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Abstract

Safety-critical applications such as autonomous vehi-
cles and social robots require fast computation and ac-
curate probability density estimation on trajectory predic-
tion. To address both requirements, this paper presents
a new normalizing flow-based trajectory prediction model
named FlowChain. FlowChain is a stack of conditional
continuously-indexed flows (CIFs) that are expressive and
allow analytical probability density computation. This an-
alytical computation is faster than the generative models
that need additional approximations such as kernel den-
sity estimation. Moreover, FlowChain is more accurate
than the Gaussian mixture-based models due to fewer as-
sumptions on the estimated density. FlowChain also al-
lows a rapid update of estimated probability densities. This
update is achieved by adopting the newest observed posi-
tion and reusing the flow transformations and its log-det-
jacobians that represent the motion trend. This update is
completed in less than one millisecond because this reuse
greatly omits the computational cost. Experimental re-
sults showed our FlowChain achieved state-of-the-art tra-
jectory prediction accuracy compared to previous meth-
ods. Furthermore, our FlowChain demonstrated superior-
ity in the accuracy and speed of density estimation. Our
code is available at https://github.com/meaten/
FlowChain-ICCV2023.

1. Introduction

Human trajectory prediction is a challenging problem
because human movements are not deterministic, unlike
the billiard balls on a pool table. Starting from determin-
istic approaches [26, 49], to tackle its indeterministic na-
ture, many stochastic approaches are proposed, such as
Gaussian distribution-based [1,42,66], generative adversar-
ial networks (GANs)-based [9, 10, 25, 57], variational au-
toencoder (VAE)-based [58, 71, 73], diffusion-based [24],
and normalizing flow-based [59] methods. These methods
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Figure 1. Effects of our FlowChain. Our FlowChain can rapidly
estimate accurate density than VAE-based methods as shown in
green. Furthermore, we propose an update of estimated density
that only requires an instant of time, as shown in blue.

can be applied to human-interactive systems, including au-
tonomous vehicles [8,11,38,55,69] and social robots [4,39].

In these safety-critical applications, autonomous sys-
tems must infer the existence probability density distribu-
tion (“density” for brevity) of other moving objects such as
pedestrians around on all prediction steps for risk assess-
ment (i.e., collision avoidance). However, most of the in-
deterministic approaches mentioned above merely generate
possible future trajectories and cannot estimate the density
alone. We need to further apply kernel density estimation
(KDE) to these future trajectories for density estimation.

Thus, trajectory prediction with density estimation usu-
ally takes a larger computational cost than only generat-
ing possible trajectories. This computational cost accumu-
lates upon every single prediction update along with highly-
frequent observations. This is unacceptable to autonomous
systems that work in rapidly changing environments.

To address both computational cost and density esti-
mation, we propose a new normalizing flow-based model
named FlowChain (Fig. 1). This speed and accuracy are be-
cause normalizing flows need no additional approximation
such as Gaussian mixture modeling or KDE with limited
samples. FlowChain can estimate a density on each predic-
tion time step thanks to our stacked normalizing flow archi-
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tecture unlike Flomo [59], which is closest to FlowChain.
While Flomo uses one flow module that only estimates the
spatial density of a trajectory, FlowChain further predicts
its spatio-temporal density so that the spatial density of an
agent position at each time step is also predicted. This
stacking architecture also allows a rapid update of an es-
timated density in an instant of time e.g. less than one mil-
lisecond. This update is achieved by reusing the flow trans-
formations and its log-det-jacobians that represent the mo-
tion trend such as going straight or turning right. This up-
date with the reuse significantly omits the computational
cost while maintaining the accuracy of density estimation
because the motion trend doesn’t change for several time
steps.

Our contributions are three-fold as follows:

• We propose a normalizing flow-based trajectory pre-
diction network named FlowChain that rapidly esti-
mates the accurate density of future positions on each
prediction time step.

• Our update procedure for the density requires less than
one millisecond by adopting new observations and
reusing the motion trend as the flow transformations.

