-based semantic segmentation. However, these
methods highly rely on pixel-level annotated labels which
are labor-intensive and time-consuming to collect. In this
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Figure 2. An overview of our proposed Enhanced Soft Label framework, which consists of a teacher and a student network Gt and Gs,
sharing the same network architecture, i.e. an encoder E, a decoder D followed by a projector head P and a segmentation head S, but
with different parameters. The teacher segmentation head St produces dynamic soft label y∗ for unlabeled images to supervise the student
network. The teacher projector P t generates object-part features as the candidate positive and negative samples for contrastive learning.

paper, we focus on how to utilize a large amount of unla-
beled data with the help of limited labeled data for semi-
supervised semantic segmentation.

Semi-supervised semantic segmentation. The core
challenge of semi-supervised semantic segmentation is
to make full use of unlabeled images with the help of
limited labeled images. Some earlier approaches [33]
adopt GAN-based [31] method to provide auxiliary su-
pervisory signals for unlabeled images. Recent methods
simplify the paradigm, which can be generally divided
into consistency regularization-based methods [7, 30]
and self-training-based methods [15, 45]. Consistency
regularization-based methods aim to get similar output
under different perturbations, including input perturba-
tion, feature perturbation, and network perturbation, etc.
CCT [30] proposes cross-consistency training, where an
invariance of the predictions is enforced over different
perturbations applied to the outputs of the encoder. CPS [7]
proposes to encourage high similarity between the pre-
dictions of two perturbed networks for the same input
image and expand training data by using the unlabeled
data with pseudo labels. Self-training-based methods
aim to generate pseudo labels for unlabeled images to
enlarge the labeled set. ST++ [45] explores the potential
of strong data augmentation in self-training. USRN [15]
builds the balanced subclass distribution from imbalanced
class distribution to learn class-unbiased segmentation.
However, these methods usually set a threshold to filter out
low-confidence pseudo labels to avoid model degradation,
which will lead to a suboptimal result, as most of these
pixels are hard samples with valuable information for
model training. Some methods attempt to use unreliable

pseudo labels to avoid information loss. AEL [20] designs
a re-weighting strategy to allocate more weight for the
convincing samples. U2PL [43] treats the unreliable pixels
as the negative samples to those most unlikely categories.
Though impressive performance, they both ignore the other
categories in the dominant classes that are also beneficial to
the mode training. In this paper, we propose a dynamic soft
label (DSL) method to fully utilize high-entropy prediction
by converting it to a “soft” label, i.e. each category in
the set of dominant classes will make contributions to the
model training.

Contrastive learning. Contrastive learning has achieved
great success in image-level self-supervised representation
learning[4, 14, 17, 40]. The core idea is to enforce positive
pairs to be similar and negative pairs to be dissimilar in em-
bedding space. MoCo [17] builds a dynamic dictionary with
a queue and a moving-averaged encoder for unsupervised
visual representation learning. BYOL [14] directly attracts
positive pairs without resorting to negative pairs. Recently,
some works propose to explore the potential of dense con-
trastive learning in semantic segmentation. PC2Seg [49]
adopts pixel-level contrastive learning and introduces sev-
eral negative sampling techniques to avoid the problem of
sampling error. ReCo [26] proposes a contrastive learning-
based framework designed at a regional level. RegionCon-
trast [19] considers cross-image semantic correlations and
proposes a region-aware contrastive learning method. How-
ever, we argue such region-level contrastive learning ig-
nores intra-class diversity, and thus gives unfaithful sample
allocation, such as making a pixel of cat-eye to be similar
to the whole cat. In this paper, to fully explore the potential
of intra-class diversity, based on the design of an unsuper-
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vised object-part grouping mechanism, we conduct a more
faithful pixel-to-part contrastive learning.

