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Abstract

Human pose transfer aims to synthesis a new image of
the source person in a target pose. Among the various ex-
isting methods, attention and flow have emerged as two of
the most popular and effective approaches. Attention ex-
cels at preserving the semantic structure of the source im-
age, which is more reflected in the low-frequency domain.
Contrastively, flow is better at retaining fine-grained tex-
ture details in the high-frequency domain. To leverage the
advantages of both attention and flow simultaneously, this
paper proposes Wavelet-aware Image-based Pose Transfer
(WaveIPT) as a novel approach to fuse the attention and
flow in the wavelet domain. To improve the fusion effect and
avoid interference from irrelevant information across dif-
ferent frequencies, WaveIPT first applies Intra-scale Local
Correlation (ILC) to adaptively fuse attention and flow in
the same scale according to their strengths in low and high-
frequency domains. Subsequently, WaveIPT employs Inter-
scale Feature Interaction (IFI) to explore inter-scale fre-
quency features, facilitating effective information transfer
across different scales. Furthermore, we introduce Progres-
sive Flow Regularization (PFR), an effective method that al-
leviates the challenges of flow estimation under large pose
differences. The experiments on the DeepFashion dataset
demonstrate that WaveIPT achieves a new state-of-the-art
in terms of both FID and LPIPS, with improvements of
4.97% and 3.89%, respectively.

1. Introduction
Human pose transfer refers to the task of transforming a

given person into the target pose, which has extensive ap-
plications in movie editing, online shopping, virtual reality,
etc. However, achieving both texture-preserving and real-
istic huaman pose transfer remains a challenge, especially

*Equal Contribution. † Corresponding author. This work was done
when Liyuan Ma was an intern at Alibaba Group.

HF

LF

TargetAttention 
alignment

Flow 
alignment

Source

Target

HF

LF

Source

TargetAttention 
alignment

Flow 
alignmentTarget pose

Source

Target pose

𝑎 𝑏 𝑐

LF-pass HF-pass

√

√

√

√

≈ ≈

DWT DWT
Fusion

Figure 1. Illustrative comparison of (a) attention alignment-
based [27, 43], (b) flow alignment-based [29, 13], and the pro-
posed (c) wavelet-aware fusion method. The lower part shows the
different frequency distributions of the source texture aligned by
attention and flow. The low frequency (LF) semantic structure (the
leg part) can be better recovered by attention, whereas the high fre-
quency (HF) component from flow alignment is closer to the real
target (the cloth detail).

when there is a significant pose difference or the person im-
age contains complex texture.

Previous research has employed various methods to in-
teract with the source texture and target pose, including
style modulation [24, 42], deformable convolution [37],
affine transformation [47], flow [29, 17, 13, 4, 49, 34, 48,
22], attention [43, 27, 33, 12, 14, 50, 44], etc. Among these
methods, flow and attention have proven to be the most ef-
fective for texture alignment at the pixel or feature level.

Flow-based methods [48, 17, 34, 22] utilize appearance
flows to deform and allocate the local texture information
to the target positions based on the target pose. This ap-
proach is conducive to retaining high-frequency details, as
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it gathers local texture information to calculate the output
of target positions. However, due to the instability and dif-
ficulty of flow estimation under large pose differences, the
reliability of image semantics cannot be guaranteed, espe-
cially when dealing with large pose differences, and thus
leads to a deterioration in visual quality. Attention-based
methods [43, 27, 14, 50] utilize various variants of cross-
attention to aggregate source texture information through
weighted summation. The global receptive field of the
attention mechanism enables it to capture reasonable hu-
man semantic and low-frequency structure. However, it
is observed that the aggregating process disrupts the rel-
ative spatial relationship, leading to a deficiency in local
details in the generated images. Most prevailing meth-
ods [48, 34, 22, 43, 27, 14] solely rely on either flow or
attention mechanisms for texture alignment without fully
exploiting their complementary advantages. Ren et al. [28]
propose a mask-based method to integrate flow and atten-
tion in the spatial domain. In their approach, the differences
that exist in frequency domain are not taken into considera-
tion, leading to a compromised fusion effect. Ma et al. [21]
attempt to fuse flow and attention in the frequency domain.
However, their method applies an implicitly fusion strategy,
thereby failing to effectively exploit the complementarity in
the frequency domain.

