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Abstract

Testing the full autonomy system in simulation is the
safest and most scalable way to evaluate autonomous ve-
hicle performance before deployment. This requires sim-
ulating sensor inputs such as LiDAR. To be effective, it is
essential that the simulation has low domain gap with the
real world. That is, the autonomy system in simulation
should perform exactly the same way it would in the real
world for the same scenario. To date, there has been lim-
ited analysis into what aspects of LiDAR phenomena af-
fect autonomy performance. It is also difficult to evaluate
the domain gap of existing LiDAR simulators, as they op-
erate on fully synthetic scenes. In this paper, we propose
a novel “paired-scenario” approach to evaluating the do-
main gap of a LiDAR simulator by reconstructing digital
twins of real world scenarios. We can then simulate LiDAR
in the scene and compare it to the real LiDAR. We lever-
age this setting to analyze what aspects of LiDAR simula-
tion, such as pulse phenomena, scanning effects, and asset
quality, affect the domain gap with respect to the auton-
omy system, including perception, prediction, and motion
planning, and analyze how modifications to the simulated
LiDAR influence each part. We identify key aspects that
are important to model, such as motion blur, material re-
flectance, and the accurate geometric reconstruction of traf-
fic participants. This helps provide research directions for
improving LiDAR simulation and autonomy robustness to
these effects. For more information, please visit the project
website: https://waabi.ai/lidar-dg

1. Introduction
Accurately testing the behavior of robots such as self-

driving vehicles (SDVs) is of paramount importance to en-
sure their safe deployment in the real world. The safest,
most scalable and sustainable way to test the autonomy
system is through simulation. To assess the safety of the
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Figure 1. Analysis Overview. We study the impact of pulse ef-
fects, scanning effects, and asset quality on LiDAR simulation
realism. We depict one example of a pulse effect domain gap:
failure to model multiple echoes causes the object detector to fail,
resulting in an unsafe autonomy plan. The bottom row depicts
the front-camera view, for reference only, followed by the relevant
LiDAR: original simulation, added multi-echoes, and real. We de-
note multi-echoes re-added by the middle method in orange. Sub-
tle differences in the area highlighted with the arrow stem from
weak returns on truck’s rear wheels, impacting the domain gap.

full system, it is critical to evaluate the complete autonomy
stack in such a simulator. This is a must, as small changes
in one sub-component (e.g., a missed detection) can cause a
chain reaction of downstream effects that significantly alter
the outcome, and might result in a safety hazard. To evalu-
ate the full autonomy, we must simulate all the inputs to the
system. This requires high fidelity sensor simulation with
low domain gap with respect to the real world. That is, the
performance of the autonomy system in simulation on all
scenarios should match the real world performance.

In the past few years, a wide range of LiDAR simulation
systems have been developed, as LiDAR is the primary sen-
sor in many modern autonomy stacks [11, 53, 37, 62]. Most
LiDAR simulation systems first perform virtual world cre-
ation to build a 3D scene, either using CAD models [16, 23],
data-driven assets [55, 35], or a combination [18]. They
then perform sensor rendering, which simulates the LiDAR
scanning process to generate point clouds, either through
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physics and graphics [22, 16, 18, 23], data-driven mod-
elling [72, 6, 55] or hybrid approaches [35, 24, 7]. Despite
its importance, there has been little investigation into what
aspects of LiDAR simulation matter for autonomy testing,
i.e., what is important for drawing insights about real-world
system performance from simulation.

In this paper, we propose a novel approach for evaluating
the domain gap of a sensor simulator. Unlike standard sen-
sor simulators [16, 50] that create fully synthetic worlds that
cannot be directly compared with the real world, we devise
a “paired-scenario” setting, where we recreate in simulation
a digital twin of the exact same scenario observed in the real
world during data collection. The digital twin occurs on the
same map, with the same traffic participant (actor) place-
ment and behaviors as observed in the real world. With this
digital twin, we can then simulate the LiDAR data for this
scenario according to the same platform and sensor config-
uration it was observed with, and compare the simulated Li-
DAR against the real LiDAR to evaluate their differences.
Through this “paired-scenario” setting, we can run auton-
omy on both the simulated LiDAR and real LiDAR and
compare autonomy outputs, such as differences in motion
plans (see Fig.1). This unique setting allows us to directly
measure the domain gap of a sensor simulator with respect
to autonomy.

We then conduct the first analysis of what aspects of Li-
DAR simulation are critical to simulate with high fidelity
to ensure close matching performance of the autonomy sys-
tem between the simulator and the real world. We investi-
gate the effect of multiple sensor phenomena, including Li-
DAR pulse effects such as multi-path reflections and mate-
rial modelling, and scanning LiDAR effects such as realistic
motion blur and rolling shutter. We also investigate different
ways to build the virtual world, such as with CAD models
or 3D reconstruction. Since each part of the autonomy may
be affected differently by the simulator’s domain gap, we
assess both the full stack as well as its subsystems, includ-
ing perception, motion forecasting, and motion planning.
Our results show that LiDAR realism is strongly affected by
phenomena like motion blur and multi-echo returns, which
are often not simulated in standard LiDAR simulators. We
also find that standard perception metrics typically used in
the community to evaluate algorithm performance during
sim-to-real and real-to-sim, such as detection precision and
recall, are not strong indicators of the domain gap of the
autonomy system on the end task of motion planning.

While proposing a specific novel simulator to address
these challenges remains an open topic, we believe that our
analysis sheds light into what directions are most important
for the community to tackle in order to improve simulation
realism and to develop robotic systems that are less suscep-
tible to domain gap.

Real LiDARBase-LiDAR Oracle-LiDAR

DropPoints

AddEchos

10m.
25m.

60m.

