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Abstract

This paper presents a new, provably-convergent algo-
rithm for computing the flag-mean and flag-median of a set
of points on a flag manifold under the chordal metric. The
flag manifold is a mathematical space consisting of flags,
which are sequences of nested subspaces of a vector space
that increase in dimension. The flag manifold is a superset
of a wide range of known matrix spaces, including Stiefel
and Grassmanians, making it a general object that is useful
in a wide variety computer vision problems.

To tackle the challenge of computing first order flag
statistics, we first transform the problem into one that in-
volves auxiliary variables constrained to the Stiefel mani-
fold. The Stiefel manifold is a space of orthogonal frames,
and leveraging the numerical stability and efficiency of
Stiefel-manifold optimization enables us to compute the
flag-mean effectively. Through a series of experiments, we
show the competence of our method in Grassmann and ro-
tation averaging, as well as principal component analysis.

1. Introduction

Subspace analysis is a key workhorse of machine learn-
ing since various forms of data and parameter sets admit a
compact representation as a subspace of a high-dimensional
vector space. Diffusion imaging data [19] or appearance
variations of objects (e.g. human faces) under variable light-
ing can be effectively modeled by low dimensional linear
spaces [10], while a video as a whole can be modeled as the
subspace that spans the observed frames [34].

A large body of the aforementioned approaches lever-
age the mathematical framework of Grassmanian manifolds
thanks to the ease in dealing with the confounding variabil-
ity in observations [21, 22, 23, 27]. As such, they rely on
statistical analysis tools inherently requiring mean or vari-
ance estimations on matrix manifolds [14, 15, 34]. Yet,
(i) they have been found to be susceptible to outliers, and
(ii) while Grassmanians were suitable for analyzing tall
data where the ambient dimension is much larger than the
number of data points, they become less effective when it

Figure 1: Chordal averaging on the flag manifold
FL(1, 2; 3). The average (shown in purple) of the input (red
and blue) lines remain in the average of the input planes.

comes to wide data where the data dimension is relatively
small [29]. In such cases, the more structured flag manifolds
have been found to be more effective [29].

A flag manifold is a nested series of subspaces geomet-
rically generalizing Grassmanians. Any multilevel, mul-
tiresolution, or multiscale phenomena is likely to involve
flags, whether implicitly or explicitly. This makes flag man-
ifolds instrumental in dimensionality reduction, clustering,
learning deep feature embeddings, visual domain adapta-
tion, deep neural network compression and dataset analy-
sis [35, 29, 50]. Thus, computing statistics on flag man-
ifolds becomes an essential prerequisite powering several
downstream applications. In this paper, we propose an
approach for computing first order statistics on (oriented)
flag manifolds (c.f . Fig. 1)1. In particular, endowing flag
manifolds with the non-canonical chordal metric, we first
transform the (weighted) flag-mean problem into an equiv-
alent minimization on the Stiefel manifold, the space of or-
thonormal frames, via the method of Lagrange multipliers.
We then leverage Riemannian Trust-Region (RTR) optimiz-
ers [12, 11] to obtain the solution. Subsequently, we intro-
duce an iteratively reweighted least squares (IRLS) scheme
to estimate the more robust flag-median as an L1 flag-mean.
Finally, we show how several common problems in com-
puter vision such as motion averaging, can be translated
onto averages on flag manifolds using group contraction op-
erators [43]. In particular, our contributions are:
• We introduce a new algorithm for computing flag-

prototypes (e.g. flag-mean and -median) of a set of points
lying on the flag-manifold.

• Analogous to our flag-mean, we introduce an IRLS mini-

1While our averages are for general flag-manifolds, we do provide ori-
ented averages for flag manifolds of type 1, 2, 3, . . . , d− 1 in d-D space.
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mization to estimate the flag-median.

• We prove the convergence of the proposed IRLS algo-
rithm for the flag-median.

• We show how rigid motions can be embedded into flags
and thus provide a new way to robustly average motions.

Our diverse experiments reveal that flag averages are more
robust, usually yield more reliable estimates, and are more
general, i.e., generalize Grassmannian averages. We will
release our implementations upon publication.