Our analysis, as depicted in Figure 1, highlights the dif-
ferences in frequency distribution between attention and
flow alignment, with flow being capable of retaining high-
frequency details while attention better preserves low-
frequency structures [1, 25, 32]. This observation has mo-
tivated us to propose WaveIPT to incorporate frequency
information from both attention and flow adaptively. In
contrast to previous wavelet-based approaches that primar-
ily focus on improving feature representation by enhancing
convolution or modified up-/down-sampling operations,our
method is specially designed to address the feature fusion
problem under uneven frequency distribution for human
pose transfer. WaveIPT aligns the features using atten-
tion and flow mechanisms, followed by transforming the
features into the wavelet domain using Discrete Wavelet
Transform (DWT). The aligned features are then fused us-
ing Intra-scale Local Correlation (ILC) and Inter-scale Fea-
ture Interaction (IFI) modules. ILC supplements differ-
ent frequency bands within specific scale by leveraging the
advantages of flow and attention in preserving high- and
low-frequency information. Additionally, the IFI mecha-
nism is devised to promote efficient transmission between
scales by adaptively updating the current-scale features
onto the previous-scale features. Furthermore, convolutions
with larger dilated rates are utilized to process sparse low-
frequency features, leading to a more comprehensive and
contextually rich feature representation.

We introduce Progressive Flow Regularization (PFR),

which leverages an intermediate pose to narrow the gap be-
tween source and target poses during flow estimation train-
ing. By approximating the flow from the source to the tar-
get through the source-to-intermediate and intermediate-to-
target flows, we are able to effectively reduce the pose dif-
ference and enhance the performance of flow estimation.

The main contributions of this paper are as follows:

• This paper proposes WaveIPT, a novel method that
combines attention and flow with dedicated designed
ILC and IFI. This approach is capable of effectively
aligning the source texture in the wavelet domain and
enables realistic pose transfer results.

• This work introduces PFR as an effective approach to
address the challenge of flow estimation under large
pose variation.

• The proposed WaveIPT achieves state-of-the-art re-
sults on the DeepFashion dataset, demonstrating the
effectiveness of our method.

2. Related Works
2.1. Wavelet-related Methods

Wavelet domain analysis has emerged as an effective
method in the computer vision field, including high-level
discriminant tasks [39], image restoration task [15, 52,
16, 3] and image generation task [41, 38, 40, 38, 26].
[39] combines the wavelet transformation and self-attention
into transformer designs to prevent information dropping
in the conventional down-sampling operations. Many im-
age restoration works explore reconstructing the finer de-
tails from a frequency decomposition perspective. Typi-
cally, SDWNet [52] proposed a wavelet reconstruction to
better recover clear high-frequency details that are crucial
for image deblurring. Moreover, [38] facilitated the gen-
eration both low- and high-frequency information by per-
forming skip connections for different frequency elements.

However, no prior work has focused on applying wavelet
domain analysis to pose transfer. Our paper proposes a
novel wavelet-aware fusion module that enables locally re-
alistic and globally reasonable image synthesis. Compared
to other wavelet-based methods, our approach focuses on
leveraging wavelet transformation to enhance texture align-
ment and improve pose transfer performance. We believe
that our proposed method can contribute to the advancement
of wavelet domain analysis in the field of pose transfer.

2.2. Pose Transfer

With the rapid development of image generation technol-
ogy, human pose transfer has developed for several years.
This task was first proposed by [23] to deal with the person
image synthesis in different poses. Several works [42, 24]
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Figure 2. The framework of the proposed WaveIPT network. The source human image Is and target pose Pt are encoded to extract
L-levels source features {F l

s}l=0,...,L−1 and target feature vector F 0
t . The source features are deformed through Attention and Flow

alignment modules. The aligned features are further decomposed into Low Frequency (LF) and High Frequency (HF) components with
Discrete Wavelet Transform (DWT). Then Intra-scale Local Correlation (ILC) module fuses low- and high-frequency features adaptively
within the scale and Inter-scale Feature Interaction (IFI) integrates frequency features across different scales. The frequency features are
converted back to the spatial domain via Inverse Discrete Wavelet Transform (IDWT) and used to synthesize the final output image Ig . The
detailed illustration of ILC and IFI can be found in Figure 3.

borrowed the idea from style transfer, which extracts style
information from the specific semantic areas of person im-
age and redistributes it into the corresponding semantic re-
gion. However, such methods commonly suffer from losing
existent details in the original person image. Deformable
convolution is utilized in [37] to enhance spatial align-
ment, but it has a restricted sampling offset that only al-
lows for modeling subtle motion relationships. To explicitly
model the geometry deformation along with pose change,
flow-based approaches [29, 17, 13, 4, 49, 34, 48, 22, 36]
were proposed to explore the spatial mapping relationship.
[29, 22] estimated flow in an unsupervised manner. [17, 13]
adopted the 3D human mesh model to acquire the 3D flow
with vertices mapping. The flow-based models are capa-
ble of generating realistic texture, however, these methods
fail to extract precise motion, resulting in obvious artifacts.
Compared with the flow deformation method, the attention-
guided methods [43, 27, 33, 12, 14, 50, 44] indicate their
capability in rendering satisfactory structures and seman-
tics undergoing dramatic pose changes. Although [28] con-
firms the complementary advantages between the flow and
attention to generate accurate human semantics and realis-
tic textures, it fuses the flow and attention-warped features
in the spatial domain and features are mixed without dis-
tinction for different frequencies, which leads to suboptimal
fusion effect. [21] employs adaptive masks to implicitly
merge features of differing frequencies in flow and atten-
tion, inadvertently failling to fully leverage the complemen-
tary advantages across distinct frequency bands. In contrast,
the approach presented in this paper makes explicit use of
the inherent strengths demonstrated by flow and attention
mechanisms in high and low frequency in the wavelet do-
main, which improves the quality of person image genera-
tion effectively.

