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Abstract

Catastrophic forgetting; the loss of old knowledge upon
acquiring new knowledge, is a pitfall faced by deep neu-
ral networks in real-world applications. Many prevail-
ing solutions to this problem rely on storing exemplars
(previously encountered data), which may not be feasi-
ble in applications with memory limitations or privacy
constraints. Therefore, the recent focus has been on
Non-Exemplar based Class Incremental Learning (NECIL)
where a model incrementally learns about new classes with-
out using any past exemplars. However, due to the lack
of old data, NECIL methods struggle to discriminate be-
tween old and new classes causing their feature represen-
tations to overlap. We propose NAPA-VQ: Neighborhood
Aware Prototype Augmentation with Vector Quantization,
a framework that reduces this class overlap in NECIL. We
draw inspiration from Neural Gas to learn the topological
relationships in the feature space, identifying the neighbor-
ing classes that are most likely to get confused with each
other. This neighborhood information is utilized to enforce
strong separation between the neighboring classes as well
as to generate old class representative prototypes that can
better aid in obtaining a discriminative decision boundary
between old and new classes. Our comprehensive experi-
ments on CIFAR-100, TinyImageNet, and ImageNet-Subset
demonstrate that NAPA-VQ outperforms the State-of-the-
art NECIL methods by an average improvement of 5%,
2%, and 4% in accuracy and 10%, 3%, and 9% in for-
getting respectively. Our code can be found in https:
//github.com/TamashaM/NAPA-VQ.git.

1. Introduction

The achievements of deep neural networks over the years
have grown significantly, and their efficiency and applica-
bility have been demonstrated by numerous state-of-the-art

works [29, 23, 35, 20]. However, a major requirement for
the optimal operation of gradient-based optimization – the
ubiquitous learning paradigm – is the data samples being in-
dependently and identically distributed (IID) [21]. This as-
sumption may not hold in real data owing to various factors
such as the addition of new classes of data, the removal of
old data due to memory or availability constraints, and the
changes in the data-generating phenomena (concept drift).
As a result, neural networks may experience catastrophic
forgetting where the network forgets the previously learned
knowledge upon acquiring new knowledge [25].

“Continual Learning” is a field of research pursuing
mechanisms to mitigate this forgetting [13]. In this
manuscript, we focus on one paradigm of continual learn-
ing, named Class Incremental Learning (CIL) [38]. In CIL,
a neural network is trained over a series of tasks and at
each task, the network learns a new set of classes. At any
given time, the network should classify between all learned
classes thus far. Among the techniques proposed for CIL,
rehearsal-based methods have demonstrated promising re-
sults in mitigating forgetting by storing exemplars (old sam-
ples) and reusing them while learning new tasks [38, 5, 36].
However, such storage is not always possible due to mem-
ory limitations and privacy constraints [45]. Therefore, we
focus on Non-Exemplar based CIL (NECIL), a more prag-
matic yet challenging scenario, which attempts to preserve
the old knowledge without storing any exemplars [57, 58].

NECIL methods often struggle with overlapping old and
new class representations due to the unavailability of ex-
emplars, resulting in catastrophic forgetting. [57]. While
prototypes of old classes in the deep feature space are a vi-
able alternative to reusing exemplars [57, 56], if not prop-
erly generated, the class boundaries refined using such pro-
totypes tend to be muddled, causing confusion between the
old and new classes, and in turn, leading to catastrophic for-
getting. To overcome this limitation, we propose NAPA-
VQ: Neighborhood-Aware Prototype Augmentation with

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

11674



Vector Quantization framework. NAPA-VQ not only pro-
poses a novel way to create prototypes of old classes by con-
sidering class neighborhoods but also incorporates a novel
quantization mechanism to create clearer class boundaries
by enforcing a strong separation between the neighboring
classes. This reduction in representation overlap effectively
mitigates catastrophic forgetting. NAPA-VQ builds on the
principles of unsupervised Neural Gas (NG) [49] and super-
vised Learning Vector Quantization (LVQ) [26] to facilitate
this neighborhood awareness and enforce more discrimina-
tive boundaries.

NAPA-VQ contains two components: (I) a
Neighborhood-aware Vector Quantizer (NA-VQ) and
(II) a Neighborhood-aware Prototype Augmenter (NA-PA).
NA-VQ learns the topology of the feature space manifold
Z which is the output of a deep feature extractor (e.g.
ResNet), identifying the neighboring classes that share
similar features and are hence prone to get confused with
each other. This knowledge of the neighboring classes and
their class distributions is utilized by NA-VQ to increase
their separability and by NA-PA for old class prototype
augmentation, i.e., to generate surrogate exemplars to
facilitate the retention of old information when new classes
are being learned.