2. Related Work

Flag manifolds. Besides being mathematically interesting
objects [47, 17, 7], flags and flag manifolds have been ex-
plored by a series of works from Nishimori et al. addressing
subspace independent component analysis (ICA) via Rie-
mannian optimization [39, 41, 38, 42, 38, 40]. Nested se-
quences of subspaces (e.g. flags) appear in the weights in
principal component analysis (PCA) [49] and the result of a
wavelet transform [25].
Flag manifolds in computer vision. The utilization of
flag manifolds in computer vision is a recent development.
Ma et al. [29] employ nested subspace methods to compare
large datasets. Additionally, they port self-organizing map-
pings to work on flag manifolds, enabling parameterization
of a set of flags of a fixed type. This method was applied
to hyper-spectral image data analysis [30]. Ye et al. [49]
derive closed-form analytic expressions for the set of oper-
ators required for Riemannian optimization algorithms on
the flag manifold, while Nguyen [37] provides algorithms
for logarithmic maps and geodesics on flag manifolds. Mar-
rinan et al. [34] investigate the averaging of Grassmanians
into flags, demonstrating that flag means behave more like
medians and are therefore more robust to the presence of
outliers among the subspaces being averaged. Building on
this work, they utilize flag averages to improve the detec-
tion of chemical plumes in hyperspectral videos [33]. Fi-
nally, Mankovich et al. [31] also average Grassmannians
into flags by providing the median as a flag and an algo-
rithm to compute it.

3. Chordal Centroids on Flag Manifolds
We begin by providing the necessary definitions related

to flag manifolds before presenting our chordal flag-mean
and -median algorithms.

Definition 1 (Matrix groups). The orthogonal group O(d)
denotes the group of distance-preserving transformations
of a Euclidean space of dimension d. SO(d) is the spe-
cial orthogonal group containing matrices in O(d) deter-
minant 1. The Stiefel manifold St(k, d), a.k.a. the set of
all orthonormal k-frames in Rd, can be represented as the
quotient group: St(k, d) = O(d)/O(d − k). A point on

the Stiefel manifold is parameterized by a tall-skinny d× k
real matrix with orthonormal columns. The Grassmannian,
Gr(k, d), represents the collection of points parameteriz-
ing the k-dimensional subspaces of a fixed d-dimensional
vector space, e.g. Rd. For our purposes, Gr(k, d) is a
real matrix manifold, where each point is identified with an
equivalence class of orthogonal matrices, i.e. Gr(k, d) =
O(d)/O(k)×O(d− k).
Notation: We represent [X] ∈ Gr(k, d) using the truncated
orthogonal matrix X ∈ Rd×k. For this paper [X] is used to
denote the subspace spanned by the columns of X.

Definition 2 (Flag). A flag in a finite dimensional vector
space V over a field is a sequence of nested subspaces with
increasing dimension, each containing its predecessor, i.e.
the filtration: {∅} = V0 ⊂ V1 ⊂ · · · ⊂ Vk ⊂ V with
0 = d0 < d1 < · · · < dk < dk+1 = d where dimVi = di
and dimV = d. We say this flag is of type or signature
(d1, . . . , dk, d). A flag is called complete if di = i, ∀i. Oth-
erwise the flag is incomplete or partial.
Notation: A flag, [[X]] of type (d1, . . . , dk, d), is represented
by a truncated orthogonal matrix X ∈ Rd×dk . Let mj =
dj−dj−1 for j = 1, 2, . . . , k+1, and Xj ∈ Rd×mj for j =
1, 2, . . . , k whose columns are the dj−1 + 1 to dj columns
of X. [[X]] is

[X1] ⊂ [X1,X2] ⊂ · · · ⊂ [X1, . . . ,Xk] = [X] ⊂ Rd.

Definition 3 (Flag manifold). The aggregate of all flags of
the same type, i.e. a certain collection of ordered sets of
vector subspaces, admit the structure of manifolds. We refer
to this flag manifold as FL(d1, ..., dk; d) or equivalently
as FL(d + 1)2. The points of FL(d + 1) parameterize
all flags of type (d1, ..., dk, d). Flag manifolds generalize
Grassmannians because FL(k; d) = Gr(k, d). FL(d+ 1)
can be thought of as a quotient of groups [30]:

FL(d+1) = SO(d)/S(O(m1)×O(m2)×· · ·×O(mk+1)).

Definition 4 (Chordal distance on the flag manifold [44]).
For [[X]], [[Y]] ∈ FL(d + 1), the chordal distance is a map
dc : FL(d+ 1)×FL(d+ 1)→ R:

dc([[X]], [[Y]]) :=

√√√√ k∑
j=1

mj − tr(X⊤
j YjY⊤

j Xj). (1)

We now endow flags with orientation, which is required
in certain applications such as motion averaging.

Definition 5 (Oriented flag manifold [45, 30]). An oriented
flag manifold, FL+(d + 1), contains only flags with sub-
spaces with compatible orientations. Algebraically:

FL+(d+ 1) = SO(d)/(SO(m1)× · · · × SO(mk+1)).

2Note that we will use FL(d1, ..., dk; d) and FL(d+1) interchange-
ably in the rest of the manuscript.
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Two oriented vector spaces have the same orientation if the
determinant of the unique linear transformation between
them is positive [6].