3. Proposed Method
Preliminary. We first revisit Flow and Attention align-

ment operations which are commonly used to reassemble
textures in pose transfer task and then review the basic con-
cepts of Discrete Wavelet Transform.

Flow alignment spatially deforms the source appearance
according to the target pose by calculating a point-wise 2D
deformation field, which correlates the target position with
local source candidates. We follow [8, 6, 5] to estimate the
appearance flow in a coarse-to-fine manner. Formally, given
the encoded features Fs and Ft from the source human im-
age and target pose, the source feature aligned by flow is
calculated as follows:

Fflow = GS(FE(Fs, Ft, Js, Jt), Fs)

= GS(Ws→t, Fs),
(1)

where Ws→t is the estimated appearance flow, GS(f, y) de-
notes the grid sampling function [10] that deforms the y
with flow f , and FE means the flow estimation network.
Js and Jt represent source and target joint coordinates.

Attention alignment can be regarded as the dense correla-
tion matrix, which predicts each position with the weighted
summation of the whole source values. The double atten-
tion [2, 27, 46] is chosen as the attention alignment calcula-
tion backbone for its efficient implementation, which avoids
the quadratic complexity by splitting the attentive operation
into gathering and distribution. Specifically, the attention
alignment operation warps the source feature Fs with the
attention matrix As→t ∈ Rhw×hw as follows.

Fattn = As→tFs = AdAgFs

= [SoftMax(TdFt)]
T [SoftMax(TgFs)]Fs

(2)

where Td ∈ Rk×c and Tg ∈ Rk×c are the corresponding
convolution filters to calculate the gathering and distribution
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matrixes Ad ∈ Rhw×k and Ag ∈ Rk×hw. k is the number
of convolution channels.

Discrete Wavelet Transform is capable of decomposing
spatial features into multi-level wavelet sub-bands. We uti-
lize the Haar wavelet in our implementation. Specifically,
the Haar wavelet filter with low-pass filter (1/

√
2, −1/

√
2)

and high-pass filter (1/
√
2, 1/

√
2) is applied in DWT to ex-

tract wavelet frequency components LL, LH, HL, HH. We
use LF and HF to represent the low-frequency component
LL and high-frequency components LL,LH,HL,HH.

3.1. Framework

The framework of WaveIPT is shown in 2. Given the
source human image Is and target pose Pt, WaveIPT ex-
tracts source and target features {F l

s}l=0,...,L−1 and F 0
t

and reassemble the source texture by attention and flow
alignment. To fuse aligned features in different frequency
bands, WaveIPT transforms the aligned source and target
features into wavelet domain, where Intra-scale Local Cor-
relation is designed to fuse frequency features adaptively
in the same scale (see Sec. 3.2) and Inter-scale Feature In-
teraction is adopted to facilitate the information interaction
across scales (see Sec. 3.3). Then, the frequency features
are converted back into the spatial domain via Inverse Dis-
crete Wavelet Transform (IDWT). The whole process can be
trained end-to-end. Moreover, the Progressive Flow Regu-
larization (see Sec. 3.4) is introduced to promote the train-
ing of flow. After aligning and fusing source features pro-
cessed by flow and attention, we are capable of synthesizing
the target images by hierarchically predicting RGB images.
The final target image Ig is obtained by summing up all the
RGB images at different levels.

3.2. Intra-scale Local Correlation

Owing to the unique strengths of attention and flow in
low and high frequencies, it is reasonable for us to im-
prove frequency feature representation by augmenting low-
frequency and high-frequency features from attention and
flow with inferior frequency information. Therefore, Lo-
cal Correlation is designed to utilize supplementary in-
put (S) to compensate for query (Q) input. For example,
LFflow can act as the S to augment LFattn (Q) in the low-
frequency band, while HFattn (S) is used to enhance the
high-frequency details in HFflow (Q). Besides, we note
that the corresponding features between LFflow/HFflow

and LFattn/HFattn after the spatial alignment by flow
and attention are now located within the same local region.
Therefore, we correlate merely local areas to avoid interfer-
ence caused by large receptive fields.

