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Abstract

Siamese network has been a de facto benchmark
framework for 3D LiDAR object tracking with a shared-
parametric encoder extracting features from template and
search region, respectively. This paradigm relies heav-
ily on an additional matching network to model the cross-
correlation/similarity of the template and search region. In
this paper, we forsake the conventional Siamese paradigm
and propose a novel single-branch framework, SyncTrack,
synchronizing the feature extracting and matching to avoid
forwarding encoder twice for template and search region as
well as introducing extra parameters of matching network.
The synchronization mechanism is based on the dynamic
affinity of the Transformer, and an in-depth analysis of the
relevance is provided theoretically. Moreover, based on
the synchronization, we introduce a novel Attentive Points-
Sampling strategy into the Transformer layers (APST), re-
placing the random/Farthest Points Sampling (FPS) method
with sampling under the supervision of attentive relations
between the template and search region. It implies connect-
ing point-wise sampling with the feature learning, benefi-
cial to aggregating more distinctive and geometric features
for tracking with sparse points. Extensive experiments on
two benchmark datasets (KITTI and NuScenes) show that
SyncTrack achieves state-of-the-art performance in real-
time tracking.

1. Introduction
With recent advances in autonomous driving, 3D vision

tasks based on LiDAR are becoming increasingly popular
in the visual community. Among these tasks, 3D LiDAR
single object tracking (SOT) aims to track a specific target
object in a 3D video with the knowledge of 3D bounding
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Figure 1. The comparison of (a) Siamese network based trackers,
(b) previous single-branch, two-stage framework M2Track [51]
with (c) our SyncTrack, which is a single-branch and single-stage
framework.

box in the initial frame. This task meets numerous chal-
lenges, such as LiDAR point cloud sparsity, occlusions, and
fast motions.

Most existing methods [32, 50, 19, 12, 33, 52, 20, 9, 39]
of 3D SOT mainly adopt a Siamese-like backbone and in-
corporate an additional matching network to cope with the
tracking challenges as shown in Fig. 1(a). Trackers based
on the Siamese-like backbone separate feature extraction
of template and search region, forwarding the two kinds of
features with shared model parameters, respectively. Sub-
sequently, an extra matching network is introduced to fuse
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the extracted template and search region features to model
the correlation or similarity between them. However, such a
paradigm restricts the feature interaction to a post-matching
network, correlating the template and search region insuf-
ficiently with merely the high-level extracted features. In
other words, the matching process posterior to the encoder
is incapable of modeling the relations of multi-scale fea-
tures intra-backbone. Moreover, a standalone matching net-
work results in extra model parameters and computational
overheads, let alone the double forwarding process of the
Siamese-backbone to extract the template and search re-
gion features. M2Track [51] proposed a motion-centric
paradigm to replace the Siamese-like structure, constructing
a spatial-temporal point cloud to predict the motion. How-
ever, they still rely heavily on an additional motion transfor-
mation network, which requires extra training input, to inte-
grate the extracted template features into the search region,
and another two-stage refinement network is leveraged to
ensure the performance as illustrated in Fig. 1(b). Based on
aforementioned problems, we ask the question: Can feature
extracting and matching be conducted simultaneously in a
simple way?

The answer is Yes and the solution is implied in the dy-
namic global reasoning property of Transformer [35, 7,
10]. Specifically, the affinity matrix of all tokens can be
constructed dynamically via continuous computation of the
key and query vectors in the attention mechanism. The spa-
tial context is aggregated using affinity to attend features.
Intuitively, this affinity matrix can intrinsically serve as the
matching matrix for intermediate feature interactions be-
tween the template and search region if we merge them into
one input of the Transformer layers. Therefore, we pro-
pose a single-branch and single-stage framework equipped
with a Transformer-based backbone instead of the conven-
tional Siamese-like PointNet++ [31] backbone, as shown
in Fig 1(c). The framework is dubbed as SyncTrack, as
the Transformer backbone synchronizes the feature extract-
ing and matching process. The SyncTrack is composed of
a simple backbone and prediction head, omitting the com-
plex matching network design and motion state estimation,
depending merely on point-wise features.