AddPoints

ModifyPoints

Inaccurate Material

Multi-Echo Returns

Spurious Points

Inaccurate Geometry

Figure 2. Given Base-LiDAR, we leverage an “oracle” real Li-
DAR point cloud to make it more realistic, such as dropping
points, adding multi-path returns, spurious returns, or correcting
for inaccurate geometry in simulation. The orange points indi-
cate points that are either modified in Base-LiDAR or points taken
from the real LiDAR and added to Base-LiDAR.

2. Related Work
Sensor simulation in computer vision: The computer
vision community has primarily used sensor simulation
for offline training data generation for boosting the per-
formance of perception models [44]. As simulators pro-
vide inexpensive ground truth for segmentation and detec-
tion, many synthetic camera [47, 46, 21, 9] and LiDAR
[63, 67, 28] datasets have been generated to train better
perception models. To overcome domain gap in both con-
tent diversity and modelling realism, one line of work per-
forms domain randomization to encourage model general-
ization [3, 26, 70, 45], or generates synthetic content op-
timized for real world task performance [43, 30, 15]. An-
other line of work performs domain adaptation with source
synthetic data for real-world target data (e.g., segmentation
[64, 71, 67]). These works want synthetic data to provide
value during training, but do not investigate the realism of
simulated data for perception evaluation. Prior work ana-
lyzed camera perception training [3], but there is less re-
search on LiDAR. Our work analyzes the necessary factors
for autonomy systems to perform consistently in both sim-
ulated and real-world environments.

Sensor simulation in robotics: The robotics community
has leveraged LiDAR simulation primarily for sim-to-real
training. Sensor simulation allows for safe and cost efficient
development of the full autonomy system, as the robot can
learn to interact in the virtual world environment safely and
at scale [5, 8, 59]. Sensor simulators have been developed
for indoor scene navigation [49, 66, 65, 54], manipulation
[32, 57], and for self-driving [16, 50, 6]. Like in the vi-
sion community, several domain randomization [4, 56] and
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Figure 3. We analyze the importance of different ToF scanning
LiDAR effects such as accurate intrinsics for generating rays, mo-
tion blur to account for actor motion during the sweep, and rolling
shutter to model movement of the LiDAR sensor during the sweep.

adaptation techniques [58] have been applied to improve au-
tonomy real world performance. But there has been lim-
ited analysis of what parts of the sensor simulation are most
important for autonomy. Some works perform “simulator
identification” to tune the simulation parameters to ensure
better sim-to-real robot performance [17, 29, 25]. Our work
focuses on understanding how LiDAR sensor phenomena
affect the simulation realism when evaluating autonomy.

LiDAR Simulation for autonomy: Standard LiDAR
simulators for robotics and vision often leverage classical
graphics and game development techniques. Artists build
3D assets to create synthetic worlds, which are then used
to simulate LiDAR with rasterization or raytracing [23, 16,
22, 50, 27]. However, these approaches often lack realism,
require large amounts of computation and expert manual
tuning to be realistic [22], and may lack object and sce-
nario diversity [27]. One alternative are data-driven genera-
tive models that synthesizes LiDAR conditioned on a scene
representation [10, 61, 72]. While realistic and computa-
tionally efficient, these methods often sacrifice controllabil-
ity and may fail to generalize to new environments. Hy-
brid methods [24, 7, 35, 25, 33] combine classic render-
ing with learning, gaining the flexibility and controllability
of physics-based rendering as well as the realism granted
by data-driven priors. Our work aims to better understand
the domain gap of hybrid simulators that have achieved the
most success, and to better understand what directions the
community should pursue to further improve realism for ac-
curate autonomy evaluation.

3. Analyzing LiDAR Simulation
Our goal is to identify actionable insights that can help

improve the quality of existing LIDAR simulation meth-
ods. While parts of our analysis apply to all LiDAR types,
we focus on the mechanical spinning time-of-flight (ToF)
LiDAR, the most common LiDAR sensor type utilized by
SDVs. In this section, we review ToF LiDAR principles
and describe the base state-of-the-art ToF LiDAR simula-
tion system we perform analysis with (Sec. 3.1). Then, we
explain how we modify this base LiDAR simulator to ana-
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Figure 4. We compute correspondence between the simulated and
real LiDAR by projecting to a spherical-image.

lyze sensor phenomena (Sec. 3.2).

3.1. Base LiDAR Simulator
ToF LiDAR: ToF LiDAR measures the distance to an ob-
ject by sending out pulses of collimated light in the infrared
spectrum and measuring how long it takes for the received
pulse to return [38]. A collocated receiver continually mea-
sures the returning photons at that wavelength, and when the
returned signal strength is high enough and within a time
window, it detects a return by recording the time-of-flight
time ∆t. The measured distance d of the detection can be
computed as: d = c∆t

2 , where c is the speed of light propa-
gating through air, which is a constant. Based on the direc-
tion r ∈ R3 of the light pulse and the sensor origin o ∈ R3,
a 3D point y is extracted: o + rd = y. A mechanical Li-
DAR sends several pulses of light by rotating a column of
laser receivers/detectors around its z-axis to generate a point
cloud Y : {y1, . . . ,yn}. The lasers are oriented at specific
elevation angles and scan at fixed azimuth intervals over the
full 360◦, which derives the direction r of each pulse.

LiDAR Range Equation: After pulse transmission, the
returned signal strength after hitting a target can be mod-
elled by the following equation [31, 60, 38]:

Pr =
PtD

2
rηatmηsysσ

4πR4β2
t

, (1)

where Pr is the received power, Pt is the transmitted power,
Dr is the receiver aperture diameter, βt is the beam width,
σ is the target cross section, R is distance travelled to tar-
get, and ηatmηsys are atmospheric and system losses. Due to
sunlight and other background noise, ToF LiDARs require
a minimum signal-to-noise ratio between the received pulse
and the background light to detect a return. Through signal
processing on the waveform of the returned Pr over a time
window, the flight time t is computed to generate a LiDAR
point if above the minimum detectable value.