As shown in Figure 3, given the query input Q ∈ Rhw×c

as the superior input and the supplement information S ∈
Rhw×c as the inferior one, whose rows are c-dimensional
vectors and hw is the multiplication of feature map height

h and width w. The Local Correlation weight Ai(k) and
reshaped supplement input Si(k) are calculated as follows.

Ai(k) =



QiS1T

...
QiSjT

...
QiSkT



T

Si(k) =
[
S1T . . . SjT . . . SkT

]
,

(3)

where j ∈ Ni denotes the spatial location in the neighbor-
hood of i. We define the Ni as a corresponding square area
with a hyperparameter radius of 3 which contains k neigh-
boring values. Then the Local Correlation output value for
the i-th token is then calculated as:

LCi(k) = SoftMax(Ai(k))Si(k)
T (4)

The ILC operation is performed repeatedly by traversing all
locations in the feature map. Then the intra-scale fusion of
frequency features is conducted as follows.

LF l
fuse = LC(Q = LF attn, S = LF flow)

HF l
fuse = LC(Q = HF flow, S = HF attn)

(5)

3.3. Inter-scale Feature Interaction

Upon obtaining the fused frequency features at the cur-
rent scale LF l

fuse/HF l
fuse, the Feature Interaction module

aims to investigate inter-scale relationship between features
across different scales, thereby necessitating the extraction
of more informative content from the current scale to en-
hance the previous scale features LF l−1

t /HF l−1
t .

To this end, we first compute the difference between
them and utilize the Sigmoid function to regress the spatial
weights. The spatial weights are capable of selecting the
most distinguished and informative content by multiplica-
tion with current scale features. Subsequently, The selected
information is then added to the previous scale input to the
enhanced output. Considering the sparsity of low-frequency
features, we adopt convolution layers with a larger dilated
rate for low-frequency features to extract more effective
contextual information. Formally, the Feature Interaction
process is conducted as follows

LF l
t =Convl(LF

l−1
t + LF l

fuse × Sigmoid

(LF l
fuse − LF l−1

t ))

HF l
t =Convh(HF l−1

t +HF l
fuse × Sigmoid

(HF l
fuse −HF l−1

t )),

(6)

where Convl and Convh denote the convolution layers with
dilated rates of 3 and 1. Further detailed descriptions can be
found in Figure 3.
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Figure 3. The illustration of Intra-scale Local Correlation and Inter-scale Feature Interaction modules. We use Q and S to represent that
query input Q is augmented by supplementary input S.
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Figure 4. Illustration of Progressive Flow Regularization (PFR).
The abdominal point in images under source, intermediate, and
target poses is presented for example, which moves among differ-
ent poses. We use orange, green, and blue arrows to denote the
Ws→t, Ws→m, and Wm→t flows, respectively. We use the green
dotted arrow to represent that Ws→m is warped by Wm→t with
Grid Sample (GS) function.

3.4. Progressive Flow Regularization

The performance of the flow estimation suffers when the
source and target poses are significantly different. To alle-
viate the difficulty of flow estimation brought by the pose
discrepancy, we propose Progressive Flow Regularization,
which employs the intermediate pose to bridge the gap be-
tween the source and target poses during training. For ex-
ample, the flow Ws→t between the front and back poses can
be constrained by the combination of front-to-side Ws→m

and side-to-back Wm→t flows, which utilize the side pose
as the intermediate pose to promote the flow estimation.

Specifically, we use flow estimation network to predict
the Ws→t, Ws→m, and Wm→t with source pose Ps, inter-
mediate pose Pm, and target pose Pt. Then we utilize pro-
gressive flows Ws→m and Wm→t to approximate Ws→t.

For a specific feature, we denote its feature position under
source, intermediate, and target poses as Cs = (xs, ys),
Cm = (xm, ym) and Ct = (xt, yt). The flow vector at
these positions can be calculated as follows.

Ws→t(xt, yt) = (xs − xt, ys − yt)

Ws→m(xm, ym) = (xs − xm, ys − ym)

Wm→t(xt, yt) = (xm − xt, ym − yt)

(7)

When all the flows are predicted correctly, the sum-
mation of Ws→m(xm, ym) and Wm→t(xt, yt) should be
equal to the Ws→t(xt, yt), which supplies a reasonable
constraint for consistent flow estimation among various
poses. As shown in Figure 4, to enable the calculation of
the flow constraint, which requires that Ws→m(xm, ym)
and Wm→t(xt, yt) are defined in the same coordinate
system, we utilize Grid Sample function to resample
Ws→m(xm, ym) at Cm to the same position Ct by
Wm→t(xt, yt). Then Progressive Flow Regularization loss
can be generalized into all positions and defined as follows.

