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Abstract

Conventional semi-supervised learning (SSL) lies in
the close-set assumption that the labeled and unlabeled
sets contain data with the same seen classes, called in-
distribution (ID) data. In contrast, safe SSL investigates
a more challenging open-set problem where unlabeled set
may involve some out-of-distribution (OOD) data with un-
seen classes, which could harm the performance of SSL.
When we are experimenting with the mainstream safe SSL
methods, we have a surprising finding that all OOD data
show a clear tendency to gather in the feature space. This
inspires us to solve the safe SSL problem from a fresh per-
spective. Specifically, for a classification task with K seen
classes, we utilize a prototype network not only to generate
K prototypes of all seen classes, but also explicitly model an
additional prototype for the OOD data, transferring the K-
way classification on the open-set to the (K+1)-way on the
close-set. In this way, the typical SSL techniques (e.g., con-
sistency regularization and pseudo labeling) can be applied
to tackle the safe SSL problem without additional consider-
ation of OOD data processing like other safe SSL methods
do. Particularly, considering the possible low-confidence
pseudo labels, we further propose an iterative negative
learning (INL) paradigm to enforce the network learning
knowledge from complementary labels on wider classes, im-
proving the network’s classification performance. Extensive
experiments on four benchmark datasets show that our ap-
proach remarkably lifts the performance on safe SSL and
outperforms the state-of-the-art methods.

1. Introduction
In the past decade, the development of deep learning

brings prosperity to the field of computer vision, such as
image classification, attributed to the growing scale of la-
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Figure 1. (a) An example of close-set and open-set. In open-set,
the unlabeled set contains classes not seen in the labeled set (indi-
cated by red boxes); (b) t-SNE [34] visualization of feature distri-
butions of ID (colored) data and OOD (black) data from CIFAR10
[17], Images of the same category are shown in the same color.

beled data [18, 9, 23]. However, it is time-consuming and
expensive to collect large amounts of labeled data. Numer-
ous methods resort to semi-supervised learning (SSL) to re-
lieve this restriction [33, 19, 32]. By exploring the massive
valuable information from the abundant easy-to-acquire un-
labeled data, SSL methods can effectively narrow the per-
formance gap towards the fully-supervised models.

Although the SSL methods are proven to be effective in
improving the classification performance in case of sparse
labels, most of them follow a close-set assumption by de-
fault, that is, the labeled data and the unlabeled data share
the same label space. See Figure 1(a) for example, both la-
beled data and unlabeled data are built on the classes of cat
and dog, which are also called in-distribution (ID) data. Yet,
in many real scenarios, such a simple and crude assumption
often breaks down since the unlabeled data could be col-
lected in the wild [40]. In this case, there will be many sam-
ples with unknown classes (or unseen classes) appearing
in the unlabeled dataset, which we call out-of-distribution
(OOD) data, resulting in an open-set problem. As shown in
Figure 1, in the open-set, besides the cat and dog classes in
the labeled set (or seen classes), there are also some unseen
classes, e.g., butterfly, hen, rabbit. Without reliable labels
for these unseen classes, the OOD data may lead to a sig-
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nificant degradation of model performance [8, 4, 25], and
even pose a significant safety risk to the accurate predic-
tion since the model is forced to predict the unseen class as
a seen one. This severely hinders the SSL methods from
being deployed in real-world applications.

To handle this problem, a series of enhanced SSL meth-
ods have been emerged to improve the classification perfor-
mance and guarantee the prediction safety in a more real-
istic scenario, namely safe semi-supervised learning (safe
SSL) methods [8, 4, 10, 11, 41]. The safe here means that
the model using extra unlabeled data will not be worse than
a simple supervised one. Most current safe SSL methods
adhere a two-step scheme: 1) identifying the OOD data, and
2) dealing with the OOD data. In stage one, these methods
tend to identify the OOD data by classifying the OOD data
and the ID data into two separate broad classes [8, 4, 10, 41].
After the OOD data is detected, some methods treat them as
hazards and just discard them in the second stage [4, 41]. In
contrast, He et al. [10] argued that the valuable information
contained in the OOD data can be used to further improve
the identification of OOD data. To this end, they endeav-
ored to calibrate the seen-class probability distribution into
a uniform distribution, thus suppressing the over-confidence
problem to unseen class and eliminating the risk of hard
OOD data being recognized as ID data.