3. Algorithm
3.1. The ESL Framework

Our Enhanced Soft Label (ESL) framework is designed
for semi-supervised training of semantic segmentation task,
which means that it naturally involves two types of datasets,
the labeled Dl = {(xl

i, y
l
i)} and the unlabeled Du =

{(xu
i ,∅)} ones. Here (x, y) represents a data pair of an

RGB image x and its semantic mask y, with placeholder
∅ indicating the unavailability of semantic mask in Du.
To enable semi-supervised training, ESL is built upon two
fully convolutional networks (FCNs) of the same architec-
ture without sharing parameters, i.e. a teacher network Gt

and a student one Gs. Each FCN G is composed of an
encoder E, a decoder D, a projector head P , and a segmen-
tation head S. Given an RGB image x ∈ RH×W×3, the
segmentation head from the student network Ss produces a
probability map ps ∈ RH×W×C for C classes, which par-
ticipates in the calculation of a strong or weak supervised
loss depending on x = xl or x = xu. Its counterpart pt

in Gt is involved in computing our proposed Dynamic Soft
Label (DSL) introduced in Sec. 3.2. Feature maps zt and
zs of size H

τ × W
τ × L from the projector heads P t and

P s are auxiliary outputs used to compute a contrastive loss
Lc detailed in Sec. 3.3, where τ and L represent downsam-
ple ratio and feature dimension separately. In mathematical
words, the process is as follows,

[pα, zα] = Gα
(
A(x)

)
, α ∈ {t, s}, x ∈ {xl, xu}, (1)

where A is a data augmentation module. Specifically, A
produces two augmented versions of x, strong augmented x̃

and weak augmented x̂. Normally, x̂l is fed to Gs to com-
pute cross-entropy loss in Eq. 2. For unlabeled images, x̂u

is fed to Gt to generate a pseudo label to supervise the stu-
dent network Gs training, whose input is x̃u. Especially,
the weak augmentation images x̂l and x̂u are also fed to the
teacher network to generate object-part features for pixel-
to-part contrastive loss in Eq. 10. The framework is illus-
trated at Fig. 2, with τ = 4, L = 512 in practice.

3.2. Dynamic Soft Label
Training a semantic segmentation network with labeled

data pair is rather straightforward due to the availability of
strong supervision yl. Similarly in ESL framework, cross-
entropy loss LCE is applied for this case, i.e.

LCE = − 1

N

C∑
c=1

∑
j

yl
c,j log(p

s
c,j), [ps, zs] = Gs(x̂l), (2)

where c represents the c-th channel of yl and ps, j is a pixel
location and N = H ·W is the total number of elements in

Figure 3. Pixel with different dominant class numbers is distin-
guished with colors. Blue: 1. Green: 2. Red: ≥ 3.

yl. For the case of an unlabeled image xu, previous methods
normally use a one-hot hard pseudo label produced by the
teacher network to supervise the training of the student net-
work. The one-hot hard label is usually obtained by simply
setting a threshold to filter pt, causing inevitable informa-
tion loss just like the example shown in Fig. 1. To this end,
we propose a Dynamic Soft Label (DSL) module to dynam-
ically maintain the high probability classes, keeping the la-
bel “soft” so as to make full use of the high entropy predic-
tion. Specifically, we define so-called “dominant classes”
for a given pixel j to be those of high probability that j
belongs to, i.e.

Cj = {c|ptc,j ≥ δj}, (3)

where δj is a dynamic threshold to filter the dominant
classes, determined by the accumulated probability for
sorted ptj in descending order. Specifically, we set a thresh-
old η so that the accumulated probability with counted
classes is no less than it, i.e.

min
C∗

C∗∑
c=1

descend-sort(ptc,j) ≥ η =⇒ δj = ptC∗,j , (4)

where C∗ is the threshold class of the prediction vector ptc,j
and its elements that below than ptC∗,j will not be counted
into the dominant classes. Note that when η ≤ maxc{ptc,j},
the DSL will degrade into the one-hot hard label, which re-
flects its compatibility to previous works. Fig. 3 shows the
dominant class number of each pixel. As seen, most pixels
only contain one dominant class, i.e. hard label, while for
some confusing areas like object boundaries, the dominant
class number is more than one.