Lprog = ||GS(Wm→t,Ws→m) +Wm→t −Ws→t||2.
(8)

It is worth noting that during the early stages of training,
the flow estimation performance may be insufficient, which
can lead to uncertainty regarding the effectiveness of the
regularization. Thus we introduce the progressive flow loss
into training after several training epochs.

3.5. Loss Functions

Except for the aforementioned progressive flow regular-
ization, this paper further applies several loss functions to
train the whole network in an end-to-end manner.

Alignment Loss Lalign. The alignment loss constrains
the network for estimating accurate flow map and attention
matrix for deformation. We apply l1 loss to penalize the dif-
ference between downsampled source image Is↓ and corre-
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Figure 5. Qualitative comparison results with several state-of-the-art methods on DeepFashion dataset of 256 × 176 and 512 × 352
resolutions. Please zoom in for a better view.

sponding target image It
↓.

Lalign =||S(Ws→t, Is
↓)− It

↓||1 +
∑
i

||∇(Ws→t)i||

+ ||As→tIs
↓ − It

↓||1
(9)

where ||∇(Ws→t)i|| represents the generalized charbonnier
loss function [31], which is used to ensure the smoothness
of the flow.

Perceptual Loss Lperc. The perceptual loss [11] encour-
ages the generated image to be perceptually consistent with
the target image at the feature level:

Lperc =
∑
i

||ϕi(Ig)− ϕi(It)||1, (10)

where ϕi denotes the ith layer of the pre-trained VGG [30]
network and Ig denotes the generated image.

Adversarial Loss Ladv. We adopt adversarial loss to
shorten the distribution distance between generated result
and the real images, which thus promotes the high fidelity
of the generated images.

Ladv =EIs,It,Pt
[log(1−D(G(Is, Pt), Pt))]

+ EIt,Pt
[log(D(It, Pt))],

(11)

where G and D represent the image generator and discrim-
inator, respectively.

SSIM Loss Lssim. The ssim loss is employed to improve
the pixel similarity between the generated images and the

ground truth images:

Lssim = ||SSIM(Ig)− SSIM(It)||1. (12)

Thus the overall objective function is defined as Ltotal =
λalignLalign + λpercLperc + λadvLadv + λssimLssim +
λprogLprog, where λalign, λperc, λadv , λssim and λprog are
empirically set at 15, 2, 1.5, 10 and 10, respectively.

4. Experiments
4.1. Experimental Settings

Datasets settings. Following the previous related work,
we conduct experiments on the DeepFashion dataset [18].
The original resolution of DeepFashion is 1101× 750, and
most previous methods used the resolution of 256×172 res-
olution [43, 50, 20, 42, 29, 24] and 512 × 352 [27, 51].To
ensure a fair comparison, we follow the training and eval-
uation setting of [43] for the 256 × 176 training data. For
the 512 × 352 dataset, the data setting is aligned with the
state-of-the-art [27].

Performance metrics. We evaluate the model perfor-
mance with several widely used metrics, including 1) Struc-
ture Similarity Index (SSIM) [35] which reports the pixel-
level similarity; 2) Fréchet Inception Distance (FID) [9]
which measures the distribution distance between the syn-
thesized and real images, reflecting the realism of the gener-
ated images; 3) Learned Perceptual Image Patch Similarity
(LPIPS) [45] which calculates the perceptual distance be-
tween the synthetic and real images with pre-trained VGG
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and AlexNet. Due to the superior network capacity, VGG
provides a more precise evaluation compared to AlexNet; 4)
Reid Score [43] that adopts the re-identification model [7]
to test whether the generated query image can be matched
with the corresponding gallery real image. The higher Top-
k represents that the generation results better maintain the
source appearance and thus can be identified effectively.

Implementation details. Our experiment is conducted
with Nvidia A100 GPU and Pytorch framework. We adopt
the Adam optimizer [19] and the learning rates for 256×176
and 512 × 352 are 2 × 10−3 and 1 × 10−3, respectively.
The learning rate remains unchanged throughout the train-
ing process. The whole training process takes 200 epochs
and the batch size is set to 32.

4.2. Comparison with state-of-the-art Methods

4.2.1 Quantitative Comparison

In Table 1, we compare our proposed method with state-
of-the-art models on the DeepFashion dataset. Our model
outperforms other models in all metrics for the resolution
of 256 × 176, demonstrating its significant advantage in
generating high-quality images for low resolutions. For
512×352 resolution, our model has also reached a state-of-
the-art level, while achieving comparable results to the best
models in terms of LPIPS. This indicates that our model
can also address high-quality image generation at high res-
olutions. It is worth noting that our model has a significant
lead over other models in terms of FID, demonstrating that
it can generate more realistic results. Additionally, we used
Reid Score to evaluate texture consistency between gener-
ated and real images, and our method outperformed other
competitors in terms of Topk scores, indicating effective
texture preservation and reliability.