Simulating ToF LiDAR: Most ToF LiDAR simulation
systems for robotics [23, 32] and self-driving [16, 35, 18]
model the world as 3D geometric assets and free space and
model the LiDAR sensor pulses as sets of light rays interact-
ing with these geometries. To better understand the domain
gap of such systems, we build a similar LiDAR simulator,
Base-LiDAR, to analyze. At each timestep t of the scenario
being simulated, we first place a set of assets representing
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Figure 5. Given paired simulated and real LiDAR for the same scenario, we run autonomy on both in open-loop and compare the domain
gap for the autonomy under test.

the actors and background into a 3D scene. We then model
each light pulse as a ray with origin at the laser location, and
direction based on the specified azimuth and elevation angle
of the laser. This can be derived from the LiDAR extrinsics
and intrinsics. We thus generate the full set of rays for each
LiDAR in the scene. We model the interaction of the light
pulse with the scene by computing ray-geometry intersec-
tions [39] through primary ray-casting [41], where the first
intersected geometry element is a hit point and terminates.
We assume all hit rays terminate and return at the first inter-
section, generating a simulated point cloud Ys

t . Please see
the supplementary material for details.

3.2. Modelling LiDAR Phenomena
We now specify a LiDAR simulation taxonomy that

breaks down the sensor effects in ToF LiDAR and how we
incorporate them into Base-LiDAR to understand its affect
on the domain gap with respect to the autonomy system.
To properly analyze certain effects, we assume access to
an “oracle” that has knowledge of the real LiDAR Yr

t for
the exact same scene. We describe how we access this or-
acle in Sec. 4. Please see Fig. 2 for visuals of the different
oracle-enhanced LiDAR operations, and Fig. 3 for different
scanning LiDAR effects we model and analyze.

3.2.1 Unreturned pulses

Cause: One reason for undetected returns that hit a tar-
get is due to the pulse’s power decay ( 1

R4 ) as it travels,
along with other losses ηatm, ηsys that affect the return signal
strength, such as particle scattering and receiver efficiency.
They may also not return if the target cross section σ is low,
which can be due to a low incidence angle between the tar-
get surface and the pulse (especially on specular surfaces
such as cars, see Fig. 2, row 1), or low reflectivity due to
material composition.

Simulation: To model unreturned pulses, we project the
real LiDAR Yr

t and simulated Base-LiDAR Ys
t into 2D

“spherical”-coordinate images [64], where the x-axis is the
binned azimuth angle from [−2π, 2π], and y-axis is the dis-
crete laser id for each sensor, sorted by elevation angle (see
Fig. 4). This representation enable us to build a correspon-

dence between simulated points and real ones falling within
the same pixel. We then apply DropPoints, where points
in the simulated sweep that do not have correspondence to
any real point are removed.1

3.2.2 Multiple echoes

Cause: Sometimes, a transmitted LiDAR pulse will par-
tially bounce on different surfaces one or more times as it
travels to and from the sensor before coming back to the
receiver. This can result in the LiDAR response waveform
having multiple peaks within a time window. Depending
on the LiDAR firmware, this can produce multiple returned
points. “Multi-echo” returns can be caused by partially
porous or refractive medium, such as vegetation or glass, in
which multi-echoes may correspond to physical surfaces, or
by reflective surfaces such as metal or water, where one or
more returns may correspond to non-existing surfaces, also
known as “ghosting” (e.g., floating points behind a truck
due to multiple bounces in Fig. 2, row 2).

Simulation: We assume the oracle has knowledge
whether each point yr

i is the result of a single bounce or
multiple; this metadata is commonly available from the Li-
DAR firmware. Points from the real LiDAR that are due
to multiple bounces are added to the simulated point cloud:
AddEchoes(Ys

t , {yr
multi}) → Ys′

t .

3.2.3 Spurious returns

Cause: Spurious returns in LiDAR can also occur due to
multi-path, blooming, beam divergence, and volume scat-
tering effects. Multi-path is similar to multi-echo, but the
returned pulse arrives from a different angle than what it
was transmitted at, so it is not detected by the LiDAR sensor
as an additional echo (Fig. 2, row 3). In blooming, highly
reflective surfaces can produce unexpectedly strong returns,
causing the return to bleed into adjacent photodiodes [34].
In beam divergence, the initially narrow pulse diameter ex-
pands as it travels. If part of the beam gets reflected by a
surface, it can come back as a returned point. This can es-
pecially occur for distant objects. Spurious returns may also

1DropPoints can be seen as the upper bound of the learned ray drop-
ping network from Manivasagam et al. [35].
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be due to interference from particles such as exhaust or fog.

Simulation: To model these effects, we propose the
AddPoints operator. Similar to DropPoints, we project
the real and simulated point clouds to the spherical-image
representation to compute correspondences. If real points
within a binned pixel have no corresponding simulated
points, we add the real points to the simulated point cloud.

3.2.4 Noisy points

Cause: Noisy points can occur where the peak in the
waveform is ambiguous, resulting in inaccurate calculation
of return time t. This can occur for thin structures, retro-
reflectors, and inherent aleatoric noise in the real world [31].

Simulation: To model noisy points, we propose
ModifyPoints(δlo, δhi). Once again, we compute cor-
respondence between simulated and real LiDAR in the
spherical image space. For simulated points that have
correspondence with real, but have a range difference
between the returns that lies within the specified δ range,
we replace those simulated points with the corresponding
real points with new distance values. The δ range pertains
to the distance between the sensor and a particular point,
expressed in meters. In addition to inherently noisy
points in real LiDAR, ModifyPoints(δlo, δhi) can also
correct inaccuracies in geometry and material modelling in
simulation, such as differences in shape for a motorcycle
actor (Fig. 2, row 4), or pulses going through transparent
surfaces (e.g, windows) and returning the interior.