Despite the effectiveness of the two-step pipeline, uti-
lizing it in reality might still be cumbersome and requires
consideration of some additional caveats. For instance, in
stage one, clustering all ID data into one class is a coarse-
grained binary classification task, which may conflict with
the final fine-grained multi-class classification task in terms
of feature space learning [14]. Furthermore, in stage two, it
is not easy to come up with a feasible way to utilize OOD
data to enhance model performance, either. When we are
experimenting with these safe SSL methods, an interesting
phenomenon strikes us as a surprise. We find that most safe
SSL methods [8, 10, 14] show an intrinsic ability to gather
the OOD features in the first stage like Figure 1(b), espe-
cially for [14] employing the self-supervised learning man-
ner. This involkes us to ask the following question: Why the
OOD data which belong to different classes are gathered in
the feature space?

We try to answer this question by inspecting the Class
Activation Map (CAM) [44] for ID and OOD images. As
observed in Figure 2, the model is mainly concerned with
the high-level information of the objects (e.g. the body of
cats and birds) for ID data. For OOD data, on the other
hand, due to the lack of corresponding categories of ob-
jects, the model can only pay more attention to some com-
mon category-agnostic low-level information, such as color,
edge, and corner. Therefore, although the OOD data come
from different classes, their features still present a gathering
tendency in feature space.

Figure 2. CAM visualization of the results. For the ID data (Bird,
Cat, Dog), the features are more class-discriminative.

This inspires us to solve the safe SSL problem from a
new viewpoint, that is we can treat all the OOD data as an
individual class peer to other seen classes during training. In
this way, we can transfer a K-way classification task on the
open-set to a simple (K+1)-way classification task on the
close-set. Then we can tackle the complex safe SSL task
in the same way as the trivial SSL task using all the meth-
ods that are applicable on the close-set assumption, greatly
streamlining the safe SSL problem.

Following the above inspiration, in this paper, we pro-
pose a prototype-based safe SSL framework for image
classification from a fresh perspective. Specifically, our
framework includes two stages, including the first stage of
unseen-class prototype generation and the second stage of
semi-supervised image classification. Assuming that there
are K seen classes, the first stage starts by training a pro-
totype network [31] on the labeled ID data so that it can
produce K prototypes of seen classes. Based on the proto-
types, we can distinguish the feature distribution of all the
OOD data according to the distance of the features from the
prototypes, thereby explicitly modeling an additional proto-
type of all unseen classes. These K+1 prototypes allow the
framework to make predictions for both the K fine-grained
seen classes and the remaining unseen class simultaneously,
avoiding the conflict with coarse-grained classification. By
casting the K-way classification to the (K+1)-way clas-
sification, we can directly use any common and effective
SSL technique to carry out the semi-supervised classifica-
tion task in the second stage.

A widely accepted solution for SSL is to filter high con-
fidence pseudo labels for unlabeled data. Yet, removing all
the unreliable predictions could lead to insufficient and cat-
egorically imbalanced training [37]. To make full use of un-
labeled data, negative learning (NL) [37, 38, 16] is proposed
to provide complementary labels which indicate the class to
which the current sample is least likely to belong, namely
negative class. However, the conventional NL may become
less powerful when solving a classification task with a large
number of classes. The reasons can be attributed to the fol-
lowing aspects: 1) Current NL methods don’t ensure the
complementary label of the same sample keep unchanged
during the training process. Wavering labels are unfavor-
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able for stable training; 2) When there are excessive classes,
current NL methods can only determine the complementary
labels on one negative class at a time, which can solely sup-
plement limited knowledge to the network and leave mas-
sive information on other classes unexplored. To alleviate
these limitations, we propose an iterative negative learning
(INL) paradigm in the second stage. Unlike the previous
NL methods [16, 37], we harness a memory bank to pre-
serve the complementary labels of unlabeled data at each
training iteration. As training goes, the complementary la-
bels will explore new negative classes iteratively based on
the saved historical complementary labels. By this, the INL
paradigm enables to fully unearth the knowledge of all un-
labeled data in the whole feature space, helping the model
classify the samples more confidently. We summarize our
contributions as follows:

• We rethink the safe SSL problem from a fresh perspec-
tive and propose a prototype-based safe SSL frame-
work to explicitly model the OOD data as a novel class
peer to ID classes. In this manner, we transform the
safe SSL from an open-set problem to a close-set one.

• We raise an INL paradigm to enhance the feature learn-
ing capability of our framework with regard to the un-
reliable predictions in SSL. By employing a memory
bank to progressively update the complementary label
until it covers most negative classes, our model can
excavate the knowledge of the unlabeled data in the
whole feature space, producing more confident classi-
fication results.