User Study. In order to evaluate the performance of the
generated results from a human subjective perspective, we
also perform the user study by randomly sampling 1,500
generated images for comparison, which largely exceeds
the number of samples used in other methods (e.g. 33 sam-
ples for CASD [50] and 55 samples for SPGNet [20]). The
sampled images are then evaluated by 57 professional and
experienced employees, who assess their realism and con-
sistency. The Topk-1 and Topk-3 mean that the result of the
corresponding method is selected as the most realistic one
or three among all others. Our model achieves the highest
Topk-1 and Topk-3 scores in the user study, indicating that
it generated more realistic and consistent images than other
methods. The results demonstrate that our model outper-
forms existing methods in terms of generating high-quality
images that satisfy human subjective perceptions.

Figure 6. Qualitative result of our ablation study.

4.2.2 Qualitative Comparison

We show the qualitative comparison results on Figure 5 in-
cluding 256 × 176 and 512 × 352 resolutions. Among
these competitors, the style modulation-based method
ADGAN [24] fails to model complex spatial texture dis-
tribution, which loses the spatial information in style vec-
tor extraction. The flow-based method GFLA [29] has de-
creased performance when confronting large pose discrep-
ancy since it fails to deform texture reasonably (see 2nd and
3rd rows in the left of Figure 5). CASD [50], DPTN [43],
NTED [27] and CoCosNet2 [51] introduce attention mech-
anism to reassemble the source person’s texture according
to the target pose. However, the attention operation tends to
smooth the detailed texture and hinder the reoccurrence of
the specific image pattern (see the logos and dress pattern
in the 2nd row of Figure 5, etc.). In contrast, our method
takes the advantage of both attention and flow to generate
plausible human texture under large pose change (see 4th
and 5th rows in the left of Figure 5 ) and retain the texture
details faithfully (see the garment preservation result in the
right of Figure 5).

4.3. Ablation Study

Several ablation studies over the DeepFashion dataset
are performed to evaluate the efficacy of ILC, IFI, and PFR.
We train multiple variant models with different configura-
tions. All the variants models share the same basic archi-
tecture of encoder-decoder networks, but differ in the way
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256× 176

SSIM↑ FID↓ LPIPS↓ Reid Score (%)↑
AlexNet VGG Topk-1 Topk-5 Topk-10

ADGAN [24] 0.6721 14.4580 0.2283 0.2557 81.46 91.97 95.65
GFLA [29] 0.7677 10.8429 0.2258 0.2765 90.84 96.64 98.11
PISE [42] 0.7682 11.5144 0.2080 0.2498 90.09 96.35 98.02

SPGNEet [20] 0.7758 12.7027 0.2102 0.2443 94.43 98.23 99.04
CASD [50] 0.7248 11.3732 0.2157 0.2645 93.09 98.35 99.12
NTED [27] 0.7715 9.2876 0.2019 0.2564 97.34 99.39 99.74
DPTN [43] 0.7782 11.4664 0.1957 0.2459 97.69 99.35 99.63

FreqHPT [21] 0.7800 8.9072 0.1977 0.2369 98.72 99.65 99.83
Ours 0.7801 8.8259 0.1955 0.2348 99.05 99.96 99.99

512× 352

CocosNet2 [51] 0.7236 13.3250 0.2265 0.2735 87.84 91.71 94.72
NTED [27] 0.7376 7.7821 0.1980 0.2472 98.41 99.24 99.71

FreqHPT [21] 0.7456 6.5522 0.2026 0.2471 98.48 99.93 99.93
Ours 0.7416 4.8201 0.1983 0.2423 99.00 99.56 99.81

Table 1. Quantitative comparison results with several state-of-the-art methods on DeepFashion dataset of 256 × 176 and 512 × 352
resolutions. The best and the second-ranked results are bold and underlined, respectively

SSIM↑ FID↓ LPIPS ↓ Reid Score(%)↑
AlexNet VGG Topk-1 Topk-5 Topk-10

Non-wavelet Fusion 0.7781 9.1026 0.2023 0.2412 98.32 98.92 98.93
Vanilla Wavelet Fusion 0.7785 9.0264 0.2012 0.2391 98.83 99.25 99.83

Wavelet Fusion with
ILC 0.7799 8.8861 0.1967 0.2356 98.93 99.24 99.87

Wavelet Fusion with
ILC+IFI 0.7800 8.9797 0.1961 0.2347 98.76 99.89 99.94

Wavelet Fusion with
ILC+IFI +PFR (Ours) 0.7801 8.8259 0.1955 0.2348 99.05 99.96 99.99

Table 2. Ablation study of our method on DeepFashion dataset.