3.2.5 Spinning sensor ray generation

Cause: In addition to proper modelling of the light pulse
interacting with the environment, realistic LiDAR simula-
tion also involves simulation of the beam steering mecha-
nism that allows the LiDAR to scan the scene. The LiDAR
intrinsics specify the calibrated azimuth and elevation an-
gles for each laser, which affect the pulse pattern and alter
the point cloud density and sensor’s field-of-view.

Simulation: Simulators typically use a generic calibra-
tion just by specifying the number of lasers and their field-
of-view bounds without specifying exact intrinsics [16]. We
test this simulation mode and also enhance Base-LiDAR
with the calibrated intrinsics for each of the LiDARs on the
SDV platform to generate the set of rays (Fig. 3 col. 1).

3.2.6 Rolling shutter and motion blur

Cause: Spinning mechanical LiDARs gather measure-
ments over time: It typically takes 100 ms for a 360◦ LiDAR
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Figure 6. Given autonomy outputs on simulated and real LiDAR
we compute the agreement between the two with outputs on real
LiDAR being the “ground-truth”.

to scan the full scene. If the SDV (ego-vehicle) is moving
during this time, the scan will be distorted as the pose of
the sensor changes during the scan (i.e., rolling shutter in
Fig. 3 col. 2). Similarly, the motion of dynamic actors can
blur the generated LiDAR point cloud (Fig. 3 col. 3), and
can produce changes in the location of where the actor is
observed in the sweep. Depending on the relative direction
of movement, actors can appear compressed or elongated in
the scene. These effects increase at highway speeds, where
the actors and SDV are moving around 30 m/s. We separate
these effects in our analysis because rolling shutter can be
corrected by ego-motion estimation, but motion blur cannot,
as it depends on the motion of each individual actor.

Simulation: We enhance Base-LiDAR to simulate these
effects by assigning each ray a firing timestamp, and mod-
ifying the sensor origin of the ray by applying SLERP,
[52] which interpolates the sensor pose over time using
the recorded trajectory of the SDV. Similarly, for motion
blur, we specify the trajectories of the actor poses and apply
SLERP to the actors’ geometries during the ray casting to
ensure dynamic actors are at the correct position for each
ray’s firing time. To summarize, the simulator is physics-
based with data-driven assets, hence hybrid, but does not
make any direct use of machine learning. Please see the
supplementary material for details.

4. Measuring Domain Gap
Paired Scenario Setting: To directly measure the domain
gap between a LiDAR simulator and the real world for the
autonomy system under test, we propose to analyze the do-
main gap in a novel “paired”-scenario setting (see Fig. 5 for
illustration). Given the real scenario we want to simulate,
we construct a “digital-twin” of this exact same scenario
(e.g., map location, actor placement) in simulation. This al-
lows us to compare the simulated LiDAR directly with the
real LiDAR in a pair-wise fashion.
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Detection Prediction Planning
# DropP AddE AddP ModP ∆AP ↓ ∆Recall ↓ DA AP ↑ DA Recall ↑ minADE ↓ PD@5s ↓
1 0.047 0.032 0.77 0.80 1.74 3.22
2 ✓ 0.035 0.035 0.75 0.78 1.87 3.30
3 ✓ 0.044 0.034 0.79 0.82 1.58 2.71
4 ✓ 0.046 0.036 0.81 0.85 1.43 3.21
5 ✓ ✓ 0.056 0.046 0.83 0.86 1.35 2.50
6 [0, 200] 0.052 0.041 0.88 0.90 0.98 1.80
7 ✓ ✓ 0.029 0.023 0.81 0.83 1.46 3.22
8 ✓ [0, 200] 0.009 0.011 0.93 0.93 0.42 0.92
9 ✓ [0, 200] 0.053 0.045 0.91 0.93 0.93 1.69
10 ✓ ✓ [0, 200] 0.053 0.045 0.91 0.93 0.93 1.69

oracle ✓ ✓ ✓ ✓ 0.000 0.000 1.00 1.00 0.00 0.00

Table 1. LiDAR Pulse Phenomena: Enhancing Base-LiDAR with ray propagation effects such as unreturned pulses (DropPoints),
multi-path (AddEchos), spurious points (AddPoints), and noisy points (ModPoints)

We define a scenario X as a temporal sequence of scene
representations X := {x1,x2, . . . ,xT }. Each xt defines
the state of the world, the environment, and where the rel-
evant traffic participants are with respect to the simulated
sensor’s location. The scenario can be extracted through hu-
man annotation or automatic offline-labelling of real-world
data collects containing a sequence of real LiDAR point
clouds Yr

1 . . .Y
r
T for the LiDAR sensors exploited by the

autonomy system under test. We then can compose virtual
geometry assets to match the scene xt and simulate the Li-
DAR for the SDV platform as described in Sec. 3.1 in order
to evaluate its domain gap. For domain gap, “similarity”
is defined as whether the autonomy performs the same on
either simulated or real LiDAR.