To summarize,

• We propose an improved supervised vector quantiza-
tion method to discretize the latent space and improve
class separation.

• We propose a prototype augmentation method that
uses the topological information of classes in the latent
space to avoid confusion between classes and catas-
trophic forgetting.

• We demonstrate the utility of the above two contri-
butions combined in NECIL, obtaining superior per-
formance compared to the existing NECIL methods
on CIFAR-100, TinyImageNet, ImageNet-Subset, and
ImageNet-1k datasets.

2. Related work
2.1. Incremental learning

The techniques proposed to combat catastrophic forget-
ting can be broadly categorized into three [13]. (1) The
regularisation-based methods that add an extra regularisa-
tion loss term either to penalize changes to the network pa-
rameters that are important for previous tasks [25, 33, 54, 1]
or to distill knowledge from previous tasks to the current
task [32, 16, 55]. (2) The parameter isolation-based meth-
ods that assign each task with an isolated set of parameters
to prevent task interference either by dynamically increas-
ing the network capacity [39, 52, 2] or by masking previous

task parameters in a fixed size network [17, 42, 37]. Al-
though parameter isolation methods are effective in over-
coming catastrophic forgetting, they experience either a lin-
ear increase in network parameters or a decrease in capac-
ity per task as the number of tasks grows [44]. (3) The
rehearsal-based methods that store a small subset of pre-
vious task data to either retrain [38, 5, 8] or constrain the
optimisation [36, 7, 3] during the learning of new tasks in
order to retain the discriminability between old and new
classes. However, these methods also encounter pitfalls due
to memory limitations, and other pragmatic concerns such
as privacy or consent issues when storing samples. An al-
ternative to rehearsal-based methods is “pseudo-rehearsal”,
which involves training a generative model to mimic past
task distributions [43, 41]. Despite the encouraging results,
generative models are computationally expensive to train
[11] and are also prone to catastrophic forgetting [48]. This
motivated the development of NECIL strategies that neither
depends on real nor fake past samples [57, 58, 34, 53].

NECIL methods benefit from powerful feature extrac-
tors learning transferable features across tasks, as demon-
strated by SDC [53], which showed that embedding net-
works suffer significantly less from catastrophic forgetting.
PASS [57] also showed that self-supervised learning alle-
viates task-level overfitting. Furthermore, to maintain the
decision boundaries of previously learned classes, PASS
introduced a class-mean prototype augmentation technique
based on Gaussian noise. While this technique aids in the
retention of old information, it can be further improved by
leveraging the knowledge of the distribution of classes in
the feature space. Accordingly, IL2A [56] proposed storing
covariance matrices to retain class variations, but this ap-
proach can be memory intensive. SSRE [58] proposed a dy-
namic structure reorganization strategy to retain and trans-
fer knowledge between tasks along with a prototype selec-
tion mechanism that utilizes an up-sampling technique of
non-augmented class-mean prototypes. Similar to these ap-
proaches, we also store the mean prototype, while propos-
ing a new method to augment them. To this end, we use
the topological connections derived from an NG-like vec-
tor quantization to generate prototypes that lie within the
shared feature regions of the confusing classes which aid in
establishing better class discrimination.

2.2. Vector quantization

Vector Quantization (VQ), a technique used to discretize
a continuous data space into a finite set of “coding vectors”
(CVs) was popularised with the advents of Self-organizing
Maps (SOMs) [27]. In addition to quantizing the data man-
ifold, a SOM captures a topological mapping from data to
the CVs. Neural Gas (NG) networks [49, 19], on the other
hand, were introduced to address a shortcoming of the orig-
inal SOM by allowing a generic graph structure rather than
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Figure 1. Illustration of NAPA-VQ. Data from the current task t are augmented using a rotation-based technique [57] and are fed to the
feature extractor. The obtained feature representations (Zt) and the NA-PA generated old class representative prototypes (At) are sent to
the vector quantizer (NA-VQ) to identify and repel confusing classes, establishing better discrimination in the feature space. Knowledge
Distillation (LKD) is used to minimize the feature drift across tasks.

a fixed lattice structure. In NG, the CVs are adjusted to cap-
ture the data-dense regions, and the edges between these
CVs are formed based on their proximity. These edges and
the CVs form a graph that approximates the topology of the
data manifold.