ADGAN GFLA PISE SPGNet CASD NTED DPTN Ours
Topk-1(%)↑ 9.7 10.8 3.7 3.6 23.2 12.1 9.7 27.2
Topk-3(%)↑ 21.0 38.8 21.6 21.6 45.0 59.1 24.8 68.2

Table 3. User study of our method on DeepFashion dataset.

they fuse and process features. The details of these variant
models are presented below:

• Non-wavelet Fusion. This model follows the spatial
fusion strategy proposed in [28], which predicts the
mask in the spatial domain to fuse features from atten-
tion and flow.

• Vanilla Wavelet Fusion. This model utilizes the mask
to fuse low and high-frequency features separately in
the wavelet domain. Unlike Non-wavelet Fusion, it
predicts masks in the wavelet domain to fuse features
located in different wavelet frequency bands, rather
than directly fusing spatial features.

• Wavelet Fusion with ILC. In contrast to the mask-
based fusion strategy employed by Non-wavelet Fu-
sion and Vanilla Wavelet Fusion, we use ILC module
to integrate frequency features from attention and flow.

• Wavelet Fusion with ILC+IFI. We further incorporate
IFI to improve the fusion process. This variant model
is trained without PFR.

• Wavelet Fusion with ILC+IFI+PFR (Ours). We use
PFR in the training, making it our full model.

From the quantitative result in Table 2, our model outper-
forms other variant models in most of the metrics. By pro-
cessing features in the wavelet domain, Vanilla Wavelet Fu-
sion model can generate more realistic human images and
achieves better FID and LPIPS scores than Non-wavelet Fu-
sion strategy, which is caused by the ignorance of feature
differences in the spatial fusion process. However, rely-
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Figure 7. Visualization comparison of different flow estimation
results including with (Wavelet Fusion ILC+IFI+PFR) and with-
out PFR (Wavelet Fusion ILC+IFI) scenarios. The red rectangles
denote the target query points which correlate the source candi-
dates with the flow.

ing solely on the mask to fuse features limits its ability to
capture contextual information. Our designed ILC module
more effectively captures local contextual information dur-
ing the fusion process, resulting in further improvement in
metrics. The IFI module facilitates the transmission of fre-
quency features from coarse to fine across different scales,
which promotes the recovery of texture features and thus
leads to an improvement in the generated quality.

The qualitative results are presented in Figure 6. We can
see that compared with other variants, our full model obvi-
ously outperforms them in learning accurate spatial trans-
formation and generating photo-realistic appearance im-
ages. Especially, PFR improves the reliability of the de-
formation between varying poses, and the body texture is
better aligned as shown in the 1st and 2nd rows of Figure 6.
Besides, the flow visualization results in Figure 7 corrobo-
rate our claim that progressive flow regularization can pro-
mote accurate spatial transformation in pose transfer (the
target query area attains source candidates with more pre-
cise locations ). More analysis about ILC and dilated rate is
provided in supplementary materials.

5. Conclusion
In this paper, we present a novel wavelet-aware attention

and flow fusion framework for human pose transfer. Ob-
serving the complementarity and difference between atten-
tion and flow in frequency domain, we propose WaveIPT
to fuse and refine features warped by the attention and
flow in a wavelet-aware manner, which effectively fuses
the features from different frequency bands. Extensive ex-
periments demonstrate the effectiveness of our proposed

method compared to other state-of-the-art approaches.
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Vicenç Palà, and Román Arbiol. Multiresolution-based im-
age fusion with additive wavelet decomposition. IEEE Trans.
Geosci. Remote. Sens., 37:1204–1211, 1999. 2

[27] Yurui Ren, Xiaoqing Fan, Ge Li, Shan Liu, and Thomas H.
Li. Neural texture extraction and distribution for control-
lable person image synthesis. 2022 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages
13525–13534, 2022. 1, 2, 3, 6, 7, 8

[28] Yurui Ren, Yubo Wu, Thomas H Li, Shan Liu, and Ge Li.
Combining attention with flow for person image synthesis.
In Proceedings of the 29th ACM International Conference
on Multimedia, pages 3737–3745, 2021. 2, 3, 8

[29] Yurui Ren, Xiaoming Yu, Junming Chen, Thomas H Li, and
Ge Li. Deep image spatial transformation for person image
generation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 7690–
7699, 2020. 1, 3, 6, 7, 8

[30] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. CoRR,
abs/1409.1556, 2015. 6

[31] Deqing Sun, Stefan Roth, and Michael J. Black. A quan-
titative analysis of current practices in optical flow estima-
tion and the principles behind them. International Journal of
Computer Vision, 106:115–137, 2013. 6