Autonomy System Under Test: The autonomy system
takes as input a sequence of LiDAR data and additional
information kaux such as the map and generates autonomy
outputs Z: f({Yt, . . .Yt+4}, kaux) → Z . We evaluate the
autonomy system in an open-loop setting, where at each
timestep we provide as input a sequence of either simulated
or real LiDAR, which generates autonomy outputs Zs

t ,Zr
t ,

respectively. We then compute domain gap metrics between
Zs

t and Zr
t , where Zr

t is the desired target. Specifically, we
toggle different LiDAR pulse and scanning effects on the
simulated LiDAR and evaluate their effect on the domain
gap. By leveraging this paired domain-gap setting, we can
access the real LiDAR Yr

t at each time-step as our oracle.
We compute domain gap metrics using a modular au-

tonomy system that performs perception (object detection),
motion forecasting (actor trajectories), and motion planning
(output planned trajectory of the SDV). We focus on the
evaluation setting, where the autonomy system is already
trained and we want to evaluate the realism of the LiDAR
simulator with respect to the autonomy system. The auton-
omy system takes as input the past 0.5 seconds of LiDAR
history from all three LiDARs, generates actor detections,

6 second trajectory forecasts for each detected actor, and a
5 second planned trajectory. Detection is performed using
a two-stage LiDAR detector [51, 36] followed by a lane-
graph network which encodes trajectories and map informa-
tion to forecast actor motion [13]. Finally, a sampling-based
path-lateral time (PLT) planner [48] plans an ego trajectory
that balances safety, comfort, and route progress costs. Our
analysis is general and can be performed for any autonomy
system; see the supplementary material for results on addi-
tional autonomy configurations and further implementation
details. We now describe the metrics in more detail (see Fig.
6 for illustration).

Detection Distributional Agreement (∆AP,∆Recall):
We measure the absolute differences in autonomy perfor-
mance when run on the simulated and real LiDAR dataset
using average precision (AP) and recall. We therefore de-
fine ∆AP = |APreal − APsim| for AP, and an equivalent met-
ric for recall, under a pre-specified IoU threshold. A perfect
simulator would mean that autonomy has the same perfor-
mance between the simulated and real datasets, resulting in
∆AP and ∆Recall of 0. We include this metric for com-
pleteness, as it is used commonly in the field.

Detection Agreement (DA): Distributional metrics only
measure perception performance in aggregate over the full
dataset. To assess whether an actor in simulation at time t
in the same frame of the paired-scenario is mis-detected or
correctly detected in both the simulated and real LiDAR,
we report detection agreement (DA). Intuitively, detection
agreement is a non-symmetric measure of similarity for two
sets of model outputs, computed by treating one of the sets
as pseudo-labels. In practice we consider the autonomy
model outputs computed on the real LiDAR as “labels”, and
the simulated LiDAR model outputs as the proposals. We
then compute the average precision and recall under differ-
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ent IoU thresholds.2 DA AP and DA Recall of 1 mean that
an autonomy systems generates the same output detection
set on both simulated and real LiDAR.

Prediction Error (minADE): We compute the differ-
ences between motion forecasting outputs run when the in-
put to the autonomy system is simulated LiDAR and real
LiDAR respectively. We use the displacement error of each
actor as the disagreement metric. Since prediction models
are often multi-modal, to handle diverse futures [14], we use
the most-likely mode in the real LiDAR as the ground-truth,
and we compute the minimum average displacement error
(minADE) between all the trajectory modes predicted by
the autonomy system when run with the simulated LiDAR
as input for that actor. Since different simulation methods
result in different actor prediction sets, we evaluate the pre-
diction results at a fixed detection recall.

Plan Discrepancy (PD): As we perform open-loop plan-
ning on both real and simulated LiDAR sequences, we can
measure the discrepancies between planner outputs. Plan-
ning metrics are helpful in understanding the impact of sen-
sor realism on the decision making of the SDV [42]. Specif-
ically, we measure the ℓ2 error between planner waypoints
at a fixed time in the future, for every log frame:

PlanDiscrepancy =

N∑
i=1

i+P∑
m=i

∥∥∥τ (s)m − τ (r)m

∥∥∥2
2
,

where N is the length of simulation, P the planning hori-
zon, and τm denotes the plan trajectory at time m, under
either real or simulated data.

5. What Matters for LiDAR Realism?
We now describe the dataset of paired scenarios we eval-

uate on (Sec. 5.1) and perform our analysis in three parts.
We first analyze different LiDAR pulse modelling effects
by applying different oracles (Fig. 2) in isolation and also
in combination to understand their impact on the domain
gap (Sec. 5.2). All scanning LiDAR effects are enabled in
this analysis. We then analyze different scanning LiDAR
effects such as calibrated intrinsics, rolling shutter, and mo-
tion blur, with no oracle enhancements applied (Sec. 5.3).
Finally, we investigate different ways of building the virtual
world geometry meshes for both the foreground and back-
ground, with scanning LiDAR effects enabled. (Sec. 5.4).

2Unlike common AP and recall in the detection literature, we do not
use any human annotation labels for this metric. This is in contrast to prior
variants of this metric, such as the agreement used by Manivasagam et
al. [35], which relied on first matching all detections to labels, thereby not
measuring agreement in terms of false positives.

5.1. Evaluation Setting Details
Dataset: To our knowledge, no public dataset [53, 11, 12]
provides the detailed LiDAR information necessary for our
analysis, such as multi-return metadata, LIDAR intrinsics,
and per-point timestamps. We therefore captured a Multi-
LiDAR-Highway dataset to perform our analysis, which
consists of twenty 20 second annotated snippets captured
on US-101 in California with different traffic densities and
vehicle types. To analyze different ToF LiDAR, we equip
the data collection vehicle with three mechanical spinning
LiDARs - a central long-range LiDAR (up to 200m) as well
as two medium-range (up to 80m) 128-beam side LiDARs.
The long-range LiDAR provides up to two returns per pulse.

5.2. Analyzing LiDAR Pulse Phenomena
Table 1 reports the effect of different LiDAR phenomena

on the domain gap. We evaluate all perception metrics at
IoU=0.7 [35], and report prediction metrics at a fixed recall
of 0.3. Higher recall could not be set, as certain evaluation
variations could not achieve it. We report several findings.