• Our FlowChain achieved comparable prediction accu-
racy to other computationally-intense state-of-the-art
methods on several benchmarks.

2. Related Work
Human Trajectory Prediction. The earliest works on hu-
man trajectory prediction [26, 49] are deterministic regres-
sion models using attractive and repulsive forces between
humans and goal positions. However, human movements
are indeterministic in nature. Therefore, many approaches
are proposed to model this uncertainty. Social-LSTM [1]
and Social-STGCNN [42] regress the parameters of the bi-
variate Gaussian distributions to model the uncertainty of
future trajectories. These approaches [1, 42] are simple and
require low computational cost but cannot catch the future
multi-modality we often see at road intersections.

To address this multi-modality, many stochastic pre-
diction models are proposed. Trajectron++ [58], Agent-
Former [71], and ExpertTraj [73] combined the aforemen-
tioned Gaussian regression with VAE [32]. These models
predict a bivariate Gaussian mixture based on stochastically
sampled latent variables [28, 52]. We can obtain the den-
sity by summing up each estimated Gaussian density map.
However, these Gaussian mixture methods have limited ex-
pressive power and thus predict inaccurate distributions.

On the other hand, GAN [18]-based approaches implic-
itly handle this uncertainty. Social-GAN [25], SoPhie [57],
Goal-GAN [10], and MG-GAN [9] use a GAN architec-
ture to predict diverse trajectories conditioned on random

noises. While they cannot estimate the density alone, we
can estimate the density by applying KDE [48, 54] on sam-
pled trajectories

The denoising diffusion probabilistic model [27] can
also implicitly handle uncertainty by generating multiple
trajectories. Recently, denoising diffusion attracts much at-
tention for its state-of-the-art performances in several gener-
ative tasks, including image synthesis [12] and audio gener-
ation [33]. MID [24] is a trajectory prediction model incor-
porating denoising diffusion, which achieves state-of-the-
art performances. We can also estimate the density of MID
by applying KDE. However, GAN-based and diffusion-
based approaches cannot estimate accurate densities be-
cause KDE is performed on limited samples.

On the contrary, normalizing flow [51, 64, 65]-based tra-
jectory prediction method named Flomo [59] can rapidly
generate future trajectories and their accurate probabilities
thanks to the analytical computation of normalizing flows.
However, this approach only estimates the probability of
each future trajectory and thus cannot estimate the density
of positions on each prediction step alone.
Normalizing Flows. Thanks to its bijective process, nor-
malizing flow can compute the density analytically. This
analytical computation allows us fast and accurate density
estimation because it does not need additional approxima-
tion such as KDE with limited samples. For more expres-
sive power, several bijective families were proposed such as
affine coupling layers [13,14], autoregressive maps [17,47],
invertible linear transformations [31], and invertible ResNet
block [2, 6]. All flows mentioned above have a topology
constraint between the base and estimated densities. This
topology constraint limits the expressive power of normal-
izing flows. To address this constraint, some approaches
incorporated stochasticity into flows [68]. However, this
stochasticity makes analytical density calculation impossi-
ble. Therefore, further density approximation such as KDE
is required for this stochastic normalizing flow. Other ap-
proaches [5, 7, 44] use surjective layers, which relax the
topology constraint but make analytical density computa-
tion with a little looseness. In summary, the optimal nor-
malizing flow model architecture for future trajectory den-
sity estimation is still unknown.
Density Estimation. Kernel density estimation [48, 54] is
the most representative non-parametric method that esti-
mates a continuous density from a finite set of data. Sup-
pose that we have A input data and B points evaluated,
the computational cost is O(AB). This is a huge cost for
autonomous systems. Therefore, several accelerations are
proposed such as data binning [19, 60, 62, 67], fast sum up-
dating [15,16,35,61], fast Gauss transform [22,23,34], and
dual-tree method [20, 21, 36]. However, we confirmed that
the KDE implementation utilizing GPU is faster than these
accelerations including [3,45,46]. We use the KDE utilizing
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GPU for comparison in Sec. 4.