3.1. The Chordal Flag-mean

Armed with notation for flags (Dfn. 2) and ways to mea-
sure distance between them (Dfn. 4), we are prepared to
state the chordal flag-mean estimation problem formally.

Definition 6 (Weighted chordal flag-mean). Let
{[[X(i)]]}pi=1 ⊆ FL(d + 1) be a set of points on a
flag manifold with weights {αi}pi=1 ⊂ R where αi ≥ 0.
The chordal flag-mean [[µ]] of these points solves:

argmin
[[Y]]∈FL(d+1)

p∑
i=1

αidc([[X
(i)]], [[Y]])2. (2)

Note: for FL(k;n), this amounts to the Grassmannian-
mean by Draper et al. [18].

Proposition 1. The chordal flag-mean optimization prob-
lem in Eq. 2 can be phrased as the Stiefel manifold opti-
mization problem:

argmin
Y∈St(dk,d)

k∑
j=1

mj − tr
(
IjY

⊤PjY
)
. (3)

where the matrices Ij and Pj are given below

(Ij)i,l =

{
1, i = l ∈ {dj−1 + 1, dj−1 + 2, . . . , dj}
0, otherwise

,

Pj =

p∑
i=1

αjX
(i)
j X

(i)
j

⊤
. (4)

Proof sketch. We use truncated orthogonal representations
for points on the Stiefel and flag manifolds. By the equiva-
lence of minimization problems we write Eq. 2 as

argmin
Y∈St(dk,d)

k∑
j=1

mj −
k∑

j=1

p∑
i=1

αitr

(
Y⊤

j X
(i)
j X

(i)
j

⊤
Yj

)
.

Ij allows us to write YjY
⊤
j = YIjY

⊤. Using this, prop-
erties of trace, and our definition of Pj we write Eq. 2 as
Eq. 3.

We provide the full proof in the appendix. We now ex-
tend the chordal mean to the case of a certain family of com-
plete and oriented flags.

Proposition 2. Let {x(i)}pi=1 ⊂ Rd. Then suppose

x(i)⊤x(j) > 0 for all i, j. Then the naive Euclidean mean
z = 1

n

∑p
i=1 x

(i) has the same orientation as each x(i).

Algorithm 1: Chordal flag-mean.

Input: Set of points on a flag manifold {[[X(i)]]}pi=1

Output: Chordal flag-mean [[µ]]

Initialize [[µ]]

Compute projections {Pi}ki=1 as in Eq. 4
Define {Ii}ki=1 as in Eq. (4)
Optimize Eq. (3) using Stiefel RTR to find [[µ]]

Proof. The proof follows from the simple derivation:

x(j)⊤z = x(j)⊤ 1

n

p∑
i=1

x(i) =
1

n

p∑
i=1

x(j)⊤x(i) > 0.

Definition 7 (FL+(1, . . . , d−1; d) chordal flag-mean). Let
{[[X(i)]]}pi=1 ⊂ FL(1, 2, . . . , d − 1; d) where for each j

and any i and k, X(i)
j

⊤
X

(k)
j > 0. Let [[µ]] be the chordal

flag-mean (e.g., Eq. 2) and zj be the Euclidean mean of
{X(i)

j }
p
i=1 ∈ Rd. Then the oriented chordal flag-mean is

defined as [[µ+]] ∈ FL+(1, . . . , d− 1; d)+:

µ+
j =

{
Yj , z⊤

j Yj ≥ 0

−Yj , otherwise.
(5)

Remark 1. The ordering of the columns of µ is the same as
that of each X(i) because the chordal distance on the flag
manifold respects the ordering of the vectors in the flag rep-
resentation by only comparing µj to X

(i)
j . So, we only need

to correct for the sign of the columns of µ. By Prop. 2, we
know that the Euclidean mean, z, has the same orientation
as each of X(i)

j . We use Eq. 5 to force z⊤
j µ∗

j ≥ 0. Dfn. 7
gives us a way to choose which chordal flag-mean represen-
tatives are best for averaging representations of motions in
FL+(1, 2, 3; 4) in Sec. 4.

To compute the proposed mean, we optimize Eq. 3 via
RTR methods [2, 12] and re-orient the mean using Dfn. 7.

Remark 2. The geodesic distance averages on the Grass-
mannian (e.g. ℓ2-median and Karcher mean) are known
to be unique only for certain subsets of the Grassmannian
[3]. The proof of this revolves around finding the region of
convexity of the geodesic distance function and its square.
Uniqueness for Grassmannian chordal distance averages
(e.g. the GR-mean [18] and -median [31]) is largely un-
studied. It is known that the chordal distance on the Grass-
mannian approximates the geodesic distance, but its region
of convexity is an open problem to the best of our knowl-
edge. Determining the convexity of our chordal flag-mean
and -median would boil down to finding the region of con-
vexity of the chordal distance function and its square on the
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flag manifold. Additionally, one could generalize geodesic
distance averages to the flag manifold using Riemannian
operators on flags [49], find an algorithm to compute them
and their region of convexity. We leave these projects to
future work.