After we obtain the dominant classes for each pixel j
as in Eq. 3, a corresponding dominant classes mask h ∈
RH×W×C is easily achieved by setting hc,j = 1 for c ∈ Cj

and 0 elsewhere, and the DSL y∗ is further calculated by
normalizing the masked pt in the class dimension, i.e. for
pixel j,

y∗j = (hj · ptj)/|hj · ptj |, (5)

where hj ∈ RC is the dominant class mask at pixel j and
| · | is the l1 norm of a vector. Finally, the DSL y∗ serves as
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Figure 4. Visualization of object-part grouping results of K = 5
and positive/negative sample allocation. The yellow circles in the
middle images are selected anchors, with green arrows pointing to
the positive samples and red ones pointing to the negative samples
assigned to the anchor, respectively.

a weak supervision for ps, which is achieved by employing
a soft cross entropy loss as,

LSCE = − 1

N

C∑
c=1

∑
j

y∗
c,j log(p

s
c,j), [ps, zs] = Gs(x̃u). (6)

With LCE and LSCE being formulated, labeled and un-
labeled datasets Dl,Du can be already well handled in the
training of our ESL framework.

3.3. Pixel-to-Part Contrastive Learning

The proposed DSL module avoids trivially degrading the
probability map pt into a one-hot hard label, so that the
soft label y∗ effectively utilizes the high entropy prediction
and distinguishes a pixel into dominant classes, as an exam-
ple shown in Fig. 1. However, it still lacks the capability
to distinguish between dominant classes, causing a blurred
boundary between them. To tackle this issue, we further
propose a pixel-to-part contrastive learning approach.

Unsupervised object-part grouping mechanism. We
define an object part to be pixels belonging to a subclass,
achieved by a subclass similarity evaluation. Specifically,
before the formal training, we first collect the features
{Et(xl

i)} of dimension L′ for the entire labeled dataset Dl,
where Et is initialized with the parameter pre-trained on
Imagenet [9]. Due to the availability of the ground truth la-
bel {yli}, we can split {Et(xl

i)} pixel-wisely into C classes,
noted as E1, E2, ..., EC . Then we apply K-means to each Ec
to obtain K subclasses, with the mean vector as a prototype
representation of each subclass. As such, a subclass proto-
type matrix P ∈ RC×K×L′

is built with these means. With
it, in further training procedure, which subclasses a pixel j
belongs to is determined by comparing it with Pc∗ , i.e.

k∗ = argmax
k

cos(Et(x)j ,P
c∗

k ), (7)

where cos(·, ·) is cosine similarity and c∗ is j’s class by
querying x’s label yl if x = xl or pt for the largest proba-
bility class if x = xu. With c∗, k∗ obtained, we naturally
have a one-hot object-part mask M ∈ RH×W×C×K with
Mj,c∗,k∗ = 1, with which we apply mask average pool-
ing (MAP) to zt subclass-wisely to achieve at most C ×K
mean features of dimension L, considering not all classes
and subclasses exist for a particular image x. Mathemati-
cally, for subclass (c, k), MAP works as

µc,k =

∑
j Mj,c,k · ztj∑

j Mj,c,k
, µc,k ∈ RL. (8)

We then push µc,k subclass-wisely into a memory bank
composed of C×K First-In-First-Out (FIFO) queues of size
q. This memory bank is further used for positive and neg-
ative sampling in constructing the contrastive loss. Fig. 4
visualizes some object-part grouping results. As seen, our
grouping mechanism successfully divides the whole object
into several meaningful parts.

Contrastive loss. We utilize InfoNCE loss as a con-
trastive loss, involving anchors v, positive and negative
samples v+, v−. Specifically, for a labeled or unlabeled
image x we extract qualified features for each class c in the
following manner,{

Ãl
c = {zsj |ylc,j = 1} if x = xl,

Ãu
c = {zsj |ptc,j > ζ} otherwise,

(9)

where ζ = 0.95 is a confidence threshold to reduce sample
error. Then we randomly choose 10% samples from either
one case to form anchor set Ac, i.e. v ∈ Ac and the size of
Ac is |Ac|.