3. Proposed Approach
In this section, we present our normalizing flow-based

trajectory prediction named FlowChain and its update of
estimated density. First, we formulate the trajectory pre-
diction task and conditional CIFs in Sec. 3.1. and Sec. 3.2
respectively. Then, we present our FlowChain model archi-
tecture in Sec. 3.3. After that, we describe its fast update
procedure of estimated density in Sec.3.4. Finally, we ex-
plain how to obtain the density map in Sec. 3.5.

3.1. Problem Formulation

We aim to estimate agents’ plausible future trajectory
densities from their past trajectories. The trajectory of each
agent is defined as a sequence (x0,x1, . . . ,xT ) of posi-
tions xt = (xt, yt) over discrete timesteps t ∈ {0, . . . , T}.
Given the current time step t, we predict future Tf -step tra-
jectory densities {p(x̃i

t+1|ot), . . . , p(x̃
i
t+Tf

|ot)} given To-
step observed trajectory ot = {(xi

t−To−1, . . . ,x
i
t)| i ∈

{1, 2, . . . , Na}}, where Na and i denote the number of
agents and the index of each agent, respectively. This in-
dex will be omitted for brevity in later use. We denote x as
an observed position, x̃ as a predicted future position, and
x̂ as a ground truth future position.

3.2. Conditional Continuously-indexed Flow

Conditional normalizing flow is a density estimation
method that uses a parameterized bijective transformation f
conditioned on additional information c such as an encoded
vector from observed trajectories, i.e., ot, for trajectory pre-
diction. The bijection f transforms a base density p(z) to
an expressive density p(y) by the analytical computation of
the change-of-variables formula as follows:

y = f(z) (1)

p(y) = p(z)|det∇yf
−1(y, c)| (2)

The parameters of bijective transformation f can be learned
by maximizing the likelihood of samples ŷ from datasets,
or minimizing the negative log-likelihood as follows:

NLL = − log p(ŷ|c) (3)

A normalizing flow with only bijective transformations
has a constraint that the topology of a base density is pre-
served. For example, if the base density is a simple uni-
modal Gaussian distribution, the normalizing flow fails to
fit a distinct multi-modal density. To avoid this problem
of bijective transformation, we use continuously-indexed
flows (CIFs) [7], akin to an infinite mixture of normalizing
flows. While CIFs potentially avoid the topology constraint,
CIFs still enable analytical density computation with a little

looseness E because CIFs incorporate inference and gener-
ative surjections according to the survey [44]. We investi-
gated the tradeoff between the expressive power and exact-
ness of estimated density on CIFs. We concluded this loose-
ness of estimated density can be ignored in trajectory pre-
diction, as we show in the supplemental materials. Based on
the above discussion, We use conditional CIFs as the base
normalizing flow model of our FlowChain.

3.3. FlowChain model

The overview of the FlowChain model is shown in Fig. 2.
Given the current time step t, we estimate future trajec-
tory densities {p(x̃t+1|ot), . . . , p(x̃t+Tf

|ot)} by chaining
the conditional CIFs, each of which transforms the density
of the former time step p(x̃t+n−1|ot) to the density of the
next time step p(x̃t+n|ot), shown in the upper side of Fig. 2.
Our formulation consists of two equations: the initial condi-
tion for the first step prediction (Eq.(4)) and the recurrence
relation between the latter steps (Eq.(5)) as follows.

p(x̃t+1|ot) = N (z;xt, σ)|det∇x̃t+1f
−1
1 (x̃t+1,ot)| (4)

p(x̃t+n|ot) = p(x̃t+n−1|ot)|det∇x̃t+n
f−1
n (x̃t+n,ot)|

(5)

= exp

(
logN (z;xt, σ)

+

n∑
n′=1

log |det∇x̃t+n′ f
−1
n′ (x̃t+n′ ,ot)|

)
(6)

where n ∈ {2, 3, . . . , Tf}. fn is a conditional CIF
that transforms the sample x̃t+n−1 from a former den-
sity p(x̃t+n−1|ot) to the sample x̃t+n from a next den-
sity p(x̃t+n|ot) as x̃t+n = fn(x̃t+n−1,ot). f1 transforms
the sample z from a base Gaussian density N (·;xt, σ).
N (·;xt, σ) is created from the newest observed position xt

as a mean position. The standard deviation σ is a trainable
parameter of FlowChain model. All of f1 and fn are in-
dependently trained with the loss function (Eq.(3)) in our
method.