3.2. The Chordal Flag-median

We are now ready to provide our iterative algorithm for
robust centroid estimation.

Definition 8 (Weighted chordal flag-median). Let
{[[X(i)]]}pi=1 ⊆ FL(d + 1) be a set of points on a
flag manifold with weights {αi}pi=1 ⊂ R where αi ≥ 0.
The chordal flag-median, [[η]], of these points solves

argmin
[[Y]]∈FL(d+1)

p∑
i=1

αidc([[X
(i)]], [[Y]]). (6)

Note: for FL(k;n), this amounts to the Grassmannian-
median by Mankovich et al. [31].

Proposition 3. The flag-median optimization problem in
Eq. 6 can be phrased with weights wi([[Y]]) in:

wi([[Y]]) =
αi

max{dc([[X(i)]], [[Y]]), ϵ}
, (7)

argmin
[[Y]]∈FL(d+1)

p∑
i=1

k∑
j=1

mj−wi([[Y]])tr

(
Y⊤

j X
(i)
j X

(i)
j

⊤
Yj

)
.

(8)
where ϵ = 0 as long as dc([[X(i)]], [[Y]]) ̸= 0 for all i.

Proof sketch. We can encode the constraints and our opti-
mization problem into the Lagrangian:

∇Yj
L = −2

p∑
i=1

αiX
(i)
j X

(i)
j

⊤
Yj√∑k

j=1 mj − tr

(
X

(i)
j

⊤
YjY⊤

j X
(i)
j

)

+ 2

k∑
j=1

λi,jYiY
⊤
i Yj ,

∇λi,j
L = mjδi,j − tr

(
Y⊤

i YjY
⊤
j Yi

)
.

Then we take the gradient of the Lagrangian with respect to
Yj and λi,j and set it equal to zero. So, for each j, we have

4mjλj,j =

p∑
i=1

αitr

(
Y⊤

j X
(i)
j X

(i)
j

⊤
Yj

)
dc([[X(i)]], [[Y]])

.

Maximizing each 4mjλj,j will minimize the objective func-
tion in Eq. 6. We use equivalences of optimization problems
to reformulate this maximization as Eq. 8.

Algorithm 2: Chordal flag-median.

Input: Set of points on a flag manifold {[[X(i)]]}pi=1

Output: Chordal flag-median [[η]]

Initialize [[η]]

while (not converged) do
Assign wi([[η]]) using Eq. (7) (with ϵ > 0)
[[η]]← flag-mean({[[X(i)]]}, {wi([[η]])})

Proposition 4. Fixing [[Z]] ∈ FL(d + 1), Eq. 8, with
wi([[Z]]), becomes

argmin
[[Y]]∈FL(d+1)

p∑
i=1

k∑
j=1

mj−wi([[Z]])tr

(
Y⊤

j X
(i)
j X

(i)
j

⊤
Yj

)
and is equivalent to a chordal flag-mean with weights
wi([[Z]]). Note: ϵ = 0 as long as dc([[X

(i)]], [[Z]]) ̸= 0 for
all i.

Proof sketch. This follows from the proof of Prop. 1.

Prop. 3 simplifies our optimization problem to Eq. 8.
Given an estimate for the chordal flag-median, [[Z]], Prop. 4
shows that solving a weighted chordal flag mean problem
will approximate the solution to Eq. 8. Using the proposi-
tions, we are now ready to present our iterative algorithm
for flag-median estimation in Alg. 2.

The convergence of Weiszfeld-type algorithms are well
studied in the literature [4, 8, 51] and our IRLS algorithm
for the chordal flag-median can be proven to decrease its
respective objective function value over iterations. This is
what we establish next in Prop. 5, inspired by the proof
methods given in [8].

Proposition 5. Let [[Y]] ∈ FL(d + 1). Suppose
d([[Y]], [[X(i)]]) > ϵ for i = 1, 2, . . . , p. Also define the
maps: T : FL(d + 1) → FL(d + 1) as an iteration of
Alg. 2 and f : FL(d+ 1)→ R as the chordal flag-median
objective function value. Then

f(T ([[Y]])) ≤ f([[Y]]). (9)

Proof sketch. We define the function

h([[Z]], [[Y]]) =

p∑
i=1

wi([[Z]])dc([[X
(i)]], [[Y]])2. (10)

By definition of h, T , and f , we have

h(T ([[Y]]), [[Y]]) ≤ h([[Y]], [[Y]]) ≤ f([[Y]]).