Coding vector-based learning can be traced back to the
K-nearest neighbor (K-NN) algorithm [18]. For instance,
Learning Vector Quantization (LVQ) was proposed to de-
rive the CVs used in a 1-NN classifier [26, 40]. Despite
common roots, LVQ algorithms and unsupervised VQ algo-
rithms such as SOM differ in their primary usages of CVs;
the unsupervised algorithms attempt to obtain a set of CVs
to best represent the data while LVQ algorithms attempt to
reduce the misclassification rate by focusing on the decision
boundaries between classes. These complementary proper-
ties allow us to combine unsupervised and supervised VQ
methods [22, 12] to obtain CVs to both reduce the misclas-
sification rate and represent the data distribution [27].

Multiple studies explored the integration of the hierar-
chical feature-extracting capability of deep feature extrac-
tors with VQ [12, 50, 4] which were also later adapted
to Continual Learning. TPCIL [46] proposed to retain
the topology of the feature space to preserve old knowl-
edge over the increments. IDLVQ [9] proposed to adapt
a margin-based loss for the task of few-shot class incremen-
tal learning (FSCIL) – a special case of CIL, therefore not
directly transferrable to CIL/NECIL – to create a large mar-
gin between classes to mitigate overlap. TOPIC [47] was
also proposed for the FSCIL setting with the aim of pre-
serving old knowledge by stabilizing a NG network. We
highlight that changes to the topology are possible due to
the inevitable feature drift occurring over incremental steps
thus a method that uses both augmented prototypes and new
data to update the topological graph between CVs is war-

rented.

3. Methodology
3.1. Preliminaries and notations

In CIL, a model is continually trained over a series of
tasks, where at each task the model learns a set of new
classes that are distinct from the previously learned classes.
At any given time, the model should classify between sam-
ples from all classes seen thus far. The training data at task
t is denoted as Dt = {Xt,Yt} where Xt = {xt

i}N
t

i=1 is
the set of input images and Yt = {yti |yti ∈ Ct}Nt

i=1 are
their target labels. N t and Ct correspond to the number of
samples and the set of classes at task t. We further define
P t =

∑t
j=1 |Cj | as the total number of classes seen at the

end of task t.

3.2. Overview of the framework

An illustration of our framework is shown in Fig. 1
which consists of a feature extractor (Fθ), a Vector Quan-
tizer (NA-VQ), and a prototype augmenter (NA-PA). Fθ is
used to obtain the feature space of the input data. NA-VQ
quantizes this feature space by learning a set of CVs named
Mϕ such that mi is associated with class i. These CVs are
trained to effectively improve the inter-class variance and
reduce intra-class variance in the feature space reducing the
representational overlap in classes. The module parameters
θ and ϕ are shared across all tasks but are updated contin-
ually with the data at the current task, thus t denotes the
states of the parameters at each task. Consequently, Fθt and
Mϕt refer to the states of the feature extractor and the set of
CVs at task t. The goal of task t is to jointly update Fθt−1

and Mϕt−1 using Dt to obtain Fθt and Mϕt . At incremen-
tal tasks (when t > 0), a set of old class prototypes (At)
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Figure 2. Conceptual illustration of NA-VQ. Each color represents
a single class. (a) Given z, edges are created between the closest
CV (solid circle) and the next K − 1 closest CVs (dotted circles)
to approximate the local topology around z. (b) Class A is over-
lapped with classes B, C, and D thus a sample from class A (zA)
could be misclassified into B, C, or D. NA-VQ pulls zA and mA

together and pushes zA and direct neighbors of mA (mB ,mC ,
and mD) away from each other, reducing the class overlap. Closer
the CV to zA, the higher these forces. The edge between mA

and mD is pruned due to edge weakening over time. (c) When a
new class G is introduced, mG is inserted randomly and refined
through attractive and repulsive forces over the iterations, identi-
fying a less-overlapping space in the feature space.

generated using our NA-PA technique is used alongside Dt

to retain the discrimination between old and new classes.

3.3. Neighborhood-Aware Vector Quantizer (NA-
VQ)

At task t, we extract the features of Xt by computing
Zt ⊂ Rn using Fθt , where n is the dimensionality of the
feature space (Eq. 1).