• We evaluate our framework on extensive benchmark
datasets and the experimental results show that our
method remarkably outperforms the existing state-of-
the-art safe SSL methods.

2. Related Work
2.1. Semi-supervised Learning

Semi-supervised learning (SSL) has been a long-term
research topic, and recently it has made a splash in com-
puter vision (CV) attributed to the advancement of deep
learning. The core idea of SSL is to make full use of ex-
tensive unlabeled data with as little labeled data as pos-
sible to achieve an approximate performance of fully su-
pervised learning. There are a vast number of SSL meth-
ods proposed to resolve various CV tasks, which can be
briefly categorized into pseudo-labeling, consistency regu-
larization, and hybrid methods. The pseudo-labeling meth-
ods [3, 21, 15, 27] aim to produce pseudo labels for unla-
beled data, and then supplement them into the labeled set
to strengthen the model training. The consistency regular-
ization methods [33, 29, 19, 24, 36, 35, 30, 13] assume that
the decision boundary is supposed to cross the low-density
region of samples, based on which they encourage the out-

puts of the unlabeled data and their perturbations to keep
consistent in order to learn a discriminative decision bound-
ary. Hybrid [1, 2, 32, 22] methods combine the two meth-
ods mentioned above and use some data augmentation ap-
proaches [5, 6, 39, 43] to enhance the SSL methods. How-
ever, these methods are based on the assumption that all la-
beled and unlabeled data share the same label space, which
is often broken in real-world problems.

2.2. Safe Semi-Supervised Learning

In the open world, the unlabeled set is prone to contain
some out-of-distribution (OOD) samples that do not belong
to any seen class in the labeled dataset. It has been demon-
strated that these OOD data will harm the in-distribution
(ID) data classification on all seen classes [25]. Various
solutions have been proposed to solve such a safety prob-
lem, called safe SSL methods [8, 4, 10, 11, 3, 41, 14]. A
widely adopted way of safe SSL is to train a model on la-
beled data and use it to detect and remove the OOD data.
Guo et al. [8] designed a weight function to subdue the
weight of OOD data. Chen et al. [4] proposed a score func-
tion to filter out the OOD data based on their ensembled
prediction results. However, by discarding the OOD data,
these methods also abandon the valuable knowledge con-
tained in them[10]. In contrast, Huang et al. [14] proposed
a self-supervised warm-up training method to fully utilize
the OOD data to further promote the OOD detection. Fur-
thermore, He et al. [10] utilized the OOD data by calibrat-
ing their category distributions into uniform ones. Never-
theless, the application of OOD data is still dependent on
the accuracy of the previous OOD data identification, which
may be compromised by the limited labeled data. Differ-
ent from the above methods, our work explicitly models all
OOD data as a novel class peer to seen-classes, thus trans-
ferring the safe SSL from an open-set problem to close-set
one. This brave attempt unifies the classification of OOD
data and ID data into one feature space, enabling the full
use of all OOD data and ID data and eliminating the pos-
sible negative impact of low performance when identifying
OOD data separately.

2.3. Negative Learning

For SSL methods, incorrect supervisory information can
cause catastrophic effects on network performance. The
negative learning (NL) methods are therefore proposed to
reduce the risk of incorrect information from the noisy la-
bels in the labeled set [16], or the erroneously assigned
pseudo labels in the unlabeled set [37, 38]. Generally, the
routine NL is conducted by selecting a class randomly from
all classes except for the given one as the complementary la-
bel per iteration, then optimizing the output probability cor-
responding to the complementary label to approach 0 [16].
Nevertheless, the existing NL methods only mine the useful
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information on one complementary label, which has little
impact on performance when the number of classes is large.
Moreover, the complementary label could be variable as the
training goes, bring much uncertainty to the model training.
Our work addresses these problems by extending the vanilla
NL to an iterative version, called INL. Our INL paradigm
employs a memory bank to progressively update the com-
plementary label until it covers most negative classes and
remains one as the positive one. By employing the INL
paradigm, our model can produce more confident classifi-
cation results.