We use h and 2a− b < a2

b for a, b ∈ R, b > 0 to find

2f(T ([[Y]])− f([[Y]]) ≤ h(T ([[Y]]), [[Y]]).

From our string of inequalities, we have the desired result.
We leave the full proof to our supplementary material.
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Remark 3. The distance vanishes when [[Y]] = [[X(i)]]
(e.g., dc([[Y]], [[X(i)]]) = 0). In this case, Alg. 2 gets stuck
at [[X(i)]] and the result in Prop. 5 becomes

f(T ([[Y]])) ≤ f([[Y]]) + pϵ/2. (11)

This singularity can be removed even for a general
Weiszfeld iteration, simply by replacing the weights [5].

Proposition 6. Let [[Yk]] ∈ FL(d + 1) be an iterate of
Alg. 2 and f : FL(d + 1) → R denote the chordal flag-
median objective value. f([[Yk]]) converges as k → ∞ as
long as dc([[Y]], [[Xi]]) > ϵ for i = 1, 2, . . . , p and each k.

Proof. Notice that the real sequence with terms f([[Yk]]) ∈
R is bounded below by 0 and is decreasing by Prop. 5. So
it converges as k →∞.

4. Motion Averaging

In this section, we propose a method for motion averag-
ing by leveraging novel definitions of averages on the flag
manifold. This will also act as a good example of how to
use flag manifolds for performing computations on other
groups. To this end, we now define the group of 3D rota-
tions and translations, SE(3). Then we outline how to navi-
gate between points on SE(3) and points on a flag. Finally,
we describe our motion averaging on flag manifolds.

Definition 9 (3D motion). The configuration (position and
orientation) of a rigid body moving in free space can be
described by a homogeneous transformation matrix M cor-
responding to the displacement from any inertial reference
frame to another. The set of all such rigid body transforma-
tions in three-dimensions form the SE(3) group:

SE(3) =

{
γ :=

[
R t
0⊤ 1

]
: R ∈ SO(3) and t ∈ R3

}
,

where t denotes a translation (positional displacement) and
R captures the angular displacements as an element of the
special orthogonal group SO(3):

SO(3) =
{
R ∈ R3×3 : R⊤R = I ∧ detR = 1

}
. (12)

Proposition 7 (Motion contraction [43]). We call
Φλ : SE(3) → SO(4) a Saletan contraction, i.e. Φλ(γ) =
UVT where the left (U) & right (V) singular vectors are
obtained via the singular value decomposition:

UΣVT =

[
R t/λ
0⊤ 1

]
for γ ∈ SE(3). (13)

Proposition 8 (Inverse motion contraction [43]). We call
the inverse contraction map Φ−1

λ : SO(4) → SE(3). Let

Algorithm 3: Motion averaging on Flag manifolds.
Input: Motions {γ}pi=1 ⊂ SE(3), scale λ ∈ R

Output: Average motion γ∗ ∈ SE(3)

Compute {Φλ(γi)}pi=1 ⊂ SO(4) using Prop. 7
Compute

{
[[X(i)]]

}p

i=1
⊂ FL+(1, 2, 3; 4)} from

{Φ(γi)}pi=1 using Prop. 9

Mean: [[Y∗]]← flag-mean
({

[[X(i)]]
}p

i=1

)
Median: [[Y∗]]← flag-median

({
[[X(i)]]

}p

i=1

)
Use Prop. 10 to compute M⋆ ∈ SO(4)

Use Prop. 8 to compute R⋆ ∈ SO(3) and t⋆ ∈ R3

M ∈ SO(4), then γ = Φ−1
λ (M) where

t =
2λ

M4,4
M1:3,4, (14)

R =

M1:k,1:k, ∥t∥2 < ϵ(
M4,4

ttT

∥t∥2
2
+P′

)−1

M1:k,1:k, o.w.
, (15)

and UΣVT = tT is the SVD and P′ = V:,2:4V
T
:,2:4.

Proposition 9 (Flag representation of motion [45]). Any
contracted motion M ∈ SO(4) can be represented as a
point on the flag, [[X]] ∈ FL+(1, 2, 3; 4) as the first 3
columns of M. Namely, [[X]] is

[m1] ⊂ [m1,m2] ⊂ [m1,m2,m3] ⊂ R4. (16)

Remark 4. Note that the elements of the group of rigid
body motions, SE(3), which we represent by points on
SO(4), can be imagined as the points of a six-dimensional
quadric in seven-dimensional projective space, P7, called
the Study quadric [45]. The well known dual quater-
nions are the very coordinates of this space. Such a bi-
jection between P7 and SO(4) [36] is the reason why
our free parameter λ resembles the dual unit ε in dual
quaternions [45, 1, 13]. Moreover, our flag manifold,
FL+(1, 2, 3; 4) is homeomorphic to SO(4). We leave the
investigation of these deeper connections to future work.