Zt = Fθt(Xt) (1)

We assume Zt lies in a feature space manifold Z which
captures the topological properties between the classes.
NA-VQ partitions Z into disjoint regions such that Zi con-
tains the feature distribution of class i. We encode Zi us-
ing mi, i.e., Mϕt = {mi ∈ Rn|i = 1, ..., P t} contains

one CV per class. The algorithm can be summarised into
two iterative steps (1) the topology approximation and (2)
the CV adaptation. These steps are performed concurrently,
i.e., the topology learned depends on the CV adaptation and
vice versa. A conceptual illustration of NA-VQ is shown in
Fig. 2.

(1) Topology approximation. Inspired by NG [49], the
topology of Z is approximated by learning an undirected
graph Gt =< Mϕt , Et >, where CVs are the nodes and
the topological connections between the CVs are the edges
represented by the adjacency matrix E. At the beginning of
task t, Mϕt−1 and Et−1 are extended to Mϕt and Et to ac-
comodate task t. Specifically, Ct new randomly initialized
CVs are inserted without any edges that link to, from, or
between them. During the learning of task t, Et is modified
by adding, decaying, and removing edges between the CVs.

Concretely, given (x, y) ∈ (Xt,Yt) and its feature rep-
resentation z ∈ Zt, we calculate the distance from z to
each CV in Mϕt : D = {d(z,mi)|i = 1, ..., P t} where
d is the Euclidean distance. D is then sorted to assign
a rank to each CV: R = {ri|i = 1, ..., P t} such that
∀i, d(z,mri) < d(z,mri+1

). Next, the edges between the
CVs are formed based on a connectivity factor denoted as
K. A higher value of K leads to a denser graph, whereas
a lower value of K results in a sparser graph. Specifically,
edges are created between the closest CV and the next K−1
closest CVs, i.e., er1,j ← 1 for j = r2, ..., rK . Conse-
quently, CVs that lie within the high-density regions of Z
develop edges, allowing to identify classes that share sim-
ilar features in Z . Since the CVs get updated over time,
the edges created in a previous iteration may become obso-
lete as their endpoints may have moved. To remove such
edges we employ an edge decaying mechanism. All edges
from the closest CV are decayed by a constant multiplier
ϵ ∈ (0, 1) so that the edges created at a previous iteration
that no longer fall within a high-density region are weak-
ened, i.e., er1,j ← er1,j ∗ ϵ for j = 1, .., P t. If the edge
strength goes below a predefined emin, such edges would
be pruned, i.e., if ei,j < emin, ei,j ← 0.

(2) CV adaptation. During the learning of task t, the
class label y in (x, y) ∈ (Xt,Yt) is employed to adapt CVs
in Mϕt to improve the discriminability in the feature space.
Concretely, we create attractive forces between z and my

and repulsive forces between z and any other “confusing
CVs” of my . The confusing CVs of my (referred to as N−

y )
are the direct neighbors of my as determined by graph Gt

in Step (1).

N−
y = {mi|ey,i > 0 and y ̸= i and i = 1, ..., P t} (2)

Any mi ∈ N−
y is considered to be close to my , thus, there

is a high likelihood that mi will be mistaken for my as the
winner CV when presented with sample x. To counteract
this, we propose a Neighborhood-Adaptation loss (LNA)
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(Eq. 3) to bring z and my closer together while pushing z
and N−

y farther apart.

Lt
NA(X

t,Yt;Mϕt , Fθt)) =
∑
x,y∈
Xt,Yt

ReLU(d(z,my)− dneigh−)

where dneigh− =
∑

mi∈N−
y

Wmi × d(z,mi) and z = Fθt(x)

(3)

LNA computes the difference between d(z,my) and
dneigh− when d(z,my) > dneigh−, the scenario where x
is most likely to be misclassified. d(z,my) is the distance
from z to its correct CV my and dneigh− is a linear combi-
nation of the distances from z to N−

y . The weight given to
mi ∈ N−

y (Wmi ) is calculated using a monotonic decaying
function (Eq. 4) to reduce the impact of mi on LNA as the
distance between mi and z increases.