From fn, we can sample multiple trajectories for best-
of-N metrics [25] by sampling multiple z as follows:

{x̃t+1, . . . , x̃t+n} = {f1(z,ot), . . . , fn ◦ · · · ◦ f2 ◦ f1(z,ot)}
(7)

3.4. Update of estimated density

For accurate prediction by reusing the previous predic-
tions, we focused on two features of the observed trajec-
tory: the newest observed position and motion trend, shown
in Fig. 2. Our FlowChain generates future trajectories by
transforming the newest observed position xt based on the
motion trend e.g. go straight or turning left/right, modeled
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Figure 2. Overview of our FlowChain model. FlowChain consists of sequential conditional CIFs denoted by fn. fn is conditioned on the
feature vector denoted by Motion Trend from the Temporal-Social Encoder, which encodes the observed trajectories ot. Since ot includes
the trajectories of other agents as well as an agent of interest (i.e, the target of prediction), the future trajectory is predicted while taking
into account social interaction with the others. fn transforms the density of the former time step p(x̃t+n−1|ot) to the density of the next
time step p(x̃t+n|ot) as shown in the upper side. However, for the first step, the Gaussian distribution N (·;xt, σ), which is created from
the newest observed position xt, is transformed. The boxes of past, current (i.e., newest), and future densities are colored by red, blue,
and purple, respectively. In the update procedure shown on the bottom side, the Gaussian distribution N (·;xn+1, σ), created from newest
observed position xt+1 at t+1, replace the estimated density from the former time step. The other calculations are reused as shown by gray
arrows. We can properly update the density by using the newest observed position at t+ 1, xt+1, instead of p(x̃t+1|ot). In a toy example
shown in this figure, another incorrect mode observed in the predicted densities, p(x̃t+2|ot) and p(x̃t+3|ot), is successfully suppressed in
the updated predictions p′(x̃t+2|ot+1) and p′(x̃t+3|ot+1). As shown in Sec. 4, our experiments validate this advantage of our proposed
fast update procedure is greater than its disadvantage (i.e., a decrease in the prediction accuracy due to the reuse of the motion trend) so
that the updated predictions are better than the initial predictions (e.g., p′(x̃t+3|ot+1) is better than p(x̃t+3|ot)in the figure).

by each flow fn(xt+n,ot). We cannot reuse the newest ob-
served position xt at t for the next time step because this
position is a starting point of the future trajectories and thus
greatly affect the accuracy of probability density estimation.
Therefore, FlowChain adopt the newest observed position
xt+n at t+n by replacing the estimated density p(x̃t+n|ot)
with the Gaussian density N (·;xt+n, σ), as shown in the
bottom of Fig. 2. This replacement propagates the informa-
tion of the newest observed position properly to the latter
time steps.

On the other hand, the motion trend can be reused be-
cause it doesn’t change for several time steps unless a sud-
den strong external force is applied to a prediction tar-
get. Therefore, our FlowChain model reuses its trend in
each flow transformation fn(x̃t+n,ot). Specifically, we
use the previously generated trajectories {x̃t+1, . . . , x̃t+n}.
Thus, we can reuse the corresponding log-det-jacobians
log |det∇x̃t+nf

−1
n (x̃t+n+1,ot)| which is the variation of

the estimated densities, as shown by the gray arrows in
Fig. 2. The equation of FlowChain’s update is expressed

similar to Eq.(4) and Eq.(5) as follows:

p′(x̃t+2|ot+1) = N (x̃t+1;xt+1, σ)|det∇x̃t+2f
−1
2 (x̃t+2,ot)|

(8)

p′(x̃t+n|ot+1) = p′(x̃t+n−1|ot+1)|det∇x̃t+n
f−1
n (x̃t+n)|

(9)