Proposition 10 (Motion representation of a flag [45]).
Given [[X]] ∈ FL+(1, 2, 3; 4) with the same basis vectors
from Prop. 9, the corresponding point on SO(4) is

[m1,m2,m3, z] ∈ SO(4), (17)

where z is found by running the Gram-Schmidt process to
find a 4th unit vector orthogonal to span{m1,m2,m3}.
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Figure 2: 100 points from a synthetic data set on
FL(1, 3; 10). The vertical axis is the chordal distance on
FL(1, 3; 10) between the predicted averages and the “cen-
ter” of the data set.

4.1. Single Motion Averaging

With these constructs, we are now ready to formally de-
fine the motion averaging problem for points on SE(3).

Definition 10. Given a set of motions {γi ∈ SE(3)}pi=1,
the centroid is defined to be the solution of the following
optimization procedure:

γ∗ = argmin
γ∈SE(3)

p∑
i=1

αi∥γi − γ∥qF (18)

where q = 2 for mean estimation, q = 1 for the median and
αi ∈ R denote the individual weights.

To solve Eq. 18, we simply map each γi ∈ SE(3) to
X(i) ∈ FL(1, 2, 3; 4)+. To this end, we first map each γi

to ϕλ(γi) = Mi ∈ SO(4) via Prop. 7 and subsequently use
Prop. 9 to represent Mi as [[X(i)]] ∈ FL(1, 2, 3; 4)+. Then
we use our flag-mean (q = 2) or -median algorithm (q = 1)
to solve

[[Y∗]] = argmin
[[Y]]∈FL(1,2,3;4)+

p∑
i=1

αidc([[X
(i)]], [[Y]])q (19)

The desired solution γ∗ ∈ SE(3) is then obtained by first
mapping [[Y∗]] back to M∗ ∈ SO(4) via Prop. 10 and sub-
sequently using γ∗ = ϕ−1

λ (M∗) by Prop. 8. We present
this chordal Flag motion averaging in Alg. 3.

5. Results
5.1. Averaging on Flag Manifolds

We first consider examples of data naturally existing as
flags. We work with 5 data sets: 2 synthetic ones, MNIST
digits [16], the Yale Face Database [9], and the Cats and
Dogs dataset [48]. We provide further evaluation of our
flag averages that result in improved clustering on the UFC
YouTube dataset [28] in the supplementary material. In one
synthetic experiment, we compare our Stiefel Riemannian

Dist. to C Obj. Fn. Value

Ours (1.4± 0.2)× 10−4 (2.1± 0.05)× 10−4

[37] (3.0± 2.1)× 10−3 (1.6± 1.6)× 10−3

Table 1: Robustness to initialization: Alg. 1 versus Flag
RTR from Nguyen et al. [37]. Data: 100 points on
FL(1, 2, 3; 10).

Trust-Regions (RTR) method in Alg. 1 for computing the
flag-mean to the Flag RTR by Nguyen et al. [37]. In the
rest of the experiments, we compare our chordal flag (FL)-
mean & -median to the Grassmannian (GR)-mean [18] &
-median [31], as well as Euclidean averaging, where the
matrices are simply averaged and projected onto the flag
manifold via QR decomposition. GR-means and -medians,
[18, 31] input data a points on Grassmannians by using the
largest dimensional subspace in the flag ([X(i)] ∈ Gr(k, d))
and output an average as a flag of type (1, 2, . . . , k, d). So
all the methods considered in this section result in averages
which live on a flag manifold. In this section we compare
methods for data representation: the flag vs. Grassmannian
vs. Euclidean space.

Synthetic data. Both our synthetic experiments use the
same methodology for generating data sets on the Grass-
mannian and flag. We begin by computing a “center” rep-
resentative, C ∈ R10×3, as the first 3 columns of the
QR decomposition of a random matrix in R10×3 with en-
tries sampled from the uniform distribution over [−.5, .5),
U [−.5, .5). The representative for the ith data point, Xi,
is computed by sampling Zi ∈ R10×3 with entries from
U [−.5, .5) and defined as the first 3 columns of the QR de-
composition of C+ δZi for a noise parameter δ ≥ 0.