We find that multi-echo points from the long-range Li-
DAR, which only accounts for ∼5% of the total input
points, substantially improves domain gap metrics. Qual-
itatively, AddEchoes (row 4) enables the simulated LiDAR
to model multiple echoes and alters object detection, en-
abling better matching with the real LiDAR, including false
positives (Fig. 1), and ensuring agreement with downstream
planning. AddPoints alone improves detection agreement
and prediction while not reducing planning discrepancy.
It helps especially for better detection agreement at long
range, suggesting modelling spurious points may matter in
these regions. We also find that, while on average, perform-
ing DropPoints alone harms domain gap (row 2), certain
situations show it better matching motion planning outputs
w.r.t real LiDAR (Fig. 7, left). Furthermore, pairing it with
ModifyPoints(δlo, δhi) (row 8) results in the best realism
gain over all oracle policies. This indicates that better ge-
ometry reconstruction of the actors and scene in conjunction
with better material modelling are key to better realism.

We also find detection distributional agreement may not
be sufficient for measuring realism. Counter-intuitively,
a setting may have smaller ∆AP while producing higher
output disagreement (i.e., row 1 vs. row 5). This is be-
cause metrics such as AP can look similar even if auton-
omy makes different mistakes between simulated and real
LiDAR. Paired metrics better reflect the true task setting.

5.3. Analyzing Scanning LiDAR Effects
Table 2 reports the domain gap metrics for different scan-

ning LiDAR effects ablated. “Naive” intrinsics correspond
to linearly spaced laser elevations, as real LiDARs employ
uneven patterns to maximize long range coverage [1]. No
rolling shutter or no motion blur means we place the SDV
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Sample Title

Without Drop-Points With Drop-Points Real Without Motion Blur With Motion Blur Real

57.52 m 56.82 m 56.79 m

Figure 7. Qualitative examples on enhancing Base-LiDAR with DropPoints (left) and motion blur (right) to reduce the domain gap.

Detection Prediction Planning
# Intrinsics RS MB ∆AP ↓ ∆Recall ↓ DA AP ↑ DA Recall ↑ minADE ↓ PD@5s ↓
11 Naive ✓ ✓ 0.04 0.03 0.73 0.76 1.95 3.35
12 Calibrated ✓ ✓ 0.05 0.03 0.77 0.80 1.74 3.22
13 Calibrated 0.20 0.15 0.49 0.55 2.70 4.57
14 Calibrated ✓ 0.05 0.03 0.77 0.80 1.76 3.15
15 Calibrated ✓ 0.20 0.15 0.49 0.55 2.73 4.62

Table 2. Spinning LiDAR Effects: Analyzing the the domain gap for calibrated intrinsics, rolling shutter (RS) and motion blur (MB).

and the actors respectively at their end-of-sweep position
and keep them static for the 100ms sweep duration. We
observe increased domain gap with naive intrinsics, indi-
cating that autonomy is not invariant to the LiDAR scan-
ning pattern, which causes certain spatial regions to have
different point density between the simulated and real Li-
DAR. More significantly, we find that modelling actor mo-
tion during the LiDAR sweep is critical to ensure matching
autonomy outputs. Where in space and time the actor is
observed affects the autonomy’s outputs significantly (see
Fig 7, right). Most LiDAR simulation systems used by the
self-driving research community do not account for this ef-
fect [16]. Surprisingly, we find toggling ego rolling-shutter
has fluctuations in the domain gap, reducing domain gap on
its own, but slightly harming with motion blur. We con-
jecture this is because the autonomy under test consumes
motion-compensated LiDAR, a standard practice in most
benchmarks [11, 53]. Analyzing autonomy operating on
raw LiDAR is a promising research direction which would
also test state estimation [20].

5.4. Analyzing Virtual World Creation
One key design choice for LiDAR simulation is how the

mesh representations are constructed during virtual world
creation. As observed in Sec. 5.2, dropping and modi-
fying LiDAR points together can substantially boost real-
ism. We therefore decided to investigate further how dif-
ferent ways of building the virtual world geometry can af-
fect domain gap. We divide the analysis into two main ar-
eas: modelling background regions such as the road, and

Asset bank Detection Prediction Planning
∆AP ↓ ∆Recall ↓ DA AP ↑ DA Recall ↑ minADE ↓ PD@5s ↓

Base (Surfels) [35] 0.047 0.032 0.77 0.80 1.74 3.22
Background Reconstruction
Road-only Mesh 0.057 0.043 0.75 0.79 1.95 3.13
Neural Mesh 0.055 0.042 0.77 0.80 1.57 2.98
Foreground Asset Bank
CAD Assets 0.084 0.069 0.68 0.74 1.96 3.41
CAD + Surfel Assets 0.077 0.050 0.72 0.77 1.93 3.06

Table 3. Effect of different virtual world creation approaches.

foreground actors such as vehicles. For Base-LiDAR, we
follow [68, 35, 55] and perform LiDAR-aggregation of col-
lected logs to build surfel asset meshes for the actors and
static background. Please see the supplementary material
for details. While faithfully matching the observations, sur-
fel meshes may suffer from topological problems, and their
construction is unable to account for sensor noise.

Background Creation: Besides surfel aggregation, we
explored two other approaches for background creation:
heuristic road-only meshing, and neural reconstruction [69].
For the road-only mesh, we adopt RANSAC plane fit-
ting [19] to identify ground points and then create a road-
only mesh grid based on the ground height. For neural re-
construction, we adopt state-of-the-art neural reconstruction
approaches [69, 40] for large scenes and extract geometry
using marching cubes. As shown in Table 3, using either
road-only mesh or neural mesh can reduce the motion plan-
ning domain gap.