= exp

(
logN (x̃t+1;xt+1, σ)

+

n∑
n′=2

log |det∇x̃t+n′ f
−1
n′ (x̃t+n′ ,ot)|

)
(10)

where, n ∈ {3, 4, . . . , Tf}. Thanks to reusing each flow
transformation fn(xt+n,ot), we don’t need to evaluate log-
det-jacobians log |det∇x̃t+n

f−1
n (x̃t+n)| again. This will

greatly omit the computational cost. As a result, we can
update the probability density by only calculating the Gaus-
sian base distribution, summing up the log-det-jacobians,
and taking exponentials, which take less than 1ms in total.
This rapid update is beneficial, especially for autonomous
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Figure 3. Overview of Simfork dataset. The trajectories shown in the left figure are examples of the observed and ground truth trajectories
for training. The position of each step is sampled from the distributions of the middle figures. The sum of each distribution is shown in the
right figure. The boxes of past, current (i.e., newest), and future densities are colored by red, blue, and purple, respectively.

systems where computational resources are limited and
often become busy by executing other computationally-
intense tasks such as object detection, mapping, and path
planning.

3.5. How to obtain the density map

The density map, not like the mere one-point estimate,
is needed when autonomous systems perform visualization
of density or successive tasks such as navigation. We can
correct the possible future points with estimated density by
sampling multiple trajectories from Eq.(7) and its density
from Eq.(6). The density map is obtained by collecting
these points with density at the same time step.

4. Experiments and Results Analysis
4.1. Experimental Setup

Datasets. Experiments were conducted on various datasets
including our developed dataset with synthesized data Sim-
fork, and real-image benchmarks including ETH/UCY [37,
50] and SDD [53]. On all the datasets, the numbers of
past observed and future predicted steps are To = 8 and
Tf = 12, respectively. All steps have an interval of 0.4
seconds in accordance with the literature such as [25, 58].

Simfork is a synthesized dataset for comparison on the
accuracy of predicted densities, which are produced as ex-
plained in Sec. 3.5. In all trajectories in this dataset, ei-
ther of the two types of traveling directions (i.e., turning left
or right) is observed after a straight trajectory, as shown in
Fig. 3. Positions before and after the fork (colored by green
and black, respectively, in the leftmost figure of Fig. 3) are
used as past observed and future ground-truth positions, re-
spectively. Each position of a trajectory is independently
perturbed by the Gaussian noise, which results in the den-
sity at each time step.

Two pedestrian trajectory datasets, ETH [50] and
UCY [37], are merged to ETH/UCY. This dataset has five
scenes: ETH, HOTEL, UNIV, ZARA1, and ZARA2. For
training and testing, we follow the standard leave-one-out

approach, where we train on 4 scenes and test on the re-
maining one. We follow the train-validation-test split of
Social-GAN [25].

SDD consists of 20 scenes captured in bird’s eye view
using aerial drones. This dataset contains various moving
agents such as pedestrians, bicycles, and cars, but we focus
on pedestrians for comparison, as with Trajnet [56]. We
also follow the train-test split of Trajnet [56].
Metrics Evaluation of accuracy on trajectory prediction is
done with the widely-used metrics, Average Displacement
Error (ADE) and Final Displacement Error (FDE). ADE is
the average L2 distance between the predicted and ground
truth trajectories over time. FDE is the L2 distance between
the endpoints of the predicted and ground truth trajectories.
We follow the Best-of-N procedure [25] with N = 20.