However, 3D point clouds have unique properties such
as sparsity [54, 24], density variance, and implicit geomet-
ric features in data locality [29]. For example, 51% samples
of KITTI [11] Car category have less than 100 points [19].
These problems are further aggravated when point clouds
are grouped and down-sampled to formulate multi-scale
point-wise feature maps. The phenomena stresses the vital-
ity of point clouds sampling, aiming to improve the point-
wise perception efficiency with limited points. PTTR [52]
proposed to sample the input point clouds before the back-
bone, utilizing the L2 distance as the similarity metric for
sampling. However, as down-sampling layer by layer is

essential in tracking backbone for multi-scale feature fu-
sion to strengthen representation, it is reasonable to con-
sider the sampling strategy in the backbone. Therefore, we
propose the attentive sampling strategy based on the atten-
tion map between the template and search region, and equip
each Transformer layer with our sampling module as shown
in Fig. 2(b). We name the Transformer containing Atten-
tive Points-Sampling as APST. Specifically, the attentive
response from template tokens to search region tokens is
considered, as the positively respond tokens are more likely
to be in the foreground and should be preserved for feature
extracting. By contrast, as Fig. 3 shows, random sampling
easily falls into the perceptive confusion as selected points
hardly contain geometric features due to randomness.

The main contributions of our paper can be summarized
as follows:

• We introduce a single-branch and single-stage frame-
work for real-time 3D LiDAR SOT dubbed SyncTrack,
without Siamese-like forward propagation and a stan-
dalone matching network. We ingeniously leverage
the dynamic affinity characteristic of the self-attention
mechanism to synchronize the feature extracting and
matching. A detailed analysis is provided to explain
the synchronizing mechanism.

• We propose a novel APST to build the backbone,
replacing the random/FPS1 down-sampling of point
clouds with attentive sampling to preserve more target-
relevant points, and thus improving the perceptive ca-
pability of feature extracting.

• Extensive results show that our method has achieved
new state-of-the-art performance on the KITTI and
NuScenes datasets in real-time tracking, up to 2.8%
and 1.4% on mean results with a high-speed of around
45 fps. Besides, SyncTrack exhibits good scalability
in both width and depth.

2. Related Works
2.1. 2D Visual Tracking

Advances in 2D video [53, 27, 26] and object tracking
approaches [30, 16, 36, 23, 34, 48] stimulate the develop-
ment of the 3D tracking, and the methods are evolving all
the time. Early 2D SOT methods mainly focus on the clas-
sifier design like structured output SVM [36, 14], correla-
tion filter [17, 25]. With the prevalence of deep learning,
end-to-end trainable trackers emerged in the visual commu-
nity. The Siamese-like structure [6, 18, 15, 23, 46, 42, 28]
based methods have been popular in the tracking field and

1In this paper, we use FPS to refer to Farthest Points Sampling and fps
to denote frames per second.
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Figure 2. (a). The overall framework of SyncTrack and specific illustration of the single-branch backbone, the template and search region
input are concatenated for feature extraction and matching synchronously. (b). The structure of the Attentive Points-Sampling Transformer
(APST), which samples search region points after multi-head attention.

have numerous variants. SiamFC [1] is a pioneering work
integrating feature correlation into a fully convolutional
Siamese network for visual tracking. Subsequently, im-
provements like introducing detection components such as
region proposal network [23, 22, 8], discriminating fore and
back-ground [49], anchor-free detecting [13] etc.. Recently,
vision transformers have been introduced into 2D SOT
[4, 38, 43, 41] to exploit the long-range modeling of the
attention mechanism to fuse the features effectively. More-
over, the one-stream network trackers based on transform-
ers are proposed in 2D tracking. The OSTrack [44] pro-
poses joint feature learning and relation modeling, mask-
ing a proportion of image patches to save computational
overheads. SimTrack [3] concatenates the template and
search input, improving the patch embedding method with
a Foveal window strategy. Our work draws inspiration
from the aforementioned trend in 2D vision. However, it
is specifically tailored to address the challenges of the 3D
Single Object Tracking (SOT) problem, taking into account
the unique characteristics of point clouds. Furthermore, we
analyze the success of the transformer-based single-branch
backbone, attributing to the dynamic affinity of the attention
mechanism, which enables the synchronization of feature
extraction and matching processes.