Foreground Modelling: To model the foreground actors,
we also consider artist-created CAD models [16], as well
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as a combination of the two, where we combine CAD mod-
els with a manually curated set of 942 actor meshes that
have cleaner geometry. For CAD models, we purchase over
120 CAD models from TurboSquid [2] for a wide range of
rigid actors, such as vehicles and motorcycles. As shown
in Table 3, using only CAD models lead to a larger domain
gap compared to real-world reconstruction. We find using a
combination of CAD models and surfel assets, despite hav-
ing higher perception and prediction domain gap, improves
the planning discrepancy. We hypothesize this might be due
to better modelling of the actors of interest that affect the
motion planning, such as actors directly in front or behind
the SDV. Please see the supplementary material for details.

6. Conclusion
In this paper, we analyze what aspects of LiDAR pulse

and scanning effects, as well as virtual asset creation, im-
pact domain gap for autonomy testing. We proposed a
paired-scenario setting for domain gap evaluation, and de-
signed autonomy metrics specifically for measuring the do-
main gap between simulated and real LiDAR. We find there
are several effects that are important to model which are
missing in existing LiDAR simulation, including the ability
to simulate multiple echoes and unreturned rays.

There are also several limitations with the presented
analysis. We focused on open-loop evaluation, as it is nec-
essary for ensuring identical behaviors for all other traffic
participants. Subsequent work and metrics are necessary for
analyzing simulator domain gap in closed loop, i.e., when
the SDV itself acts differently than it did in the original log.

We hope our insights shed light onto new research direc-
tions for more realistic LiDAR simulation, as well as onto
autonomy robustness to these differences, enabling simula-
tion to be a better testing tool.

Acknowledgements: We thank the Waabi team for their
valuable assistance and support. In particular, we would like
to thank Carter Fang for his insights into perception mod-
els, Melinda Lu for her help on domain gap analysis, and
Nathan Chau for providing guidance on visualizing inter-
esting cases for the paper videos.

References
[1] Pandar-128 user manual. https://

perceptionengine.jp/pdf/hesai/manual/
Pandar128_User_Manual.pdf. Accessed: 2023-03-
08. Fig 1.5 covers the laser vertical distribution. 7

[2] Turbosquid. https://www.turbosquid.com/. Ac-
cessed: 2023-03-06. 9

[3] David Acuna, Jonah Philion, and Sanja Fidler. Towards opti-
mal strategies for training self-driving perception models in
simulation. NeurIPS, 34:1686–1699, 2021. 2

[4] Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej, Ma-
teusz Litwin, Bob McGrew, Arthur Petron, Alex Paino,
Matthias Plappert, Glenn Powell, Raphael Ribas, et al.
Solving rubik’s cube with a robot hand. arXiv preprint
arXiv:1910.07113, 2019. 2

[5] Alexander Amini, Igor Gilitschenski, Jacob Phillips, Julia
Moseyko, Rohan Banerjee, Sertac Karaman, and Daniela
Rus. Learning robust control policies for end-to-end
autonomous driving from data-driven simulation. IEEE
Robotics and Automation Letters, 2020. 2

[6] Alexander Amini, Tsun-Hsuan Wang, Igor Gilitschenski,
Wilko Schwarting, Zhijian Liu, Song Han, Sertac Karaman,
and Daniela Rus. Vista 2.0: An open, data-driven simulator
for multimodal sensing and policy learning for autonomous
vehicles. arXiv preprint arXiv:2111.12083, 2021. 2

[7] Benjamin Attal, Eliot Laidlaw, Aaron Gokaslan, Changil
Kim, Christian Richardt, James Tompkin, and Matthew
O’Toole. Törf: Time-of-flight radiance fields for dynamic
scene view synthesis. NeurIPS, 34, 2021. 2, 3

[8] Arunkumar Byravan, Jan Humplik, Leonard Hasenclever,
Arthur Brussee, Francesco Nori, Tuomas Haarnoja, Ben
Moran, Steven Bohez, Fereshteh Sadeghi, Bojan Vujatovic,
et al. Nerf2real: Sim2real transfer of vision-guided bipedal
motion skills using neural radiance fields. arXiv preprint
arXiv:2210.04932, 2022. 2

[9] Yohann Cabon, Naila Murray, and Martin Humenberger. Vir-
tual KITTI 2. arXiv preprint arXiv:2001.10773, 2020. 2

[10] Lucas Caccia, Herke Van Hoof, Aaron Courville, and Joelle
Pineau. Deep generative modeling of LiDAR data. In IROS,
2019. 3

[11] Holger Caesar, Varun Bankiti, Alex H Lang, Sourabh Vora,
Venice Erin Liong, Qiang Xu, Anush Krishnan, Yu Pan, Gi-
ancarlo Baldan, and Oscar Beijbom. nuscenes: A multi-
modal dataset for autonomous driving. CVPR, 2020. 1, 7,
8

[12] Ming-Fang Chang, John Lambert, Patsorn Sangkloy, Jag-
jeet Singh, Slawomir Bak, Andrew Hartnett, De Wang, Peter
Carr, Simon Lucey, Deva Ramanan, et al. Argoverse: 3D
tracking and forecasting with rich maps. CVPR, 2019. 7

[13] Alexander Cui, Sergio Casas, Kelvin Wong, Simon Suo, and
Raquel Urtasun. Gorela: Go relative for viewpoint-invariant
motion forecasting. In ICRA, 2023. 6

[14] Henggang Cui, Vladan Radosavljevic, Fang-Chieh Chou,
Tsung-Han Lin, Thi Nguyen, Tzu-Kuo Huang, Jeff Schnei-
der, and Nemanja Djuric. Multimodal trajectory predictions
for autonomous driving using deep convolutional networks.
In ICRA, 2019. 7