For evaluation of the accuracy of density estimation,
we use earth mover’s distance (EMD) and log-probability.
EMD is a measure of the distance between two densi-
ties by the minimum cost to move one density pile to the
other. EMD is calculated between the estimated density and
ground truth density on each prediction step. Thus, we use
EMD on Simfork dataset, where the ground truth densities
are available. The advantage of EMD over the widely-used
KL divergence is that EMD works properly even if the two
density is disjointed while KL divergence returns a constant
value. We use log-probability on the pedestrian trajectory
prediction datasets, where the ground truth density is un-
available. The log-probability is calculated on the ground
truth trajectory instead of density.
Implementation Details. Each conditional CIFs in our
FlowChain used three-layer RealNVP [14] with multilayer
perceptions (MLPs) of three hidden layers and 128 hid-
den units. All the conditional CIFs are with independent
weights conditioned on the feature vectors from Trajec-
tron++ [58] encoder as the temporal-social encoder. We
used a batch size of 128 and ADAM optimizer [30] with a
learning rate of 10−4. All experiments were conducted on a
single NVIDIA A100 GPU. We use a KDE implementation
utilizing GPU as mentioned in Sec. 2.
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Table 1. Quantitative results of trajectory prediction on ETH/UCY dataset with Best-of-20 metrics. T + I denotes its method takes a
trajectory and an image as inputs while T denotes its method takes only a trajectory. Scores are in meters. Red and blue scores denote the
best and the second-best in methods with T. Lower is better. The results of Trajectron++ [58] and MID [24] are updated according to an
implementation issue #53 on the Trajectron++ GitHub page.

ETH HOTEL UNIV ZARA1 ZARA2 MeanMethod Input ADE FDE ADE FDE ADE FDE ADE FDE ADE FDE ADE FDE
SoPhie [57] T + I 0.70 1.43 0.76 1.67 0.54 1.24 0.30 0.63 0.38 0.78 0.54 1.15
Goal-GAN [10] T + I 0.59 1.18 0.19 0.35 0.60 1.19 0.43 0.87 0.32 0.65 0.43 0.85
MG-GAN [9] T + I 0.47 0.91 0.14 0.24 0.54 1.07 0.36 0.73 0.29 0.60 0.36 0.71
Social-LSTM [1] T 1.09 2.35 0.79 1.76 0.67 1.40 0.47 1.00 0.56 1.17 0.72 1.54
Social-GAN [25] T 0.87 1.62 0.67 1.37 0.76 1.52 0.35 0.68 0.42 0.84 0.61 1.21
STGAT [29] T 0.65 1.12 0.35 0.66 0.52 1.10 0.34 0.69 0.29 0.60 0.43 0.83
Social-STGCNN [42] T 0.64 1.11 0.49 0.85 0.44 0.79 0.34 0.53 0.30 0.48 0.44 0.75
PECNet [41] T 0.61 1.07 0.22 0.39 0.34 0.56 0.25 0.45 0.19 0.33 0.32 0.56
Trajectron++ [58] T 0.61 1.03 0.20 0.28 0.30 0.55 0.24 0.41 0.18 0.32 0.31 0.52
MID [24] T 0.55 0.88 0.20 0.35 0.30 0.55 0.29 0.51 0.20 0.38 0.31 0.53
Social Implicit [43] T 0.66 1.44 0.20 0.36 0.31 0.60 0.25 0.50 0.22 0.43 0.33 0.67
FlowChain(Ours) T 0.55 0.99 0.20 0.35 0.29 0.54 0.22 0.40 0.20 0.34 0.29 0.52

Table 2. Quantitative results of trajectory prediction on SDD
dataset with Best-of-20 metrics. Scores are in pixels. See the
caption of Tab. 1 also for details.

Method Input ADE FDE
SoPhie [57] T + I 16.27 29.38
Goal-GAN [10] T + I 12.20 22.10
MG-GAN [9] T + I 13.60 25.80
Social-LSTM [1] T 31.19 56.97
Social-GAN [25] T 27.25 41.44
STGAT [29] T 14.85 28.17
Social-STGCNN [42] T 20.76 33.18
PECNet [41] T 9.97 15.89
Trajectron++ [58] T 11.40 20.12
MID [24] T 10.31 17.37
FlowChain (Ours) T 9.93 17.17

4.2. Prediction Accuracy

A wide range of previous trajectory prediction meth-
ods is quantitatively compared with our FlowChain on
ETH/UCY and SDD datasets, shown in Tab. 1 and Tab. 2.
We didn’t include some methods [40, 63, 70–72] due to a
different train-validation-test split.