2.2. 3D Visual Tracking

In this paper, we only discuss LiDAR-based 3D object
tracking. Till to now, almost all the 3D tracking meth-
ods [12, 32, 9, 45, 5, 33, 52, 50, 19, 20, 37] are based on
the Siamese structure. The pioneering work in this field
is the SC3D [12], which initially defines the task. SC3D
employs cosine similarity to measure the resemblance be-
tween template and search region features, and incorpo-
rates shape completion during training to enhance appear-
ance refinement. Trackers following SC3D make advance-
ments from two perspectives. Firstly, they enhance the
matching network [32, 50, 19, 52, 5, 39, 51]. For instance,
MLVSNet [39] uses the CBAM module [40] to enhance the
vote cluster features with both channel and spatial atten-
tion. STNet [20] employs cross- and self-attention modules
to enhance the interaction between the extracted template
and search region features, boosting their feature-level in-
tegration. M2Track introduces a motion-centric paradigm
and motion estimation module to correlate the template and
search features instead of appearance matching. All these
methods depend on a standalone module to match the fea-
tures. Secondly, the trackers [32, 9, 19, 39, 33] have at-
tempted to improve the prediction head part. P2B [32]
employs Hough Voting to predict the target location, and
[50, 33, 39] all follow the voting strategy to make predic-
tions. 3D-SiamRPN [9] uses an RPN head to predict the fi-
nal results. LTTR [9] and V2B [19] use center-based regres-
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sions to predict several object properties. However, few ef-
forts are made in exploring the encoder/backbone of track-
ers as PointNet++ [31] is the feature extractor by default.
In this study, we focus on the backbone design and incor-
porate the matching process directly into the backbone, sig-
nificantly streamlining the tracker network.

3. Method
In this section, we first define the 3D SOT task in

Sec. 3.1. Then, a detailed introduction of the single-branch
framework is included in the Sec. 3.2. Based on the single-
branch framework, how the feature extracting and match-
ing are synchronized is elaborated in (Sec. 3.3). Moreover,
we propose the Attentive Points-Sampling Transformer to
build the single-branch backbone and sampling search re-
gion tokens with a strategy of attentive sampling, as shown
in Sec. 3.4. The decoder head and losses are described in
Sec. 3.5.

3.1. Problem Definition

In the configuration of 3D LiDAR single object detec-
tion (SOT) task, the 3D bounding box (BBox) is defined
as (x, y, z, w, l, h, θ) ∈ R7 , where the (x, y, z) represents
the coordinate center of the BBox and (w, l, h), θ stand for
the BBox size and heading angle (the rotation around the
up-axis) respectively. Generally, the BBox size is assumed
to be fixed by default even when the target object is non-
rigid, thus minimizing the dimensions of BBox from R7 to
R4. Given a sequence of temporally-connected point clouds
{Pi}Ti=1 (T is the number of points in each frame) and a
initial BBox B1 of the target, the goal of SOT is to localize
the target BBoxes {Bi}Ti=2 in all frames online. Following
the previous manner, a template point cloud Pt = {pti}

Nt
i=1

and a search region Ps = {psi}
Ns
i=1 are generated, where Nt

and Ns are number of template and search region points.
The template P t is generated by cropping and centering the
target in the initial frame based on the initial BBox.

3.2. Single-Branch Structure

We propose to replace the conventional Siamese-like
backbone paradigm with a sole backbone, eliminating the
double forward process of Siamese structure. Therefore,
template and search region seeds are concatenated to do
forward propagation. The Transformers’ property of long-
range relation-modeling is the intrinsic merit to tackle the
concatenated template and search region seeds. Based on
that, we leverage the self-attention modules to build the
single-branch backbone as shown in Fig. 2(a). In our ap-
proach, we utilize a Query & Group module to sample the
template seeds, denoted as Pt ∈ RNt×C , using the FPS
method before jointly forwarding. This module also groups
the k-nearest points to aggregate features. However, when

it comes to the search region point cloud, represented as
Ps ∈ RNs×C , we solely employ the Group module to ag-
gregate neighbor information without reducing the number
of search points. Subsequently, the template and search
seeds are concatenated, incorporating a joint parametric po-
sitional embedding for the localization of tokens. This pro-
cess is as follows:

T t =kNN(FPS(Pt)),Pt ∈ RN ′
t×C′

, N ′
t < Nt,

T s = kNN(Ps),Ps ∈ RNs×C′
,

T ts = [T t; T s] + pe, T ts ∈ R(Nt+Ns)×C′
.

(1)

Afterward, linear layers are leveraged to project the input
tokens into query, key, and value latent and the head-wise
joint attention map is calculated to model the intra- & inter-
relations of template and search tokens.

Qts,Kts, V ts = Wq(T ts),Wk(T ts),Wv(T ts),

Ats
m =Softmax

Qts
m(Kts

m)⊤√
C ′/M

.
(2)

Based on the joint head-wise attention map Ats
m of template

and search tokens, the features extracted by multi-head at-
tention are:

T ′ts = [Ats
1 V ts

1 ,Ats
2 V ts

2 , . . . ,Ats
MV ts

M ]W + T ts, (3)

where M is the number of the attention heads and W is the
weight of a MLP.