We further randomly sample 1 positive and Ns negative
samples from the memory bank for each anchor. For the
positive one, we first identify its subclass k∗ by measuring
the cos similarity in Eqn. 7, and then sample one from cor-
responding (c, k∗)-th queue. While negative samples are
randomly selected from other queues excluding (c, k∗)-th
queue. Finally with anchors, positive and negative samples
available, we formulate an InfoNCE loss for class c as

Lc
CTR = − 1

|Ac|

|Ac|∑
j=1

log
Φσ(vj , v

+
j )

Φσ(vj , v
+
j ) +

∑
v−
j ∈Nj

Φσ(vj , v
−
j )

,

(10)

where Nj is the negative sample set of size Ns = 255 for
anchor vj , Φσ(a, b) = ecos(a,b)/σ with a temperature σ set
to 0.5 in this work. Finally, the entire contrastive loss for all
classes are obtained with LCTR = 1

C

∑C
c=1 Lc

CTR. We il-
lustrate the positive and negative sample allocation in Fig. 4.
As seen, our pixel-to-part contrastive learning gives a more
faithful and refined sample allocation.
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3.4. Training Details

We sum up all the losses together as our training loss, i.e.

L = LCE + λ1LSCE + λ2LCTR, (11)

where λ1 and λ2 are weight parameters, which is set to 0.2
and 0.1, respectively, in all experiments. Note that gradients
back-propagate in Gs only while Gt is updated via an expo-
nential moving average (EMA) scheme from Gs. Similarly,
with each mini-batch fed, we also apply MAP to Et(x) with
the part mask M as in Eq. 8, by replacing ztj with Et(x)j .
This produces a matrix P′ of the same shape with P, further
updating P by,

P = θ ·P+ (1− θ) ·P′, (12)

where θ ∈ [0, 1] is momentum coefficient and set to 0.99
in this paper. In practice, we use a ResNet-101 [18] pre-
trained on ImageNet [9] as the backbone of the encoder E
and DeepLabv3+ [6] as the decoder D. Both the projec-
tor head and segmentation head consist of three Conv-BN-
ReLU blocks. Besides, Et(x), zt will be resized before be-
ing applied to with MAP, considering their sizes are equal
to H ×W originally.

4. Experimental Results

4.1. Datasets and Implementation Details

Datasets. Our experiments are conducted on two datasets,
Cityscapes [8] and Pascal VOC 2012 [10], whose training
and validation images are 2975 : 500 and 1464 : 1449 re-
spectively, with high-quality annotations. For Pascal VOC
2012, its training set is further augmented to 10, 582 im-
ages by combining the SBD [16] dataset with relatively
low-quality annotations, so that a blender version is formed
as in U2PL [43] and the original one is noted as clas-
sic version for distinction. We conduct experiments un-
der 1/16, 1/8, 1/4 and 1/2 partition protocols for all three
datasets, meaning 1/16 ∼ 1/2 of the training data serves as
labeled dataset Dl in our framework, the rest training im-
ages are regarded as unlabeled dataset Du. Note that for
classic Pascal VOC, Du also includes all the images from
SBD, so that an experiment with full partition including
1464 labeled and 9118 unlabeled training images is also
conducted, shown in the last column of Table. 1(a). In
terms of evaluation, mean Intersection-over-Union (mIoU)
is employed as the metric, and pre-processing steps like
center crop and sliding window are also involved for Pas-
cal VOC and Cityscapes respectively following previous
works [43, 49]. Before being fed, images are cropped to
5132 and 7692 for Pascal VOC and Cityscapes respectively.

Implementation details. We use stochastic gradient de-
scent (SGD) optimizer for training with the backbone ini-
tial learning rate 10−3 and 10−2, weight decay 10−4 and
5 × 10−4, and training epoch 80 and 200 for Pascal VOC
and Cityscapes, respectively. The learning rate of the de-
coder, projector head, and segmentation head is set to 10
times that of the backbone. For each mini-batch, it contains
8 labeled and 8 unlabeled images. As for the augmentation
module A mentioned in Eq. 1, weak version x̂ includes ran-
dom flipping and resizing with a scale between 0.5 and 2.0,
and strong version x̃ only contains CutMix [46]. To keep
the comparison fair, OHEM loss is applied on Cityscapes
like previous methods [7, 43].

4.2. Comparison with Existing Methods

Quantitative results. We first conduct a comparison
quantitatively and report the mIoU values on three datasets
in Table. 1.