For ETH/UCY dataset, FlowChain achieved mean
ADE/FDE of 0.29/0.52 in meters, which are the best
among all trajectory prediction methods. On SDD dataset,
FlowChain achieved average ADE/FDE of 9.93/17.17 in
pixels, which are the best and second-best among all meth-
ods taking only trajectories as inputs [1, 24, 25, 41, 58, 63].

Although our focus is on density estimation with a min-
imal computational cost, FlowChain is comparable with
the state-of-the-art methods also in terms of errors. We
didn’t evaluate the accuracy of future trajectories from
FlowChain’s update because the trajectories do not change
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Figure 4. Temporal estimated densities on Simfork dataset.

in the update as mentioned in Sec. 3.4.

4.3. Analysis on Density Estimation

The results of density estimation are compared between
FlowChain and previous methods based on VAE, GAN, and
diffusion approaches. Trajectron++ is the representative
VAE-based trajectory prediction model with density esti-
mation by GMM. Social-GAN is a minimal model of GAN-
based trajectory prediction. MID is the diffusion-based tra-
jectory prediction model with state-of-the-art prediction ac-
curacy. We applied KDE to Social-GAN and MID since
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Figure 5. Temporal estimated densities on ETH/UCY dataset.

they cannot estimate the density alone. For a fair compari-
son, FlowChain, Social-GAN, and MID generated the same
number of samples for future trajectories; 105 samples.

We evaluated the computational time and the accuracy
of density estimation of each method, as shown in Tab. 3.
Social-GAN and MID take much longer time because KDE
is slow in spite of running on GPU. Trajectron++ is a bit
faster than our FlowChain due to its simple Gaussian mix-
ture model but suffers from the poor quality of estimated
density, as shown by the worst EMD, 2.545, on Simfork
dataset and worst log-probability, −281.86, on ETH/UCY
dataset. On the other hand, our FlowChain achieved the best
EMD, 1.408, and the best log-probability, -0.26, in spite of
the fast computation 37.0ms. Thus, our method success-
fully addresses both the computational cost and accurate
density estimation.

The estimated densities on Simfork are visualized in
Fig. 4. The densities estimated by Trajectron++ are too
large compared to the ground truth densities. While the
densities of Social-GAN and MID are stretched to the ver-
tical axis, our FlowChain successfully estimated the tighter
round-shape densities closest to the ground truth densities.

The estimated densities on ETH/UCY are shown in
Fig. 5. The size of each density represents the positional
uncertainty of a predicted position. As within Simfork, in
ETH/UCY, an agent cannot change its traveling direction
significantly in a short period (i.e., Tf = 12 is 0.4 × 12 =
4.8 seconds), the size of the density expected to be tight.
The densities estimated by Social-GAN are tight but devi-
ated from the ground truth trajectory. Trajectron++ gener-
ated the densities with several disconnected modes due to
the approximation as a Gaussian mixture. While the densi-
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Figure 6. Temporal densities estimated by our update proce-
dure on Simfork dataset.
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Figure 7. Temporal densities estimated by our update proce-
dure on ETH/UCY dataset.

ties from MID are close to the ground truth trajectory, MID
could not suggest tight densities and their modes deviated
from the ground truth trajectories. On the contrary, the den-
sity from our FlowChain covers the ground truth trajectory
with tight distributions. thanks to the explicit density es-
timation of conditional CIFs and our expressive model ar-
chitecture. We should note that the estimated density of
FlowChain has some fluctuation due to the looseness of the
density computation of CIFs. However, we did not observe
any potential problem or failure of density estimation re-
lated to this in our experiments.

4.4. Proposed Update of Density Estimation

As shown in Tab. 3, the accuracy of density estimation
degraded along with the number of updates. However, this
update is remarkably fast 0.6ms, also shown in Tab. 3.
Thus, autonomous systems can select the accurate predic-
tion from scratch or the super rapid update by reusing pre-
dictions depending on the utilization of their computational
resources.