3. Methodology
3.1. Overview

Problem Formulation. Like the standard SSL problems,
we assume that the training set of safe SSL contains two
subsets: a labeled set Dl =

{(
xl
i, y

l
i

)}N

i=1
with N samples

and an unlabeled dataset Du = {(xu
i )}

M
i=1 with M sam-

ples, and N ≪ M . Here, xl
i or xu

i represents the input
image, yli ∈ {1, 2, · · ·K} denotes its corresponding label,
and K is the number of seen classes. Notably, the safe SSL
setting indicates that in the unlabeled set, besides xu

i be-
longing to the K seen classes, or called ID data, there may
be xu

i that goes beyond the seen classes, called OOD data.
The OOD data lead to a class distribution mismatch with
ID data, which will further harm the performance of stan-
dard SSL methods. Our framework is proposed to ensure
the safety and performance of the target classification task.
Framework Overview. As Figure 3 shows, our framework
mainly contains two stages. The first stage aims to pre-train
a prototype network on both labeled and unlabeled data, en-
abling the network to generate accurate prototypes of K
seen classes (Section 3.2). Then, we employ a distance-
based function to distinguish the OOD data from the ID
data, and model the prototype of all OOD data, thus turn-
ing the K-way classification to the (K+1)-way classifica-
tion (Section 3.3). By regarding the prototype of OOD data
as new class peer to seen classes, we solve the safe SSL
problem in a simpler close-set way in the second stage by
utilizing the common SSL techniques (pseudo labeling and
consistency regularization) (Section 3.4). To cope with the
erroneously assigned pseudo labels, we propose an iterative
negative learning (INL) paradigm to relieve the incorrect
guidance and improve the classification performance (Sec-
tion 3.5).

3.2. Prototype Network Pre-training

In our framework, we adopt a prototype network [31]
for the classification task by generating a set of prototypes
C = c1, · · · , cK as the anchors of seen classes. A good pro-
totype network contributes to generating accurate seen class
prototypes, or ID prototypes, which can lay solid founda-

tions for the following OOD data identification. To achieve
this, we pre-train the prototype network on both Dl and Du

to improve its ability of feature representation.
Learning from Labeled Data. In each training iteration,
we can first acquire the ID prototype of class k (k =
1, . . . ,K) based on the labeled set Dl :

ck =
1

|Dk|
∑

(xi,yi)∈Dk

fθ(x
l
i), (1)

where Dk denotes the set of samples belonging to class k,
fθ is the prototype network parameterized by θ. The proto-
type ck is actually the average of embedding features fθ(xl

i)
belonging to class k. With these prototypes, we can obtain a
K-dimensional vector that measures the similarity between
fθ(x

l
i) and the prototype set C:

dli =
(
fθ(x

l
i) · c1, · · · , fθ(xl

i) · cK
)T

, (2)

where “·” denotes the inner product. Finally, the probability
distribution pli of xl

i regarding the K seen classes can be de-
rived by applying a softmax function to the similarity vector
dli. To train the model, we use a standard cross-entropy loss
on pli and its corresponding label yli as follows:

Lce = − 1

bl

bl∑
i=1

ln (pli
[
yli
]
), (3)

where bl denotes the number of labeled data in a mini-batch,
and pli [k] represents the k-th element in pli.
Learning from Unlabeled Data. To fully leverage the
unlabeled data to enhance the representation capacity of
the prototype network, we introduce an auxiliary self-
supervised rotation prediction task with all unlabeled data.
Specifically, given an unlabeled sample xu

i , we rotate it
by 0°, 90°, 180°, 270°, respectively, denoted as xu

i,j , j ∈
1, 2, 3, 4. Through the prototype network fθ, we can ob-
tain the embedding feature fθ(x

u
i,j). Then the embed-

ding feature is further sent to a 4-way rotation classifi-
cation head hφ parameterized by φ, which consists of a
liner layer and a softmax layer, to produce the prediction
qui,j = hφ(fθ(x

u
i,j)). Accordingly, we additionally add a

rotation prediction loss in the pre-training stage:

Lrot = − 1

4bu

bu∑
i=1

4∑
j=1

ln
(
qui,j [j]

)
, (4)

where bu denotes the number of unlabeled data in a mini-
batch. We use the Lce and Lrot to optimize our model in
stage 1.
Prototype Update. At the first training iteration, all the
prototypes are initialized randomly. At the end of each
iteration, we update all the ID prototypes based on the
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Figure 3. The overview of our framework, consisting of two stages. Stage I aims to pre-train the prototype network with labeled and
unlabeled data by a cross-entropy loss Lce and a rotation prediction loss Lrot, respectively, then filter out the OOD data and model their
prototype. Stage II shows the semi-supervised classification task on unlabeled data in a close-set way. The training losses include a
consistency loss Lc, a positive learning loss Lp, and a negative learning loss Ln. The loss on labeled data is omitted for simplicity.

trained prototype network by re-calculating them accord-
ing to Equation 1. As the training goes, the accuracy of the
prototypes will get improved, and reach a satisfying level
when pre-training is over.