3.3. Synchronize Feature Extracting and Matching

We illustrate how the single-branch structure can syn-
chronize the process of feature extracting and matching
with a simple backbone. The formula of joint attention Ats

m

in Eq. 2 can be expanded as (σ represents Softmax opera-
tion):

[At
m;As

m] = σ
[Qt

m;Qs
m][Kt

m;Ks
m]⊤√

C ′/M

= [σ
Qt

m(Kt
m)⊤√

C ′/M
,σ

Qt
m(Ks

m)⊤√
C ′/M

;σ
Qs

m(Kt
m)⊤√

C ′/M
,σ

Qs
m(Ks

m)⊤√
C ′/M

].

(4)
The new extracted search region features can be obtained
based on Eq 4 as:

T ′s
m = σ

Qs
m(Kt

m)⊤√
C ′/M

V t
m + σ

Qs
m(Ks

m)⊤√
C ′/M

V s
m,

[V t
m;V s

m] = V ts
m ,

(5)

depending on the projected features [V t
m, V s

m] of both the
template and search region from last layer. The attention
queried from search region to template, σQs

m(Kt
m)⊤√

C′/M
, is the
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Figure 3. Comparisons of random sampling with our atten-
tive sampling in point-wise down-sampling. We find that our
attentive sampling approach excels in selecting more representa-
tive points, including those that contribute to the formation of the
head, arms, and legs, which contain distinctive geometric features.
In contrast, random sampling include more points that are far away
from the target (we have removed such points for better visualiza-
tion).

matching matrix that guides to aggregate highly-relevant
template features. Moreover, the matching matrix is dy-
namic, which is determined by the changing query and key
latent of search and template features as:

σ
Qs

m(Kt
m)⊤√

C ′/M
= σ

W s
q,mT s

m(T t
m)⊤(W t

k,m)⊤√
C ′/M

,

i.e. σ
Qs

m(Kt
m)⊤√

C ′/M
∝ [T s

m; T t
m].

(6)

To conclude, the synchronization attributes to the dynamic
mechanism of matching matrix, continuously adapting the
matching relations according to the extracted features of
template and search region.
Comparisons with Siamese Network. Previous Siamese-
like trackers can be summarized as the paradigm of Extract-
ing then Matching. If we name the feature extracting and
matching as ϕ and δ, then the objective of this paradigm
can be concluded as max(δ(ϕ(Pt), ϕ(Ps)) for simplicity.
It means the model training is to shorten the distances be-
tween correlated parts of the template and search region
based on the extracted features from the backbone. How-
ever, compared to our approach, this matching mechanism
is relatively static since it occurs only after feature extrac-
tion, resulting in inadequate modeling of inter-backbone re-
lations. On the other hand, our single-branch framework
facilitates dynamic interaction between the search region
seeds and the template across all layers of the backbone.
This allows for comprehensive learning of relations, encom-
passing both the local representation from early layers and
the global representation from later ones.

3.4. Attentive Points-Sampling Transformer

Based on the synchronizing mechanism of feature ex-
tracting and matching, we propose to replace the Point-wise
Transformer [47] with a novel Attentive Points-Sampling
Transformer (APST). APST is proposed based on the ob-
servation that backbones utilized in previous 3D LiDAR
trackers always adopt a non-parametric strategy of down-
sampling the search region features/tokens with farthest
point sampling (FPS) or randomly sampling to reduce the
points as introduced in PointNet++ [31]. Nevertheless,
this non-parametric sampling method lacks learnability and
controllability since no parameters associated with the sam-
pling process are updated during model training. Conse-
quently, the final performance is compromised due to the
significant influence of the points-center in LiDAR, which
determines the effectiveness of extracting features around
the foreground, as shown in Fig. 3.

Therefore, we introduce the APST, which involves the
selection of points based on attentive relations between the
tokens of the template and search region as illustrated in
sub-figure (b) of Fig. 2. The attentive response of template
tokens reacting to search region tokens is considered as pos-
itively responding search tokens are more likely to be in the
foreground. In that case, we segment the attention map and
separate the At→s

m = σ
Qt

m(Ks
m)⊤√

C′/M
from the Eq. 4, averaging

along the dimension of template-tokens attention among all
transformer heads to acquire the response scores. To ensure
the maximum response of search tokens to template ones, a
group of search region indexes, named Ωs, is dynamically
updated as:

Ω∗
s = argmax

Ωs

1

Nt

1

M

Nt∑
t=0

M∑
m=0

Qt
m√

C ′/M
(Ks

m)⊤
∣∣∣∣
s∈Ωs

,

(7)
Based on the optimal solution Ω∗

s , the search region tokens
are sampled to decrease the number of tokens after multi-
head self-attention and concatenate with template ones.
Note that the template tokens are sampled with the FPS
method as introduced in Sec. 3.2, and only the search region
tokens are sampled with the attentive sampling method.