The estimated densities of our update procedure are
shown in Fig. 6 and Fig. 7, which show the densities up-
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Table 3. Accuracy and computational time of density estimation. Scores are in milliseconds for computational time. While lower
is better for EMD on Simfork dataset, higher is better for log-probablity on ETH/UCY dataset. We report the averaged EMD and log-
probability over the 12 prediction steps.

Comp. Time Accuracy of Density EstimationMethod All w/o KDE EMD ↓ log-probability ↑
Social-GAN [25] 11498.8 9.8 1.544 -3.40
Trajectron++ [58] 33.7 - 2.545 -281.86
MID [24] 23904.1 12219.1 2.135 -0.90

Pred at t 37.0 - 1.408 -0.26
Update from t− 1 0.6 - 2.539 -0.45FlowChain (Ours)
Update from t− 5 0.5 - 2.899 -0.53

Table 4. Accuracy of density estimation with the update.

Method log-probability on each step
t+6 t+7 t+8 t+9 t+10 t+11 t+12 mean

Social-GAN [25] -2.65 -2.86 -3.07 -3.26 -3.44 -3.62 -3.80 -3.24
Trajectron++ [58] -121.19 -93.61 -71.62 -51.36 -36.85 -27.92 -22.72 -97.79
MID [24] -1.06 -1.43 -1.75 -2.02 -2.26 -2.46 -2.65 -1.95

FlowChain Without Update 0.21 0.36 0.44 -0.08 -0.78 -0.75 -1.19 -0.26
With Update 0.20 0.50 0.39 0.44 0.20 0.26 0.16 0.31
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Figure 8. Comparison of standard methods and FlowChain
with updates.

dated at t + 1 and t + 2 from the prediction at t. On
Simfork dataset, the wrong mode is successfully suppressed
by exploiting the information of the new observation. On
ETH/UCY dataset, the initial prediction deviated from the
ground truth because the observed trajectory observed un-
til t does not have the information on turning left. How-
ever, the updated densities covered the ground truth well by
adopting the newest observed position despite the minimal
computational cost.

We further perform a comparison with a practical set-
ting. Models usually make predictions with intervals due to
the large computational cost. Therefore, we usually cannot
obtain the prediction from the latest observation, as shown
by the upper side of Fig. 8. For example, assume we need
the density of six time-step ahead such as pt+6 from xt, we
cannot obtain pt+7 from xt+1 or pt+8 from xt+2 due to the

computational overhead. However, with FlowChain’s rapid
update, we can obtain the update (pt+7, pt+8) from the lat-
est observation (xt+1,xt+2) on every time step thanks to the
minimal computational cost, as shown by the bottom side of
Fig. 8. We conducted the comparison with the frame of in-
terest as six time-step ahead t + 6 and the log-probability
metric. As shown by Tab. 4, our FlowChain with update
achieves the highest log-probability. Therefore, we can con-
clude that FlowChain’s update can improve the density es-
timation with minimal computational cost.

5. Concluding Remarks

In this paper, we proposed a new normalizing flow-
based trajectory prediction network named FlowChain that
achieves fast and accurate probability density estimation.
Furthermore, our update procedure reliably generates the
density estimation of the next step based on the density es-
timation of the previous step in an instant. Experimental
results demonstrated that FlowChain achieved comparable
accuracy to the state-of-the-art trajectory prediction models
and superiority in the accuracy of density estimation.

Our FlowChain has one limitation. Our update proce-
dure can reliably estimate the density for several steps but
the performance will degrade along with the time steps be-
cause the reused flow transformations do not reflect the new
observations. Our future work is determining when should
we stop to use the update procedure and make predic-
tions from scratch. Furthermore, FlowChain is the domain-
agnostic model that can be applied to a wide range of pre-
diction tasks such as stock price prediction, human motion
prediction, and video prediction. We will investigate the
applicability of our FlowChain on these other domains.
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