[15] Jeevan Devaranjan, Amlan Kar, and Sanja Fidler. Meta-
sim2: Unsupervised learning of scene structure for synthetic
data generation. ECCV, 2020. 2

[16] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio
Lopez, and Vladlen Koltun. CARLA: An open urban driving
simulator. In CoRL, 2017. 1, 2, 3, 5, 8

[17] Yuqing Du, Olivia Watkins, Trevor Darrell, Pieter Abbeel,
and Deepak Pathak. Auto-tuned sim-to-real transfer. In
ICRA, 2021. 3

[18] Jin Fang, Dingfu Zhou, Feilong Yan, Tongtong Zhao, Feihu
Zhang, Yu Ma, Liang Wang, and Ruigang Yang. Augmented

8280



lidar simulator for autonomous driving. IEEE Robotics and
Automation Letters, 5(2):1931–1938, 2020. 1, 2, 3

[19] Martin A Fischler and Robert C Bolles. Random sample
consensus: a paradigm for model fitting with applications to
image analysis and automated cartography. Communications
of the ACM, 24(6):381–395, 1981. 8

[20] Davi Frossard, Shun Da Suo, Sergio Casas, James Tu, and
Raquel Urtasun. StrObe: Streaming object detection from
LiDAR packets. In CoRL, 2021. 8

[21] Adrien Gaidon, Qiao Wang, Yohann Cabon, and Eleonora
Vig. Virtual worlds as proxy for multi-object tracking anal-
ysis. CVPR, 2016. 2

[22] Adam A Goodenough and Scott D Brown. Dirsig5: Next-
generation remote sensing data and image simulation frame-
work. IEEE Journal of Selected Topics in Applied Earth Ob-
servations and Remote Sensing, 10(11):4818–4833, 2017. 2,
3

[23] Michael Gschwandtner, Roland Kwitt, Andreas Uhl, and
Wolfgang Pree. Blensor: Blender sensor simulation tool-
box. In International Symposium on Visual Computing,
pages 199–208. Springer, 2011. 1, 2, 3

[24] Benoı̂t Guillard, Sai Vemprala, Jayesh K Gupta, Ondrej Mik-
sik, Vibhav Vineet, Pascal Fua, and Ashish Kapoor. Learning
to simulate realistic LiDARs. In IROS, 2022. 2, 3

[25] Eric Heiden, Ziang Liu, Ragesh K Ramachandran, and Gau-
rav S Sukhatme. Physics-based simulation of continuous-
wave lidar for localization, calibration and tracking. In ICRA,
2020. 3

[26] Jiaxing Huang, Dayan Guan, Aoran Xiao, and Shijian Lu.
FSDR: Frequency space domain randomization for domain
generalization. In CVPR, 2021. 2

[27] Sebastian Huch, Luca Scalerandi, Esteban Rivera, and
Markus Lienkamp. Quantifying the LiDAR sim-to-real do-
main shift: A detailed investigation using object detectors
and analyzing point clouds at target-level. IEEE Transac-
tions on Intelligent Vehicles, 2023. 3

[28] Braden Hurl, Krzysztof Czarnecki, and Steven Waslander.
Precise synthetic image and lidar (presil) dataset for au-
tonomous vehicle perception. In 2019 IEEE Intelligent Vehi-
cles Symposium (IV), pages 2522–2529. IEEE, 2019. 2

[29] Yifeng Jiang, Tingnan Zhang, Daniel Ho, Yunfei Bai,
C Karen Liu, Sergey Levine, and Jie Tan. SimGAN: Hybrid
simulator identification for domain adaptation via adversar-
ial reinforcement learning. In ICRA, 2021. 3

[30] Amlan Kar, Aayush Prakash, Ming-Yu Liu, Eric Cameracci,
Justin Yuan, Matt Rusiniak, David Acuna, Antonio Torralba,
and Sanja Fidler. Meta-sim: Learning to generate synthetic
datasets. ICCV, 2019. 2

[31] Alireza G Kashani, Michael J Olsen, Christopher E Parrish,
and Nicholas Wilson. A review of lidar radiometric process-
ing: From ad hoc intensity correction to rigorous radiometric
calibration. Sensors, 15(11):28099–28128, 2015. 3, 5

[32] Nathan Koenig and Andrew Howard. Design and use
paradigms for gazebo, an open-source multi-robot simulator.
In IROS, 2004. 2, 3

[33] Chenqi Li, Yuan Ren, and Bingbing Liu. PCGen: Point cloud
generator for LiDAR simulation. In ICRA, 2022. 3

[34] Derek D Lichti, Stuart J Gordon, and Taravudh Tipdecho.
Error models and propagation in directly georeferenced ter-
restrial laser scanner networks. Journal of surveying engi-
neering, 131(4):135–142, 2005. 4

[35] Sivabalan Manivasagam, Shenlong Wang, Kelvin Wong,
Wenyuan Zeng, Mikita Sazanovich, Shuhan Tan, Bin Yang,
Wei-Chiu Ma, and Raquel Urtasun. LiDARsim: Realistic
LiDAR simulation by leveraging the real world. In CVPR,
2020. 1, 2, 3, 4, 7, 8

[36] Jiageng Mao, Minzhe Niu, Haoyue Bai, Xiaodan Liang,
Hang Xu, and Chunjing Xu. Pyramid R-CNN: Towards bet-
ter performance and adaptability for 3D object detection. In
ICCV, 2021. 6

[37] Jiageng Mao, Minzhe Niu, Chenhan Jiang, Hanxue Liang,
Jingheng Chen, Xiaodan Liang, Yamin Li, Chaoqiang Ye,
Wei Zhang, Zhenguo Li, et al. One million scenes for au-
tonomous driving: ONCE dataset. NeurIPS, 2021. 1

[38] Paul F McManamon. Field Guide to Lidar. SPIE Press,
2015. 3
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