The dynamic-affinity property of the Transformer sug-
gests that the attention map is influenced by the latent to-
kens projected through learnable linear layers. Hence, it
is reasonable to assert that sampling tokens guided by the
attention map is linked to model learning, as the attention
map is generated based on updated parameters. As a re-
sult, this type of token/point sampling proves advantageous
in providing prior knowledge for centroid selection and en-
hancing the efficient aggregation of representational infor-
mation, as shown in Fig. 3.
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3.5. Decoder and Losses

With the encoded point-wise features of various scales,
a multi-scale feature fusion module is adopted to fuse these
features and output the features with the same origin input
size, feeding into the decoder part for final predictions. Fol-
lowing the V2B [19], the features are voxelized as a vol-
umetric representation and 3D convolutions are utilized on
the encoded features. Afterward, the BEV feature maps are
acquired by pooling on the z-axis for regression. Focal loss
and L1 loss are leveraged for classification and BBox cen-
ter offset and rotation regression, respectively. A detailed
introduction is presented in the supplementary.

4. Experiments
4.1. Experiment Setups

Implementation Details. We set the number of input
points as Nt = 512 and Ns = 1024 for template and
search regions by randomly duplicating and discarding, re-
spectively. The encoder backbone is merely consisted of
three layers with Attentive Points-Sampling Transformers,
and the number of both template and search region points
output by each layer are 256, 128 and 64. Moreover, each
layer’s feature dimensions in the encoder are 32, 64 and
128, respectively, whereas the final features for the predic-
tion head are with 32 channels. Note that the heads for all
APST are 2 by default. In the voxelization process, the re-
gion [(xmin, xmax), (ymin, ymax), (zmin, zmax)] is defined
as [(-5.6,5.6),(-3.6,3.6),(-2.4,2.4)] to contain most target
points. The voxel size (vx, vy, vz) is set to (0.3,0.3,0.3).
For the detection head, four decomposed 3D (stride of
2,1,2,1 along the z-axis) and 2D convolution blocks (stride
of 2,1,1,2) are leveraged to strengthen the feature aggrega-
tion.
Training and Testing. We train the model for 40 epochs
with a batch size of 64. The Adam optimizer [21] is adopted
with the initial learning rate of 0.001 and reduced by 5 every
10 epochs(every 2 epochs for nuScenes). The classification
loss has a weight λcls of 1 and the regression loss has a
weight λreg of 1.
Evaluation Metrics. Following the previous methods [32,
50], we measure the Success and Precision of the tracker.
To be specific, Success is defined as the IoU between pre-
dicted boxes and the ground truth, and Precision measures
the AUC (Area Under Curve) of the distance between pre-
dicted and ground truth boxes within the range of [0,2] me-
ters.

4.2. Comparison with State-of-the-Art Trackers

Results on KITTI. KITTI [11] is one of the most popular
datasets used in mobile robotics and autonomous driving.
The tracking benchmark of KITTI consists of 21 training
sequences and 29 test sequences. Following the previous

methods [12, 51, 50], we split the training sequences into
train/val/test splits due to the inaccessibility of the testing
labels, scenes 0-16 for training, scenes 7-18 for validation
and scenes 19-20 for testing, respectively.

We compare the SyncTrack with other state-of-the-art
methods from the pioneering SC3D [12] to the most re-
cent siamese network STNet [20] and single branch net-
work M2Track [51], as shown in Table 1. We sepa-
rate the trackers into Siamese Network and Single Branch
Network categories to compare with our proposed Sync-
Track. Compared with siamese structured trackers, the
SyncTrack achieves the best results on rigid and non-rigid
object tracking, outperforming current tracking methods
based on siamese networks on most specific categories and
the overall mean results. STNet [20] is the state-of-the-
art siamese-based tracking method with self-attention and
cross-attention modules to match the template and search-
region features. Our SyncTrack outperforms the STNet by
a relatively large margin on Car, Van and Pedestrian cate-
gories under the evaluation of Success metric. Also, Sync-
Track surpasses the previous best Mean results by 2.8% and
1.8% on Success and Precision metrics, respectively.