Wmi =
e−β×d(z,mi)∑

mj∈N−
y
e−β×d(z,mj)

where β > 0 (4)

To avoid the repelling forces in LNA from diverging any
mi ∈ N−

y from their respective class distributions, we take
three steps. First, the repelling forces are distributed over
multiple confusing CVs. Second, ReLU prevents any ad-
justments to the CVs when d(z,my) < dneigh−, since it is
unlikely that this scenario would lead to misclassification.
Finally, Distance-based cross-entropy loss (LDCE) [51], as
described next, is used to encourage mi to more accurately
represent the distribution of class i which aids in minimiz-
ing the distance between the feature representations of class
i and mi.

The probability of sample x, belonging to class y can be
measured by the distance between z = Fθt(x) and my [51],
i.e., p(y|x) ∝ −d(z,my). Considering the non-negative
and sum-to-one properties of the probability, we can define
p(y|x) using a softmax function as shown in Eq. 5 where τ
is a temperature parameter.

p(y|x) = e−
d(z,my)

τ∑P t

j=1 e
−

d(z,mj)

τ

(5)

Since the true probability distribution is a one hot encoded
vector, we can define LDCE for Xt as Eq. 6.

Lt
DCE(X

t,Yt;Mϕt , Fθt) =
∑

x,y∈Xt,Yt

− log p(y|x) (6)

These two steps are conducted concurrently at each mini-
batch gradient update during the optimization of θ and ϕ.
By backpropagating the gradients calculated for LNA and
LDCE through Fθ and Mϕ, we effectively reduce the class

overlapping in the feature space and establish a more dis-
criminative decision boundary between classes. During the
incremental steps (t > 0), we freeze the old class represen-
tative CVs but update their topological connections using
both the augmented prototypes (Sec. 3.4) and Dt.

3.4. Neighborhood-Aware Prototype Augmenter
(NA-PA)

In NECIL, we cannot directly compute LNA or LDCE

for the previous task samples. While the class mean in
the feature space serves as a central representative point for
each old class, it does not capture the class variance. Thus,
if the model relies solely on class-means without any aug-
mentation, it may overfit to the class mean and forget to
distinguish samples of the same class that are close to but
not exactly equal to the class mean. Augmentation miti-
gates this issue by generating multiple representative points
for each old class, considering the underlying class vari-
ance. Therefore, we store representative mean prototypes
and augment them on the fly with NA-PA during the learn-
ing of each new task. Specifically, we generate prototypes
in the regions where the model is uncertain about the class
labels. We consider pairs of classes that the model may con-
fuse between using the topological graph Gt established in
Sec. 3.3, and generate prototypes to distinguish between
these pairs of classes, increasing the quality of the proto-
types used for retaining old knowledge.

Inspired by the work [10], we identify that the features
of each class can be decomposed into a class-specific com-
ponent (features placed closer to the class mean) and a
class-shared component (features that lie between itself and
another class). For a given old class, the samples near
the boundaries shared with its confusing classes have the
biggest impact on recovering good decision boundaries be-
cause they are closer to the regions where the model is
uncertain about the class labels. Thus, NA-PA generates
augmented representations of the old classes by fusing the
class-specific features from the old classes with the class-
generic/shared features from their confusing classes to cre-
ate such high-impact prototypes (Fig. 1). At task t(> 0), an
augmented prototype ai of old class i is generated as shown
in Eq. 7 by fusing the mean prototype of class i (µi) with the
mean prototype of class j (µj), a randomly picked neighbor
of class i. By varying α, we ensure the augmented pro-
totypes are composed with varying degrees of uncertainty,
i.e., the lower the α, the higher the uncertainty. Here, we
are using the mean prototypes instead of CVs as these CVs
are adjusted continually to reduce misclassification and may
potentially be positioned near class boundaries (away from
class means) for improved discrimination. We determined
that class-means serve as better representatives of the class-
specific features than the CVs.
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ai = αµi + (1− α)µj where mj ∈ N−
i & α ∼ N (0.5, 1)

(7)

At is the collection of augmented prototypes and their class
labels representing all old classes up to task t. At is used
alongside Dt in NA-VQ for topology approximation as well
CV adaptation. Specifically, we calculate L̂NA and L̂DCE

using At.

L̂t
DCE(A

t;Mϕt) =
∑

ai∈At

− log p(i|ai) (8)

L̂t
NA(A

t;Mϕt)) =
∑

ai∈At

ReLU(d(ai,mi)− dneigh−) (9)

3.5. Knowledge distillation

As F t
θ gets updated continually, the actual feature distri-

butions of old classes drift away from their original distri-
butions. To mitigate this drift we incorporate a feature-level
knowledge distillation (LKD) [57, 56] that attempts to align
the feature spaces of the current and the previous models.