3.3. OOD Prototype Generation

After the pre-training, we have obtained a powerful pro-
totype network and an ID prototype set C with regard to
seen classes. Based on this, we can distinguish all the OOD
data from the ID data in the unlabeled set. The core idea
is to use a distance-based function to filter out those data
far away from all the ID prototypes. Specifically, for each
unlabeled sample xu

i , we calculate its distance from all ID
prototypes as follows:

dui = (∥fθ (xu
i )− c1∥2, · · · , ∥fθ (x

u
i )− cK∥2)

T
. (5)

Then we classify the xu
i as ID or OOD data based on the

minimal value in its distance vector dui :

xu
i ∈

{
ID data, min(dui ) ≤ λ

OOD data, min(dui ) > λ
, (6)

where λ is a threshold for OOD data filtering, which is de-
termined by the OTSU algorithm [26]. For all the filtered

OOD data, we can calculate their OOD prototype co as
Equation 1 does. Thus, we now have K ID prototypes and
a peer OOD prototype. The prototype set C can be updated
by adding co, namely C = C ∪ {co}, where |C| = K+1.
In this way, we successfully turn the K-way classification
task on the open-set to the (K+1)-way classification task
on the close-set. Correspondingly, for any input xi, we can
attain its probability distribution pi over seen and unseen
classes by computing the similarity between its embedding
feature and the ID prototypes along with the OOD proto-
type, which just needs a small adjustment to Equation 2 by
adding a term of fθ(xi) · co.

3.4. Close-set Semi-supervised Classification

Since we have K ID prototypes and an OOD prototype,
we can perform (K+1)-way classification like solving a
standard SSL problem. For the labeled data, we also em-
ploy the entropy loss of Equation 3 to optimize our frame-
work. For the unlabeled data, inspired by FixMatch [32],
we combine consistency regularization and pseudo-labeling
to make full use of them. Particularly, for an input unlabeled
sample xu

i , we apply weak and strong data augmentations
to get its two augmented versions xw

i and xs
i . Through the
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prototype network and the softmax function, we can obtain
two corresponding probability distributions pwi and psi .
Consistency Regularization. The consistency regular-
ization approach assumes that the predictions of a sam-
ple should remain consistent after different perturbations.
Therefore, we impose a consistency loss on pwi and psi to
encourage them to be similar via KL divergence, which can
be defined as follows:

Lc =
1

bu

bu∑
i=1

KL(pwi , p
s
i ). (7)

Pseudo-Labeling. Meanwhile, we regard the probability
pwi from weak augmentation as pseudo label ŷpi for xu

i .
Considering the possible wrongly assigned pseudo labels,
we propose to split the unlabeled data into high-confidence
(HC) and low-confidence (LC) regions based on the maxi-
mum value in its pseudo label. For the HC data, we send
them to positive learning, where pseudo labels are used to
compute a positive loss with pSi :

Lp = − 1

bp

bp∑
i=1

1 (pwi [m] > τ1) ln
(
pSi [ŷpi ]

)
, (8)

where b denotes the number of HC data in a mini-batch, m
is the index of the largest element in ŷpi , τ1 is a threshold
to divide HF and LF data, and 1(·) is an indication func-
tion (equaling 1 if the condition in the bracket is satisfied,
otherwise 0).

As for the LF data with pwi [m] ≤ τ1, the network is
prone to assign wrong pseudo labels. To mitigate the accu-
mulation of incorrect information provided by the erroneous
pseudo labels during training, we resort to negative learning
(NL) [16] and propose an iterative negative learning (INL)
paradigm, which will be introduced in the next subsection
in detail.