We also compare the SyncTrack with the only current
single-branch tracker M2Track [51]. Our SyncTrack out-
performs M2Track by a large margin, up to 7.8% in Suc-
cess in the category of Car whereas the M2Track is better
in the category of Pedestrian. However, for the comprehen-
sive evaluation, the Mean performance of all frames, our
SyncTrack outperforms the M2Track by 1.2% on the Suc-
cess metric.
Results on nuScenes. The nuScenes dataset [2] contains
1000 driving scenes collected from Boston and Singapore
with a diverse and exciting set of driving maneuvers, traf-
fic situations, and unexpected behaviors. In the configura-
tions of LiDAR-based tracking methods, the train/val/test
sets make up 700/150/150 of the whole 1000 scenes, re-
spectively. Officially, the train set is evenly split into ’train
track’ and ’train detect’ to remedy overfitting. Following
[19], we train our model with “train track” split and test it
on the val set.

Note that nuScenes dataset only annotates keyframes
and provides official interpolated results for the remaining
frames, so there are two configurations for this dataset. The
first is from [50, 51] which trains and tests both only on
the keyframes. The second one is from [19, 20], which
trains and tests on all the frames. The results based on these
two configurations are different. We believe that the mo-
tion in key frames is substantial, which does not conform
to the practical applications. Therefore, we train and test
all the frames in this paper. We train the previous methods
on the nuScenes by ourselves using their official codes to
compare with our SyncTrack as many results are missing
or only reported by testing nuScenes test-split with a pre-
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Table 1. Sucess/Precision comparisons among our SyncTrack and the state-of-the-art methods on the KITTI datasets. Mean shows frame-
level averaging results. Bold and underline denote the best performance and the second-best performance, respectively. Improvements
over previous state-of-the-arts are shown in Italic and color.

Car (6424) Cyclist (308) Van (1248) Pedestrian (6088) Mean (14068)
Methods

Success Precision Success Precision Success Precision Success Precision Success Precision
Siamese Network

SC3D [12] 41.3 57.9 41.5 70.4 40.4 47.0 18.2 37.8 31.2 48.5
SC3D-RPN[45] 36.3 51.0 43.0 81.4 - - 17.9 47.8 - -

P2B [32] 56.2 72.8 32.1 44.7 40.8 48.4 28.7 49.6 42.4 60.0
MLVSNet [39] 56.0 74.0 34.3 44.5 52.0 61.4 34.1 61.1 45.7 66.6

3DSiamRPN [9] 58.2 76.2 36.1 49.0 45.6 52.8 35.2 56.2 46.6 64.9
LTTR [5] 65.0 77.1 66.2 89.9 35.8 45.6 33.2 56.8 48.7 65.8
PTT [33] 67.8 81.8 37.2 47.3 43.6 52.5 44.9 72.0 55.1 74.2
BAT [50] 60.5 77.7 33.7 45.4 52.4 67.0 42.1 70.1 51.2 72.8
V2B [19] 70.5 81.3 40.8 49.7 50.1 58.0 48.3 73.5 58.4 75.2

PTTR [52] 65.2 77.4 65.1 90.5 52.5 61.8 50.9 81.6 58.4 77.8
STNet [20] 72.1 84.0 73.5 93.7 58.0 70.6 49.9 77.2 61.3 80.1
SyncTrack 73.3 85.0 73.1 93.8 60.3 70.0 54.7 80.5 64.1 81.9

improvement +1.2 +1.0 -0.4 +0.1 +2.3 -0.6 +3.8 -1.1 +2.8 +1.8
Single Branch Network

M2Track [51] 65.5 80.8 73.2 93.5 53.8 70.7 61.5 88.2 62.9 83.4
SyncTrack 73.3 85.0 73.1 93.8 60.3 70.0 54.7 80.5 64.1 81.9

improvement +7.8 +4.2 -0.1 +0.3 +2.3 -0.7 -6.8 -7.7 +1.2 -1.5

Table 2. Comparison among SyncTrack and the state-of-the-art methods on the nuScenes datasets. Mean shows the average result weighed
by frame numbers. Bold and underline denote the best performance and the second-best performance, respectively. Improvements over
previous state-of-the-arts are shown in Italic and color.