[32] Chuanming Tang, Xiao Wang, Yuanchao Bai, Zhe Wu,
Jianlin Zhang, and Yongmei Huang. Learning spatial-
frequency transformer for visual object tracking. arXiv
preprint arXiv:2208.08829, 2022. 2

[33] Hao Tang, Song Bai, Li Zhang, Philip H. S. Torr, and
N. Sebe. Xinggan for person image generation. ArXiv,
abs/2007.09278, 2020. 1, 3

[34] Jilin Tang, Yi Yuan, Tianjia Shao, Yong Liu, Mengmeng
Wang, and Kun Zhou. Structure-aware person image gen-
eration with pose decomposition and semantic correlation.
In AAAI Conference on Artificial Intelligence, 2021. 1, 2, 3

[35] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Si-
moncelli. Image quality assessment: from error visibility to
structural similarity. IEEE transactions on image processing,
13(4):600–612, 2004. 6

[36] Dongxu Wei, Kejie Huang, Liyuan Ma, Jiashen Hua,
Baisheng Lai, and Haibin Shen. Oaw-gan: occlusion-aware
warping gan for unified human video synthesis. Applied In-
telligence, 53(1):616–633, 2023. 3

[37] Dongxu Wei, Xiaowei Xu, Haibin Shen, and Kejie Huang.
C2f-fwn: Coarse-to-fine flow warping network for spatial-
temporal consistent motion transfer. In AAAI, 2021. 1, 3

[38] Mengping Yang, Zhe Wang, Ziqiu Chi, and Wenyi Feng.
Wavegan: Frequency-aware gan for high-fidelity few-shot
image generation. In European Conference on Computer Vi-
sion, 2022. 2

[39] Ting Yao, Yingwei Pan, Yehao Li, Chong-Wah Ngo, and Tao
Mei. Wave-vit: Unifying wavelet and transformers for visual
representation learning. In European Conference on Com-
puter Vision, 2022. 2

[40] Jaejun Yoo, Youngjung Uh, Sanghyuk Chun, Byeongkyu
Kang, and Jung-Woo Ha. Photorealistic style transfer via
wavelet transforms. 2019 IEEE/CVF International Confer-
ence on Computer Vision (ICCV), pages 9035–9044, 2019.
2

[41] Yingchen Yu, Fangneng Zhan, Shijian Lu, Jianxiong Pan,
Feiying Ma, Xuansong Xie, and Chunyan Miao. Wavefill:

7224



A wavelet-based generation network for image inpainting.
2021 IEEE/CVF International Conference on Computer Vi-
sion (ICCV), pages 14094–14103, 2021. 2

[42] Jinsong Zhang, Kun Li, Yu-Kun Lai, and Jingyu Yang. Pise:
Person image synthesis and editing with decoupled gan.
arXiv preprint arXiv:2103.04023, 2021. 1, 2, 6, 8

[43] Peng Zhang, Lingxiao Yang, Jianhuang Lai, and Xiaohua
Xie. Exploring dual-task correlation for pose guided person
image generation. 2022 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 7703–7712,
2022. 1, 2, 3, 6, 7, 8

[44] Pan Zhang, Bo Zhang, Dong Chen, Lu Yuan, and Fang Wen.
Cross-domain correspondence learning for exemplar-based
image translation. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
5143–5153, 2020. 1, 3

[45] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shecht-
man, and Oliver Wang. The unreasonable effectiveness of
deep features as a perceptual metric. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 586–595, 2018. 6

[46] Yulun Zhang, Kai Li, Kunpeng Li, and Yun Fu. Mr image
super-resolution with squeeze and excitation reasoning atten-
tion network. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 13425–
13434, 2021. 3

[47] Zhimeng Zhang and Yu Ding. Adaptive affine transforma-
tion: A simple and effective operation for spatial misaligned
image generation. In Proceedings of the 30th ACM Interna-
tional Conference on Multimedia, pages 1167–1176, 2022.
1

[48] Jian Zhao and Hui Zhang. Thin-plate spline motion model
for image animation. 2022 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 3647–
3656, 2022. 1, 2, 3

[49] Haitian Zheng, Lele Chen, Chenliang Xu, and Jiebo Luo.
Unsupervised texture preserving flow for pose guided syn-
thesis. IEEE transactions on image processing : a publi-
cation of the IEEE Signal Processing Society, PP, 2020. 1,
3

[50] Xinyue Zhou, Mingyu Yin, Xinyuan Chen, Li Sun, Changxin
Gao, and Qingli Li. Cross attention based style distribu-
tion for controllable person image synthesis. In Shai Avi-
dan, Gabriel Brostow, Moustapha Cissé, Giovanni Maria
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