3.5. Iterative Negative Learning

Conventional NL [16, 37] believes that although a net-
work cannot confidently tell which class an LF data belongs
to, it can learn knowledge from the class the data does not
belong to, or called negative class. Nevertheless, conven-
tional NL only selects one negative class as the comple-
mentary label, which only provides limited information for
learning. In addition, conventional NL tends to produce wa-
vering complementary labels, hindering the stable training
of the network. To relieve these problems, we improve NL
to an iterative version, called INL. Different from NL, INL
maintains a memory bank M with the size of M × (K+1)
to save the historical complementary labels {ŷci } for all the
LF data after each iteration. Based on the historical com-
plementary label, we can iteratively update it to cover more
negative classes in the next iteration. With all the more

comprehensive complementary labels, our framework can
be enhanced to classify more confidently.
Iterative Complementary Labels. The complementary la-
bel ŷci in INL is updated in an iterative way. Specifically, in
an iteration, given the probability distribution pwi from the
sample xw

i , we pick the lowest probability score and update
the ŷci in Mi (i = 1, . . . ,M) as follows:

ŷci [l] = Mi [l] =

{
1, pwi [l] ≤ τ2

0, pwi [l] > τ2
, (9)

where l = argmin (pwi ) denotes the index of class with the
lowest probability score, and τ2 is the threshold to decide
whether the class in ŷci could be regarded as a negative class
confidently. Once the complementary label ŷci is updated,
we save it in Mi and use it to optimize our framework via a
negative learning loss. Then, the probability distribution pwi
can be further calibrated in the next iteration. Accordingly,
the complementary label ŷci is iteratively updated by includ-
ing a new negative class. Please note that, during the itera-
tive process, if the highest probability score is over τ1, the
pwi will be utilized for positive learning as Equation 8 does.
If the number of all negative classes reaches K, i.e., only
one class remains uncertain, the iterative process will stop.
We summarize this iterative process in Algorithm 1. Finally,
the completely updated complementary label ŷci serves for
the negative learning loss in the following network training.
Negative Learning. Considering that the complementary
label indicates the negative classes that a sample should not
belong to, we encourage the prediction probability scores
on these negative classes to approach 0. Consequently, we
can perform the negative learning by the following negative
learning loss:

Ln = − 1

bn

bn∑
i=1

K+1∑
j=1

ŷci [j] ln (1− pwi [j]), (10)

where bn denotes the number of LF data in a mini-batch.
In summary, our framework is trained in stage two by a

total loss as below:

L2 = Lce + Ln + α (Lp + Lc) , (11)

where α is a coefficient to balance these terms.

4. Experiments
4.1. Datasets

To validate the effectiveness of our proposed frame-
work, we carry out experiments on the same public datasets
as [10] for semi-supervised image classification, including
MNIST [20], CIFAR-10 [17], CIFAR-100 [17] and Tiny-
ImageNet [7]. To achieve the safe SSL setting, we select
various ratios of unlabeled data from seen-classes, namely
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Algorithm 1: Iterative Generation of Complemen-
tary Label

Input: The probability distribution pwi ∈ RK+1 of
sample xu

i ; the corresponding memory bank
Mi ∈ RK+1.

Parameters: The number of negative classes n−;
the thresholds τ1 and τ2.

Initialize: n−=0; τ1=0.95; τ2=0.05; a
complementary label ŷci ∈ RK+1

initialized by 0.
while n− < K do

Obtain the index l = argmin (pwi ) and
Mi[l] = 0;

if max (pwi ) > τ1 then
compute the positive learning loss Lp based

on Equation 8;
break;

end
else

if pwi [l] ≤ τ2 then
update ŷci [l]=1 and save it in Mi[l];
n−++;

end
compute the negative learning loss Ln based

on Equation 10;
end

end
Output: The updated complementary label ŷci .

mismatch ratio. For instance, when the mismatch ratio is
0.5, it means that half of the unlabeled data is from seen
classes and the remaining is from unseen classes. The de-
tailed description of datasets can be found in the Supple-
mentary Material.

4.2. Implementation details

When training with MNIST, we employ a two-layer
CNN as the backbone network using stochastic gradient
descent (SGD) with a learning rate of 1e−3 [8]. The net-
work is trained for 500 epochs with a batch size of 100. As
for CIFAR-10, CIFAR-100, and TinyImageNet, the Wide-
ResNet28-2 [42] is used as the backbone network. We use
SGD to train the network with an initial learning rate of 0.03
which is adjusted via the cosine decay strategy, and a mo-
mentum of 0.9. The network in both stages is trained for
1024 epochs with a batch size of 64. The hyperparameter α
in Equation 11 is dynamically updated as in [14]. In addi-
tion, we also investigate the influence of two thresholds τ1,
τ2 in the Supplementary Material.