◦ Pascal VOC 2012. Table. 1 compares our ESL with
other state-of-the-art methods on the PASCAL VOC valida-
tion set, with labeled training images coming from classic
(a) and blender (b) training sets. For classic’s results, our
ESL achieves the best performance over all the other meth-
ods, beats the 2nd best by 0.95%, 0.90%, 1.57%, 1.11%,
1.30% under 1/16, 1/8, 1/4, 1/2 and full partition pro-
tocols, respectively, especially outperforms the supervised
baseline significantly. A similar comparison is also con-
ducted on blender’s results, and our method also achieves
comparable results with the state-of-the-art. It reflects that
our method relies on less labeled training data and demon-
strates a stronger capability on semi-supervised learning.
Besides, it is worth noting that, as seen in the last columns
of Table. 1(a) and (b), i.e. 1464 high-quality annotated vs.
5291 mixed-quality annotated images serve as labeled train-
ing images, performance even drops with more supervision,
revealing that annotation quality of labeled data is more
critical in semi-supervised semantic segmentation than data
amount.

◦ Cityscapes. Table. 1(c) further lists the comparison
results on the Cityscapes validation set. Similarly, our ESL
outperforms the supervised baseline by a large margin due
to the help of numerous unlabeled data. ESL also beats
the 2nd best by 0.22%, 0.26%, 0.42%, 1.34% under 1/16,
1/8, 1/4, 1/2 partition protocols, respectively, demonstrat-
ing its consistent superiority over the state-of-the-art. Be-
sides, we observe that our ESL can achieve better perfor-
mance when using more labeled images. It is mainly be-
cause the Cityscapes dataset exhibits a long-tailed label dis-
tribution, and extremely limited labeled data can not cover
all patterns of tail classes.
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Method 1/16 (92) 1/8 (183) 1/4 (366) 1/2 (732) Full (1464)

Sup Baseline 45.77 54.92 65.88 71.69 72.50

MT [36] 51.72 58.93 63.86 69.51 70.96
CutMix-Seg [11] 52.16 63.47 69.46 73.73 76.54
PC2Seg [49] 57.00 66.28 69.78 73.05 74.15
ReCo [26] 64.78 72.02 73.14 74.69 -
CPS [7] 64.07 67.42 71.71 75.88 -
ST++ [45] 65.20 71.00 74.60 77.30 79.10
PSMT [27] 65.80 69.58 76.57 78.42 80.01
U2PL [43] 67.98 69.15 73.66 76.16 79.49
GTA-Seg [22] 70.02 73.16 75.57 78.37 80.47

ESL 70.97 74.06 78.14 79.53 81.77
(a) mIoU on classic Pascal VOC

Method 1/16 (662) 1/8 (1323) 1/4 (2646) 1/2 (5291)

Sup Baseline 67.87 71.55 75.80 77.13

MT [36] 70.59 73.20 76.62 77.61
CutMix-Seg [11] 72.56 72.69 74.25 75.89
CCT[30] 67.94 73.00 76.17 77.56
GCT [23] 69.77 73.30 75.25 77.14
CPS [7] 74.48 76.44 77.68 78.64
ST++ [45] 74.70 77.90 77.90 -
PSMT [27] 75.50 78.20 78.72 79.76
U2PL† [43] 74.43 77.60 78.70 79.94

ESL 76.36 78.57 79.02 79.98
(b) mIoU on blender Pascal VOC

Method 1/16 (186) 1/8 (372) 1/4 (744) 1/2 (1488)

Sup Baseline 65.74 72.53 74.43 77.83

MT [36] 68.08 73.71 76.53 78.59
CutMix-Seg [11] 67.06 71.83 76.36 78.25
CCT [30] 69.64 74.48 76.35 78.29
GCT [23] 66.90 72.96 76.45 78.58
CPS‡ [7] 69.78 74.31 74.58 76.81
PSMT [27] - 76.89 77.60 79.09
U2PL [43] 74.90 76.48 78.51 79.12
GTA-Seg [22] 69.38 72.02 76.08 -

ESL 75.12 77.15 78.93 80.46
(c) mIoU on Cityscapes

Table 1. Comparison with existing methods on classic (a) and
blender (b) PASCAL VOC and Cityscapes (c) validation set based
on ResNet-101 backbone under various partition protocols. In
(a)(b)(c), “Sup Baseline” represents supervised training without
unlabeled data, and “-” means the corresponding method doesn’t
report the result. † stands for the corrected version by the author
from GitHub. 1 ‡ means the results are borrowed from U2PL [43].
The best and the 2nd best values are marked in black and blue
bold, respectively.