Lt
KD(Xt|F t−1

θ , F t
θ) = d(F t−1

θ (Xt), F t
θ(X

t)) (10)

The total loss used in our framework is shown below and λ1

and λ2 are loss weights (See Supp. Materials for explana-
tions on loss weights)

Lt
total = Lt

DCE + Lt
NA when t = 0 (11)

Lt
total = Lt

DCE+λ1L̂
t
DCE+Lt

NA+L̂t
NA+λ2L

t
KD when t > 0

3.6. Rotation-based data augmentation

In order to learn richer features, we transform the train-
ing data using the same rotation-based approach used in
[57]. Concretely, the training samples are rotated by 90, 180
and 270 degrees to generate 3 new pseudo-classes, learn-
ing 4P t classes instead of P t classes at the training stage.
However, the classification occurs only between the original
classes during the evaluation stage.

3.7. Classification

We perform the nearest CV-based classification. At the
end of task t, given a test sample x, we obtain z = Fθt(x),
calculate the distance from normalized z to each normalized
CV and assign the class label of the closest CV to x.

ypred = argmin
i=1,...,P t

d(
z

||z||
,

mi

||mi||
) (12)

Figure 3. Detailed Accuracy curves showing the Top-1 Accuracy
at each incremental step.

4. Experiments
4.1. Datasets

We perform comprehensive experiments using four
datasets; CIFAR-100 [28], TinyImageNet [31], ImageNet-
Subset [14], ImageNet-1K [14] in three incremental scenar-
ios; T = 5, 10 and 20 where T is the number incremental
tasks. For comparability, the classes are arranged into tasks
using the same fixed random order and division settings as
[57, 58] for the first three datasets. For the ImageNet-1K
dataset, we train the model on 400 classes for the first task,
and equal classes in the rest of the tasks.

4.2. Implementation details

For a fair comparison, we adapted the same backbone
architecture, ResNet-18 [23] from [57]. The concrete de-
tails of our implementation can be found in the Supp. ma-
terials and the publicly available codebase. All the exper-
iments were conducted on the University of Melbourne’s
high-performance computing system, Spartan [30].

4.3. Evaluation metrics

In line with previous works [57, 58], we report the stan-
dard metrics used to evaluate CIL strategies: Average Ac-
curacy and Average Forgetting. Accuracy at task t is the
average accuracy of all the classes that have been learned
up to and during task t. Average accuracy [6] is the mean
accuracy across all the tasks, including the initial task. For-
getting at any given time for a task previously encountered,
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Table 1. Average Accuracy (%) of NAPA-VQ compared to the top three SOTA using four datasets. The higher the values, the better. T is
the number of incremental tasks. Values for the methods with * were extracted from [58]. Our improvement is shown in red.

.

Method
CIFAR-100 TinyImageNet ImageNet-Subset ImageNet-1K

T=5 T=10 T=20 T=5 T=10 T=20 T=5 T=10 T=20 T=5 T=10 T=20

PASS * 63.47 61.84 58.09 49.55 47.29 42.07 66.84 61.80 54.46 - - -

IL2A 65.61 59.09 58.82 47.02 44.48 39.68 - - - - - -

SSRE * 65.88 65.04 61.70 50.39 48.93 48.17 - 67.69 - - - -

NAPA-
VQ

70.44
(+4.56)

69.04
(+4)

67.42
(+5.72)

52.77
(+2.38)

51.78
(+2.85)

49.51
(+1.34)

69.15
(+2.31)

68.83
(+1.14)

63.09
(+8.63)

55.11 53.04 45.46

Table 2. Average Forgetting (%) of NAPA-VQ compared to the top three SOTA using four datasets. The lower the values, the better. T is
the number of incremental tasks. Values for the methods with * were extracted from [58]. Our improvement is shown in red.