4.3. Comparison Methods

We compare our method with following state-of-the-art
(SOTA) SSL methods: Pi-Model [29], Pseudo-Labeling
(PL) [21], Temporal Ensembling [19], Mean Teacher [33],
Virtual Adversarial Training (VAT) [24], FixMatch [32],
Deep Safe Semi-Supervised Learning (DS3L) [8], Uncer-
tainty Aware Self-Distillation (UASD) [4], Multi-Task Cur-
riculum (MTC) [41], Curriculum Labeling (CL) [3], Safe
Parameter Learning (SPL) [11], OpenMatch [28], Trash to
Treasure (T2T) [14], and SAFE-STUDENT [10]. All the
methods are compared on the testing set containing only ID
samples. Note that, DS3L, UASD, MTC, CL, SPL, Open-
Match, T2T and SAFE-STUDENT are specially tailored for
solving the safe SSL problem.

4.4. Experimental Results

4.4.1 Comparison with SOTA Methods

Quantitative Analysis. Table 1 reports the results more
comprehensively on all datasets with 0.3 or 0.6 mismatch
ratio. Besides the comparison on MNIST and CIFAR-10,
particularly, we list the quantitative comparison results on
two larger datasets CIFAR-100 and TinyImageNet in the
third and fourth columns. As can be seen, when the mis-
match ratio is 0.3, our method achieves 72.5% accuracy
in average on CIFAR-100, about 4.1% higher than SAFE-
STUDENT and 2.7% higher than T2T which performs best
in all other methods. Similarly, for the harder TinyIma-
geNet dataset, our method can still outperform other safe
SSL methods by at least 2.0% average accuracy even with a
high-level ratio of 0.6. All these comparison results demon-
strate the effectiveness and robustness of our method in re-
solving the safe SSL problem under open-set assumption.
We also provide qualitative analysis in the Supplementary
Material.

4.4.2 Ablation Study

We validate the effectiveness of the proposed loss functions,
i.e., Lc, Lp, Ln, by ablating them and measuring the per-
formance on CIFAR-100 with mismatch ratio of 0.3. The
results are reported in Table 3. By comparing the first and
second rows, we can know the Lc loss brings about 5.3%
improvement. When integrating the Lp loss in the third row
or the Ln loss in the fourth row, the performance gets fur-
ther improved by 1.6% and 1.4%, respectively. With all the
losses applied, our method can obtain the best accuracy of
72.5%. Through the ablation study, we can conclude that
each proposed loss has a positive effect on our method.

4.4.3 Identification of Unseen-Class

Since the unseen-class of OOD samples plays an important
role in our method, we further evaluate the unseen-class
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Table 1. Seen-class classification accuracy (%) of different methods on the four datasets.

Method MNIST CIFAR-10 CIFAR-100 TinyImagenet
ratio=0.3 ratio=0.6 ratio=0.3 ratio=0.6 ratio=0.3 ratio=0.6 ratio=0.3 ratio=0.6

Pi-Model [29] 92.4±0.6 86.6±0.5 75.7±0.7 74.5±1.0 59.4±0.3 57.9±0.3 36.9±0.4 36.4±0.5
PL [21] 90.0±0.7 86.0±0.6 75.8±0.8 74.6±0.7 60.2±0.3 57.5±0.6 36.6±0.6 35.8±0.4
VAT [24] 94.5±0.3 90.4±0.3 76.9±0.6 75.0±0.5 61.8±0.4 59.6±0.6 36.7±0.5 36.3±0.6
FixMatch [32] - - 81.5±0.2 80.9±0.3 65.9±0.3 65.2±0.3 - -

DS3L [8] 96.8±0.3 94.5±0.4 78.1±0.4 76.9±0.5 - - - -
UASD [4] 96.2±0.6 94.3±0.8 77.6±0.4 76.0±0.4 61.8±0.4 58.4±0.5 37.1±0.7 36.9±0.6
MTC [41] 93.7±0.5 88.5±0.3 85.5±0.6 81.7±0.5 63.1±0.6 61.1±0.3 37.0±0.5 36.6±0.4
CL [3] 96.9±0.1 95.6±0.4 83.2±0.4 82.1±0.4 63.6±0.4 61.5±0.5 37.3±0.7 36.7±0.8
CL+SPL [10] - - 87.8±0.3 84.1±0.5 65.9±0.3 65.5±0.4 38.6±0.5 37.7±0.5
OpenMatch [28] 97.8±0.2 96.0±0.2 88.2±0.2 85.5±0.3 68.7±0.1 68.4±0.2 37.9±0.4 37.0±0.3
SAFE-STUDENT [10] 98.3±0.3 96.5±0.1 85.7±0.3 83.8±0.1 68.4±0.2 68.2±0.1 37.7±0.3 37.1±0.3
T2T [14] 98.4±0.1 96.2±0.2 89.0±0.4 86.9±0.2 69.8±0.2 68.0±0.2 39.1±0.3 37.3±0.3