4.3. Ablation Studies

Training loss. We investigate our overall training loss un-
der the full partition protocol on classic Pascal VOC dataset
in Table. 2. The “LSCE (Hard label)” stands for the one-hot
hard label applied for unlabeled images, i.e. the dominant
classes only contain the highest probability class. First of
all, we set supervised training without using unlabeled im-
ages as the baseline, achieving mIoU of 72.50%. Combin-
ing unlabeled images with hard pseudo labels increases the
baseline by 5.82%, indicating that a large number of unla-

1https://github.com/Haochen-Wang409/U2PL/issues/3

Figure 5. Effectiveness of LCTR. (a) Input images. (b) Ground
truth. (c) The model trained with LCE and LSCE only. (d) The
model trained with all losses including LCTR. As seen, better seg-
mentation is achieved at the boundaries by our contrastive learning
strategy, highlighted in red dashed boxes.

Figure 6. Embedding space learned without LCTR (a) and with
LCTR (b). For better visualization, we show four classes with two
object parts per class. The different object parts are distinguished
by the transparency.

beled images can assist the model training with the guidance
of limited labeled images. Simply replacing the hard label
with our dynamic soft label, the performance boosts 2.09%,
demonstrating its effectiveness compared to the hard label.
Incorporating our proposed pixel-to-part contrastive learn-
ing can further improve the performance, achieving a state-
of-the-art result with mIoU of 81.77%. In addition, it should
be emphasized that although our pixel-to-part contrastive
learning is intended to solve the ambiguity issue brought on
by DSL, it can also perform independently, i.e. a 1.94%
improvement compared to hard label only.

Fig. 5 shows the segmentation results on the PASCAL
VOC 2012 validation set. Through visualizing the segmen-
tation results, we observe that simply using DSL is hard
to segment object boundaries, as it introduces ambiguous
problems between dominant classes. Our proposed pixel-
to-part contrastive learning can boost the ability to distin-
guish different classes, thereby achieving much better per-
formance on object boundaries.

Fig. 6 visualizes the embedding space learned without
LCTR (a) and with LCTR (b) using T-SNE [37]. As can be
observed, the model learned with LCTR produces a more
clear classification boundary. Moreover, pixel features be-
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LCE LSCE (Hard label) LSCE (DSL) LCTR mIoU

✓ 72.50
✓ ✓ 78.32
✓ ✓ ✓ 80.26
✓ ✓ 80.41
✓ ✓ ✓ 81.77

Table 2. Ablation Study on the effectiveness of each component
under full partition protocol on classic Pascal VOC.

longing to the same object-part are well separated, indicat-
ing that our proposed pixel-to-part contrastive learning can
better reshape the embedding space.

DSL. Table. 3 quantifies the effect of η in Eq. 4, which
controls the scope of the dominant classes. The DSL per-
forms well using a relatively large value, showing that con-
taining more ambiguous classes in dominant classes is ben-
eficial. Besides, we observe that when η is set to a relatively
small value (e.g. η = 0.8), the performance will decrease
into a similar value to the hard label in Table. 2 (78.32).
The reason is that the dominant classes only contain one
class when using a small η, i.e. our DSL will degrade into
the hard label strategy. As a result, we set η = 0.95 for all
comparison experiments.