Method
CIFAR-100 TinyImageNet ImageNet-Subset ImageNet-1K

T=5 T=10 T=20 T=5 T=10 T=20 T=5 T=10 T=20 T=5 T=10 T=20

PASS * 25.20 30.25 30.61 18.04 23.11 30.55 19.66 25.85 30.98 - - -

IL2A 28.72 39.86 40.70 19.74 29.90 39.99 - - - - - -

SSRE * 18.37 19.48 19.00 9.17 14.06 14.20 - 8.30 - - - -

NAPA-
VQ

6.90
(-11.47)

9.65
(-9.83)

9.08
(-9.92)

9.08
(-0.09)

10.81
(-3.25)

9.31
(-4.89)

7.17
(-12.49)

9.67
(+1.37)

14.49
(-16.49)

10.45 10.94 18.23

Figure 4. Confusion matrices for Fine-tuning, SSRE and NAPA-
VQ for CIFAR-100. Both SSRE and NAPA-VQ reduce the task
recency bias observed in fine-tuning. Along the diagonal, NAPA-
VQ has more red patches than SSRE.

is measured by the difference between the maximum accu-
racy for the task during the learning process and the current
accuracy for the same task. Average Forgetting at the end
of task t is therefore defined as the average of forgetting val-
ues for all the tasks learned up to task t [6]. We report the
average forgetting at the end of the final task. Additional
explanations related to evaluation metrics can be found in
Supp. materials.

4.4. Comparison with SOTA

We compare NAPA-VQ with the existing state-of-the-art
(SOTA) methods in NECIL, including EWC [25], LwF MC
[38], MUC [34], PASS [57], IL2A [56], and SSRE [58].
We report the average accuracy and average forgetting of
NAPA-VQ against the top three performing methods in Ta-

bles 1 and 2. Reported values are the average of three sepa-
rate runs. As illustrated in Table 1, NAPA-VQ demonstrates
an average improvement of 5%, 2%, and 4% in accuracy
for CIFAR-100, TinyImageNet, and ImageNet-Subset, re-
spectively, over the best existing NECIL-SOTA technique.
The detailed accuracy curves for the compared methods
for CIFAR-100, TinyImageNet (in Fig. 3) and ImageNet-
Subset (in Supp. Fig. 1), show that NAPA-VQ main-
tains higher accuracies over the incremental tasks. More-
over, NAPA-VQ exhibits a significant reduction in forget-
ting by an average of 10%, 3% and 9% for CIFAR-100,
TinyImageNet, and ImageNet-Subset, respectively. This
reduction in forgetting is prominent when dealing with a
larger number of tasks (Table 2). In addition, we pro-
vide results on ImageNet-1K, demonstrating the effective-
ness of NAPA-VQ on large-scale datasets. Furthermore,
we compare NAPA-VQ to traditional exemplar-based meth-
ods, iCARL [38], EEIL [5], and UCIR [24] trained using a
limited number of exemplars (20) (Fig. 3) and show that
NAPA-VQ obtains competitive performance.

4.5. Ablation study

The ablation study is conducted using the CIFAR-100
dataset to demonstrate the impact of NA-VQ and NA-PA
(Table 3). We first train a baseline model using the Cate-
gorical Cross Entropy loss (LCCE) and LKD (Ablation-1)
[58]. We then incorporate NA-VQ (Ablation-2 and 3) and
NA-PA (Ablation-5) into the baseline model in sequence.
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Table 3. Average Accuracy (%) and Average Forgetting (%) obtained for the ablation study conducted using CIFAR-100 to evaluate the
effectiveness of NA-VQ and NA-PA. We refer to the combination of DCE and NA as NA-VQ.

Ablation
Average Accuracy ↑ Average Forgetting ↓
T=5 T=10 T=20 T=5 T=10 T=20

1) KD + CCE (Baseline) 26.21 16.70 10.93 85.29 89.77 93.49

2) KD + DCE 49.83 32.90 17.01 48.84 75.37 81.71

3) KD + DCE + NA→ KD + NA-VQ 49.31 42.16 42.13 45.03 41.76 30.09

4) KD + NA-VQ + Gaussian-PA 68.84 65.44 62.39 10.78 16.20 18.30

5) KD + NA-VQ + NA-PA→ NAPA-VQ 70.44 69.04 67.42 6.90 9.65 9.08

Figure 5. Visualization of the impact of NA-VQ and NA-PA on the feature representations. Each colour represents a single class. The areas
highlighted depict the observable differences between experiments. After learning the initial task (first row), NA-VQ integrated models
(b and c) reduces much of the class overlap seen in the baseline model (a). The feature space for (b) and (c) are identical at this stage
since NA-PA is only applied to the incremental tasks. After learning the final task (second row), NA-VQ integrated model (b) shows better
discrimination between the old classes as well as between old and new classes compared to the baseline (a). When NA-PA is integrated,
the discrimination between old and new classes improves further.