Averaging synthetic flag data. We use synthetic data sets
with 100 points, on Gr(3; 10) and FL(1, 3; 10). For the left
plot in Fig. 2 we vary δ to compute our data sets. For the
right plot we have m outliers computed with δ = 1 and the
rest of the data are computed with δ = 0.001. We compute
the error as the chordal distance on FL(1, 3; 10) between
the predicted average and [[C]]. In addition to comparing
our averages to Grassmannian (GR) averages, we compare
Alg. 1 to Nguyen et al. [37] for computing the flag-mean.
Our results indicate that our algorithm improves both upon
GR, Euclidean, and Nguyen et al. [37] averages in the sense
that flag averages are closer to [[C]]. Specifically, our flag-
median is more robust to outliers than our flag-mean. Note:
Euclidean out preforms GR averaging because Euclidean
averaging respects column order (e.g., the flag structure) for
matrix representatives of the data, whereas GR averaging
does not.

Comparisons to Riemannian flag optimization. In a sec-
ond experiment, we compare the convergence of Alg. 1 to
that of Flag RTR [37]. To this end, we generate 100 points
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FL-mean: FL(1,3;d)

GR-mean: Gr(3, d)

Figure 3: Averaging a collection of faces belonging to three
different people, captured under varying illumination: cen-
ter, left and right. Notice that the first dimension of the flag
representations is center illuminated, better representing the
mean compared to Grassmannian.

on FL(1, 2, 3; 10) using δ = 0.001 and run 50 random tri-
als with different initializations and compute 3 items (i) the
number of iterations to convergence, (ii) the chordal dis-
tance on FL(1, 2, 3; 10) between the flag-mean and [[C]],
(iii) the cost function values from Eq. 2. We find that in
every experiment Alg. 1 converges in 2 iterations and Flag
RTR converges, on average, in 9.74 ± 2.76 iterations. In
Tab. 1 we see that our method is one order of magnitude
closer to the ground truth centroid [[C]] and produces a one
order of magnitude smaller objective function value.
Averaging under varying illumination. To further demon-
strate the efficacy of our averages over the standard
Grassmanians, we leverage face images from Yale Face
Database [9] with central (c), left (l), and right (r) illu-
minations, respectively. Let Ac,Al,Ar ∈ R243×320 be
these three images of a person. We represent a face as a
point [[X]] ∈ FL(1, 3; d) as [[X]] = [X1] ⊂ [X] ⊂ Rd

and as [X] ∈ Gr(3, d) using the following three steps: (i)
Set vi = vec (Ai) for i = c, l, r; (ii) take X = Q:,1:3

where Q is from the QR decomposition of [vc,vl,vr]. Re-
peating this process for three faces gives us three points:
[X1], [X2], [X3] ∈ Gr(3, d) and [[X1]], [[X2]], [[X3]] ∈
FL(1, 3; d). Then we calculate the Grassmannian-mean
of the points in Gr(3, d) which is the flag: [[ν]] = [ν1] ⊂
[ν1,ν2] ⊂ [ν1,ν2,ν3] and the flag-mean (ours) of the
points in FL(1, 3; d): [[µ]] = [µ1] ⊂ [µ1,µ2,µ3]. A plot
of reshaped µ1 and ν1 for a set of three faces in Fig. 3.
We would expect the first dimension of both means to look
like a face with center illumination. However, only the flag-
mean appears to be center-illuminated.
MNIST representation. We run two experiments simi-
lar to what was done in [31] with MNIST digits. How-
ever, our representations differ since we represent a digit
as [Xj ] ∈ Gr(2, 784) and [[Xj ]] ∈ FL(1, 2; 784). We gen-
erate p representations of a digit, {Xj}pj=1, by sampling a
set of p images without replacement from the test partition.
Then we vectorize each image into vj ∈ R784 and run k
nearest neighbors on {vj}pi=1 with k = 2 using the cosine
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Figure 4: Neural network predictions for the first dimension
of different averages i = 0, 1, 2, . . . , 19 MNIST data sets.
The ith data set has i representations of the 9s digit and 20
representations of the 1s digit.

distance. Say vj and vk are the 2 nearest neighbors of vj ,
then the representation for sample j is Xj = Q:,:2 from the
QR decomposition of [vj ,vk].

Robustness to Neural Network (NN) predictions. For the
first MNIST experiment, we use the method above to create
20 data sets on Gr(2, 784) and FL(1, 2; 784) correspond-
ing to i = 0, 1, 2, . . . , 19. The ith data set contains 20 repre-
sentations of the digit 1 and i representations for the digit 9.
We calculate a GR-mean and -median of each of the i data
sets on Gr(2, 784) and our flag-mean and -median for the
data sets on FL(1, 2, 784). Note: all of these averages live
on FL(1, 2, 784). We then use a NN (trained on the origi-
nal training data and producing a 97% test accuracy on the
original test data) to predict the label of the first dimension
of each average for i = 0, 1, 2, . . . , 19. As plotted in Fig. 4,
the NN incorrectly predicts the class of the GR-mean and
-median for each data set. In contrast, the flag-mean and
-median are all predicted as 1s with data sets with fewer
than 11 representations of the 9s digits. The flag-mean is
the first flag average to be incorrectly predicted, since it is
not as robust to outliers as the flag-median.