Besides, in Table. 3, we also investigate a more straight-
forward strategy by setting η to the 5th largest value of the
prediction vector, i.e. the dominant classes of each pixel
will contain the top five categories of the prediction vector.
We observe that the performance is slightly worse than our
DSL. The reason is that for some low entropy predictions,
the model is confident enough to its prediction, simply fix-
ing the category number of dominant classes will introduce
the extra noise. However, our DSL can dynamically recog-
nize the scope of dominant classes for each pixel, which can
provide a more refined supervisory signal. In other words,
our ESL can take both high entropy and low entropy predic-
tion into consideration, and hence results in greater perfor-
mance.

Fig. 7(a) compares the performance of hard label and our
proposed DSL. As seen, the DSL outperforms the hard la-
bel under all partition protocols, which demonstrates the su-
perior performance of our proposed DSL. Specifically, we
observe that the DSL improves the mIoU more with fewer
labeled images, e.g. a 5.53% improvement with 92 labeled
images and a 2.09% improvement with 1464 labeled im-
ages. Therefore, we make a discussion to explain why the
soft label outperforms the hard label. For high entropy pre-
diction, simply converting it to a one-hot hard label is likely
to make noise, leading to class-imbalanced pseudo labels, as
the green line illustrated in Fig. 7(b). The situation becomes
more serious, especially on the label-scarce regimes (e.g.
92 and 183 labeled images). However, the soft label can be
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Figure 7. (a) The performance of DSL under the different number
of labeled images on the Pascal VOC dataset. (b) Class distribution
on unlabeled data under 1/8 partition protocol on classic Pascal
VOC dataset. The DSL outperforms typical hard label under all
partition protocols, as the DSL can produce more class-balanced
pseudo labels compared to the hard label.

more class-balanced compared to the hard label, as the yel-
low line illustrated in Fig. 7(b), since it can preserve correct
signals. Therefore, the model trained with class-balanced
pseudo labels can produce class-unbiased segmentation.

Subclass number K. We conduct experiments to inves-
tigate the impact of different subclass numbers K in Ta-
ble. 4. K = 0 represents the model trained with LCE and
LSCE, without contrastive loss LCTR. K = 1 stands for
each class having only one subclass, i.e. itself. In this case,
our method degrades into the pixel-to-region paradigm. We
can see a performance gain (i.e. 80.41% → 80.74%), in-
dicating that contrastive learning can strengthen the abil-
ity to discriminate different classes. When there are more
prototypes (i.e. K = 3), the performance improvement is
obviously (80.74% → 81.39%), demonstrating the effec-
tiveness of our pixel-to-part contrastive learning paradigm
compared to the pixel-to-region paradigm. The mIoU can
be further improved by employing more prototypes. How-
ever, increasing K beyond 5 can’t yield a continuous im-
provement in performance. Therefore, we set K = 5 as our
default setting for all comparison experiments.
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η 0.80 0.90 0.95 0.99 Top-5

mIoU 78.43 78.96 80.41 80.28 79.89
Table 3. Ablation Study on η in Eq. 4, which controls the scope
of dominant classes, under full partition protocol on classic Pascal
VOC dataset. The “Top-5” stands for setting η to the 5th largest
value of the prediction vector. The default setting of η = 0.95 in
our experiments is marked in bold.

K 0 1 3 5 7 10

mIoU 80.41 80.74 81.39 81.77 81.72 81.64
Table 4. Ablation Study on subclass number K under full partition
protocol on classic Pascal VOC dataset. The default setting of
K = 5 in all comparison experiments is marked in bold.

5. Conclusion

In this paper, we propose an enhanced soft label (ESL)
framework to improve the semantic segmentation perfor-
mance in a semi-supervised manner. It is achieved by a
newly introduced dynamic soft label method that can fully
explore the potential of high entropy predictions by main-
taining the score of dominant classes, instead of simply dis-
carding them as previous works do that may lead to infe-
rior results. Furthermore, in order to enhance the feature
representation and also strengthen the discrimination be-
tween dominant classes, we introduce a pixel-to-part con-
trastive learning approach integrated with an unsupervised
object-part grouping mechanism. Benefitting from the two
components mentioned above, our ESL is able to handle
challenging scenarios and produce more accurate segmen-
tation results. Extensive experimental results demonstrate
the superiority of our ESL over the state-of-the-art meth-
ods, and ablation studies also reveal the effectiveness of our
proposed modules.
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