Car (15578) Bicycle (501) Truck (3710) Pedestrian (8019) Mean (27808)Methods Success Precision Success Precision Success Precision Success Precision Success Precision
SC3D [12] 24.5 25.9 16.6 18.8 32.5 30.6 13.8 14.7 22.3 23.2
P2B [32] 32.8 35.2 19.7 26.6 16.2 11.1 19.2 26.6 26.4 29.3
BAT [50] 26.5 28.8 17.8 22.8 16.5 10.6 19.4 28.2 23.0 27.9
V2B [19] 32.9 34.5 20.3 27.5 28.7 23.8 20.1 27.4 28.4 30.9

STNet [20] 35.7 37.2 22.3 29.3 33.5 32.4 20.1 27.8 30.7 33.7
M2Track [51] 31.4 33.9 22.6 29.8 30.1 28.8 20.7 28.0 28.0 31.4

SyncTrack 36.7 38.1 23.8 30.4 39.4 38.6 19.1 27.8 31.8 35.1
improvement +1.0 +0.9 +1.2 +0.6 +5.9 +6.2 -1.6 -0.4 +1.1 +1.4

trained KITTI model.

As shown in Table 2, SyncTrack performs significantly
better than other trackers on the mean results of four cat-
egories. Specifically, the SyncTrack yields the best results
on both metrics and on most categories except the Pedes-
trian, which is lower than M2Track [51] and BAT [50] by
a minor margin (1.6% and 0.4%). However, in the Truck
category, our SyncTrack outperforms state-of-the-art by a
large margin, up to 5.9% and 6.2% on Success and Preci-
sion respectively.

Computational Cost Comparison. We analyze the com-
putational overheads and inference speed of SyncTrack and
compare it with other trackers in Table 3. The reported re-
sults are tested by ourselves with official codebases with
a single TITAN RTX GPU on Car category of KITTI. It
can be seen that SyncTrack achieves the best Success per-
formance with the lowest computational complexity (2.51

G). Compared with the most current Siamese-based tracker
STNet [20] and single-branch tracker M2Track, our Sync-
Track has the fewest number of parameters and fastest in-
ference speed, satisfying the demand of real-time tracking.

Table 3. The computational cost of different trackers.
Methods Parameters FLOPs FPS Success

SC3D [12] 6.45 M 20.07 G 6 41.3
P2B [32] 1.34 M 4.28 G 48 56.2
BAT [50] 1.47 M 5.53 G 54 60.5
V2B [19] 1.36 M 5.57 G 39 70.5

STNet [20] 1.66 M 3.14 G 36 72.1
M2Track [51] 2.24 M 2.54 G 37 65.5

SyncTrack 1.47 M 2.51 G 45 73.3
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Figure 4. Qualitative comparison with STNet. We compare SyncTrack with STNet over four tracking sequences of different categories
in KITTI. The predictions of SyncTrack fits the ground-truth boxes better.

4.3. Generalization Ability

To evaluate the generalization ability of SyncTrack, we
pre-train the model on the KITTI dataset and test it directly
on the nuScenes dataset without fine-tuning. The results
are shown in Table 4. It can be observed that SyncTrack
outperforms other methods on the mean results of four cat-
egories by a large margin. SyncTrack not only achieves a
good balance between inference speed and tracking accu-
racy, but also generalizes very well to new domains.

Table 4. Testing results on the nuScenes for generalization ability.
Car Bicycle Truck Pedestrian Mean

Methods
(15578) (501) (3710) (8019) (27808)

SC3D [12] 25.0/27.1 17.0/18.2 25.7/21.9 14.2/16.2 21.8/23.1
P2B [32] 27.0/29.2 20.0/26.4 21.5/16.2 15.9/22.0 22.9/25.3
BAT [50] 22.5/24.1 17.0/18.8 19.3/15.8 17.3/24.5 20.5/23.0
V2B [19] 31.3/35.1 22.2/19.1 21.7/19.1 17.3/23.4 25.8/29.0

STNet [20] 32.2/36.1 21.2/29.2 22.3/16.8 19.1/27.2 26.9/30.8
SyncTrack 32.8/36.3 21.7/28.3 23.9/19.2 19.3/27.1 27.5/31.2

4.4. Scalability of Backbone

We prove that our SyncTrack has good scalability in
large-scale datasets like nuScenes. The basic model of
SyncTrack has merely one Transformer layer in each stage
to ensure real-time performance for tracking. However, the
backbone of SyncTrack is scalable in both depth and width.
We name the basic model as SyncTrack-Small. Further-
more, the SyncTrack-Mid has three Transformer layers at
every stage, with nine layers total. As for the SyncTrack-
Large, it doubles the number of feature channels of the
SyncTrack-Mid to [256, 128, 64] for every stage. Ta-
ble 5 reveals that performance improves when scalability
increases not only in depth (Small v.s. Mid), but also in
width (Mid v.s. Large).