Visualizing robustness. Our second MNIST experiment
is with 20 representations of 6s and with i outlier repre-
sentations of 7s for i = 0, 4, 8, 12. We use the workflow
from Fig. 4 to represent the MNIST digits on Gr(2, 748)
and FL(1, 2; 748). For each i, we compute averages of a
data set with i representations of 7s. A chordal distance
matrix on FL(1, 2; 798) between all the averages and data
is used to preform Multidimensional Scaling (MDS) [26]
for visualization in Fig. 5. The best averages should barely
move (right to left) as we add outlier representations of 7s.
Our flag-mean and -median are moved the least with the ad-
dition of representations of 7s with the median moving less
than the mean. In contrast, the Grassmannian-mean and -
median [31] move more than the compared baselines as we
add 7s.
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Figure 5: MDS embedding of MNIST digits and Grassman-
nian and flag averages. Each “x” is an average of 20 repre-
sentations of 6s as we gradually add i outlier representations
of 7s for i = 0, 4, 8, 12 data sets. The averages move from
right to left as we add more 7s.

PCA by flag statistics. We use the Cats and Dogs
dataset [48] to compute 3-dimensional PCA [24] weights,
W∗ ∈ R4096×3, of the data matrix, X ∈ R198×4096. Then
we randomly split the m subjects into p evenly sized groups
to generate p data matrices each of size pi: {Xi}pi=1 ⊂
Rpi×4096. PCA weights of each Xi are computed as
Wi ∈ R4096×3. W∗ is predicted by averaging {Wi}pi=1 as
points on FL(1, 2, 3; 4096) and Gr(3; 4096). Specifically,
we compute the flag-mean (ours), Grassmannian-mean,
Euclidean-mean, and a random point. Then we record the
chordal distance onFL(1, 2, 3; 4096) (reconstruction error)
between the average and [[W∗]] ∈ FL(1, 2, 3; 4096). Our
flag-mean is closer to [[W∗]] for p = 1, 2, . . . , 6.

5.2. Averaging Rigid Motions

We now evaluate our algorithm in robust averaging of
a set of points represented on the SE(3)-manifold. To
this end, we synthesize a dataset of 400 rigid motions (ro-
tations and translations) around multiple randomly drawn
central points in SE(3). These points are generated with
increasing noise levels. Particularly, for rotations we per-
turb the rotation axis using variances of [0, 5, 10, 15, 20, 25]
degrees, while the translations are perturbed in the levels of
[0, 0.02, 0.05, 0.1, 0.2, 0.3]. For each noise level, we run 50
experiments and use λ = 1 to ensure that translations and
rotations are well balanced. We then run our algorithms for
the flag-mean and -median. These algorithms are compared
to standard Govindu [20], and baseline (QT) where trans-
lations and quaternions are averaged independently using
Markley’s method [32]. We also ran dual quaternion aver-
aging of Torsello et al. [46] and found it produced identical
results to Govindu. Our results in Fig. 7 show that both of
our algorithms surpass classical motion averages with our
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Figure 6: Reconstruction error for PCA weights as a func-
tion of Number of Splits, p.
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Figure 7: Single motion averaging experiments for increas-
ing levels of SE(3)-noise and outlier ratios.

flag-median producing more robust estimates.

6. Conclusion
We have provided two algorithms, the flag-mean & flag-

median, that estimate flag-prototypes of points defined on
flag manifolds using chordal distance. We have established
the convergence of our IRLS algorithm yielding the flag-
median. Our methodologies deviate from the existing lit-
erature [18, 31] which average Grassmannians into flags,
and are found to be useful when either inherent outlier-
robustness is necessary or when the subspaces possess a
natural order, (e.g., hierarchical data). Since flag manifolds
generalize Grassmannians, our methods can average on a
broader class of manifolds. Consequently, we have applied
our averages to rigid motions via group contraction.
Limitations & future work. Our method can become com-
putationally expensive when applied to high-dimensional
problems. Moreover, our convergence results are weaker
than desired as we have not provided a convergence rate.
Besides addressing these, our future work involves cluster-
ing and inference on data with hierarchical structures.
Acknowledgements. Benjamin Busam introduced Nathan
and Tolga during CVPR 2022 in New Orleans. This gra-
cious act is the catalyst in the realization of this work.
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