For comparability, all the models use the same ResNet-18
architecture and the rotation-based data transformation.

NA-VQ combines two losses; LDCE and LNA thus
these losses are separately incorporated into the baseline
model to comprehend their individual impact. First we
substitute LDCE for LCCE (Ablation-2). Although this
replacement improves accuracy across all three incremen-
tal scenarios compared to the baseline, the forgetting is
still significant when T = 10 and 20. In Ablation-3, we
add LNA to LDCE and LKD and observe comparable or
better accuracy in all three scenarios while significantly
reducing forgetting compared to Ablation-2. This show-

cases the effectiveness of LNA in mitigating the interfer-
ence of feature representations over the incremental steps.
Finally, we integrate NA-PA in Ablation-5 and compare re-
sults to Ablation-3 which does not employ any prototypes
and Ablation-4 which employs Gaussian-augmented proto-
types [57]. Our findings show that NA-PA enhances ac-
curacy and reduces forgetting in all incremental scenarios.
This improvement can be attributed to the prototypes gen-
erated closer to the boundaries which aid in identifying op-
timal decision boundaries, subsequently reducing the mis-
classification rate. Moreover, the advantages of NA-VQ and
NA-PA are prominent when a larger number of tasks are in-
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volved, highlighting the method’s importance.

4.6. Reduced overlapping in the feature space

We visualize the feature space of T = 10 scenario
in Ablation-1 (Baseline), Ablation-3 (KD + NA-VQ) and
Ablation-5 (NAPA-VQ) in Fig. 5 using t-SNE [15] to show
the impact of NA-VQ and NA-PA. Specifically, we visual-
ize the feature representations of a randomly selected subset
of classes learned during the initial task at two-time points:
(1) after the initial task training, and (2) after the final task
training with a subset of new classes from the final task.
Once the first task is learned, the class-representative fea-
tures of the baseline model overlap, whereas those of the
NA-VQ integrated models are more compact and distinct,
reducing the misclassification rate. Once the final task is
learned, the overlapping in the baseline model increases cre-
ating further confusion between classes. NA-VQ integrated
model reduces this overlap due to the more discretized fea-
ture space of the old classes and the repulsive forces be-
tween old and new classes. When NA-PA is integrated on
top of NA-VQ the discrimination between the old classes as
well as the discrimination between the old and new classes
improve further showing the positive impact of prototypes.

4.7. Comparison of confusion matrices

Fig. 4 shows a comparison between the confusion ma-
trices generated for (1) simple Fine-tuning where a model
is trained using CCE loss incrementally without using any
strategies to mitigate forgetting, (2) SSRE and (3) NAPA-
VQ. The diagonal entries in the matrices represent correct
predictions, while off-diagonal entries denote misclassifi-
cations. The predictions of Fine-tuning are heavily biased
towards the most recent tasks due to the forgetting of old
classes. SSRE and NAPA-VQ eliminate much of this bias
by correctly classifying both old and new classes. Although
quite similar, more red patches are visible along the diag-
onal in NAPA-VQ compared to SSRE, which explains the
higher average accuracies in NAPA-VQ compared to SSRE.

4.8. Impact of the connectivity factor K

To determine the impact of the connectivity factor K on
performance, we conducted an experiment on the CIFAR-
100 dataset by varying the value of K between 2 and 50,
with K = 2 being the commonly used heuristic [49, 19].
The results show that as K increases, the performance im-
proves but so does the running time (Supp. Fig. 3). The im-
proved performance can be attributed to a wider neighbor-
hood being considered to improve both decision boundary
learning and prototype augmentation. A value of K = 15
was found to provide desirable performance without com-
promising algorithm efficiency.

5. Conclusion
In this manuscript, we proposed NAPA-VQ, a novel

method for CIL that does not rely on previous task exem-
plars to retain old knowledge. Instead, we increase the dis-
criminability of the feature space by using class neighbor-
hood information captured by a topological approximation
of the feature space. Furthermore, we show that generat-
ing representative prototypes for old classes by borrowing
the shared features of their neighboring classes helps to es-
tablish good decision boundaries between the areas where
the classes tend to overlap. Comprehensive experiments on
four benchmarking datasets demonstrate the superiority of
our method over existing NECIL methods. While the pro-
posed method exerts no limit on how many CVs to be used
per class, we used one CV per class in our experiments. A
future study may explore the effect of using a larger number
of CVs per class on both the running time and the incremen-
tal learning performance.
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