4.5. Ablation Studies

We conduct comprehensive ablations to evaluate the
components of SyncTrack.
Compare with Siamese Structure. The synchronized fea-
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Table 5. The scalability of SyncTrack on nuScenes, (S, M, L rep-
resent small, middle, large model size of SyncTrack).

Scale #Param FLOPs Success Precision

Bicycle
S 1.47 M 2.51 G 23.8 30.4
M 1.82 M 2.63 G 25.0 33.6
L 3.98 M 5.37 G 25.6 34.1

Truck
S 1.47 M 2.51 G 39.4 38.6
M 1.82 M 2.63 G 40.1 38.8
L 3.98 M 5.37 G 40.5 38.9

ture extracting and matching mechanism effectively aggre-
gates features and models the relation. To make compar-
isons, we split the single branch into a Siamese structure
based on SyncTrack. A matching network is added to the
Siamese backbone for correlating the features. The shape-
aware feature learning network in V2B [19] and iterative
coarse-to-fine correlation network in STNet [20] are chosen
as matching networks to compare with our single-branch
framework. From Table 6, the single-branch structure of
SyncTrack is quite significant, and when we split the branch
and add a matcher to correlate, the performance drops heav-
ily.

Table 6. Ablations of proposed Single-Branch and Siamese Struc-
ture on Car category of KITTI and nuScenes, (matcher1 is from
the V2B [19] and matcher2 is from the STNet [20]).

KITTI nuScenes
Structure

Success Precision Success Precision
Siamese+matcher1 70.4 82.4 35.3 36.8
Siamese+matcher2 71.8 83.7 35.4 37.1

Single-Branch 73.3 85.0 36.7 38.1

Attentive Sampling. In this paper, we integrate atten-
tive sampling into the multi-head Transformers for select-
ing search region points to aggregate neighborhood fea-
tures. We ablate such configuration by performing attentive
sampling on template tokens and both template and search
region tokens, as well as comparing with standard Trans-
former without attentive sampling (using random sampling
and random/FPS sampling) as shown in Table 7. It can be
concluded that the pattern of performing attentive sampling
on search region tokens in Transformers is the best. We hy-
pothesize that sampling template tokens attentively is mean-
ingless as template points are target-centric, and search re-
gions’ responses include much noise from the background.
Therefore, it i s inefficient to down-sample template tokens
based on attentive responses.

4.6. Visualization

In Figure 4, we present visualization results obtained
from LiDAR video sequences taken from the KITTI dataset.
These visualizations show the motion pattern of objects be-
longing to four categories wihtin the KITTI dataset. Obvi-
ously, our SyncTrack excels in accurately tracking the in-

Table 7. Ablations of attentive sampling in APST on Car category
of KITTI.

Template Search Region Success Precision
% % 70.9 82.8

!APST ! % 67.6 78.8
%random % ! 73.3 85.0

! ! 69.6 81.1
% % 71.1 82.8

!APST ! % 68.0 78.4
%FPS % ! 73.2 85.0

! ! 70.2 82.7

tended target and predicting bounding boxes when com-
pared to STNet [20]. This achievement is primarily at-
tributed to the dynamic and abundant feature interactions
that occur between the template and search region seeds in
SyncTrack. These interactions enable our algorithm to ef-
fectively distinguish the foreground from the background,
leading to superior performance.

5. Conclusion
In this paper, we propose SyncTrack, a novel single-

branch and single-stage framework for 3D LiDAR sin-
gle object tracking. SyncTrack replaces the conventional
Siamese-like backbones with a single-branch one, synchro-
nizing the feature extracting and matching without an addi-
tional matching network. Moreover, the Attentive Points-
Sampling Transformer is proposed for building the back-
bone, and sampling search region points attentively rather
than randomly. Our SyncTrack achieves good tracking per-
formance in accuracy, efficiency, and scalability. We hope
it can help motivate further research on more simple yet ef-
ficient 3D trackers.

Limitations discussion. Compared with motion-centric
tracking framework like M2Track [51], we find our Sync-
Track achieves limited performance on tiny-sized and slow-
moving objects like pedestrian. We attribute it to the global
reasoning mechanism of self-attention. Specifically, the
semantic density of small-sized objects’ token is much
lower, which hinders effective informative interactions be-
tween tokens when performing self-attention. The fact that
transformer- based method STNet [20] outperforms CNN-
based M2track on all classes except the pedestrian (Table 1)
also supports this hypothesis.
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