Our-Method 98.7±0.2 96.9±0.1 91.4±0.3 89.1±0.1 72.5±0.2 70.4±0.1 40.8±0.3 39.9±0.3

Method ratio=0 ratio=0.1 ratio=0.2 ratio=0.3 ratio=0.4 ratio=0.5 ratio=0.6 Avg

Probabilities 84.3± 0.9 84.3± 0.9 84.3± 0.9 84.3± 0.9 84.3± 0.9 84.3± 0.9 84.3± 0.9 84.3
DS3L 95.9± 0.8 93.1± 0.4 91.7± 0.2 90.6± 0.1 90.5± 0.5 89.1± 0.2 85.1± 0.8 90.9
SAFE-STUDENT 98.1± 0.1 97.3± 0.2 96.5± 0.1 96.0± 0.9 94.6± 0.9 93.5± 0.3 91.4± 0.2 95.3
Proposed 98.4± 0.1 97.8± 0.1 97.0± 0.2 96.5± 0.3 95.2± 0.5 94.0± 0.2 92.1± 0.3 95.9
Proposed(ID&OOD) 98.7±0.3 98.0±0.2 97.5±0.1 97.0±0.2 96.1±0.4 94.8±0.2 93.0±0.2 96.4

Table 2. AUC (%) for unseen-class identification on MNIST.

Method CIFAR-100

our method w/o Lc, Lp and Ln 64.7
our method w/o Lp,Ln 70.0
our method w/o Ln 71.6
our method w/o Lp 71.4

our method 72.5
Table 3. Seen-class classification accuracy (%) of ablation study
on CIFAR-100 with mismatch ratio of 0.3.

identification ability of our method by comparing it with
probability method [12], DS3L [8], SAFE-STUDENT [10]
on MNIST in this experiment. Similar to [10], we also use
AUC to evaluate the identification ability, in which we re-
gard the unseen class data as a negative class and the others
as a positive one. Table 2 lists the comparison results under
different mismatch ratios. It can be found that the recent
DS3L and SAFE-STUDENT lag behind our method by 5%
and 0.6% accuracy, respectively. To improve the identifica-
tion accuracy, we further make some attempts to modulate
the way of splitting ID and OOD samples. We denote the
improved version as proposed (ID&OOD). It clearly rises
the average accuracy from 95.9% to 96.4%, proving the ex-
cellent ability of our method.

Figure 4. Visualization of feature distributions regarding different
methods on CIFAR-10 via t-SNE. Black dots denote the OOD fea-
tures, grey dots denote the unlabeled data features, and other col-
ored dots denote the ID features.

4.4.4 Insight of Feature Distribution

To better support the effectiveness of our idea of turning
N-way classification to (K+1)-way classification, we visu-
alize the feature distributions of our method with (K+1)-
way classification (denoted as Ours (K+1)), our method
with K-way classification (denoted as Ours (K)), DS3L [8],
and SAFE-STUDENT [10] by t-SNE [34] plotting. All the
models are trained on CIFAR-10 (Fewer classes for bet-
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ter presentation). As shown in Figure 4, although SAFE-
STUDENT clusters the features of different classes in a
more compact way than DS3L, our method can perform
better by reducing the intra-class distance and increasing
the inter-class distance. Without treating the OOD data as
an individual class, the OOD features have already shown
a tendency to gather. Once when we explicitly build the
OOD prototype, all the classes, including the unseen-class
marked in black, can be better distinguished, demonstrating
the advancement of our powerful idea.

5. Conclusion
In this paper, we rethink the safe SSL problem from a

novel aspect. Concretely, based on the experimental phe-
nomenon that OOD data appear to cluster in the feature
space, we propose a prototype-based framework to explic-
itly model the prototype of all OOD data. By treating
the OOD prototype as equivalent to other ID prototypes,
we transform the safe semi-supervised classification prob-
lem from open-set to close-set. Therefore, we can solve
safe SSL using standard SSL techniques, including consis-
tency regularization and pseudo-labeling. For the pseudo-
labeling, we develop an INL paradigm to make full use of
low-confidence pseudo labels by excavating more knowl-
edge on wider classes. Extensive experiments on popular
benchmarks demonstrate the effectiveness and superiority
of our method.
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