
Inter-Realization Channels: Unsupervised Anomaly Detection Beyond One-Class
Classification

Declan McIntosh
University of Victoria
Victoria, B.C., Canada
declanmcintosh@uvic.ca

Alexandra Branzan Albu
University of Victoria
Victoria, B.C., Canada

aalbu@uvic.ca

Abstract

Unsupervised anomaly detection and localization in im-
ages is a challenging problem, leading previous methods
to attempt an easier supervised one-class classification for-
malization. Assuming training images to be realizations
of the underlying image distribution, it follows that nomi-
nal patches from these realizations will be well associated
between and represented across realizations. From this,
we propose Inter-Realization Channels (InReaCh), a fully
unsupervised method of detecting and localizing anoma-
lies. InReaCh extracts high-confidence nominal patches
from training data by associating them between realiza-
tions into channels, only considering channels with high
spans and low spread as nominal. We then create our
nominal model from the patches of these channels to test
new patches against. InReaCh extracts nominal patches
from the MVTec AD dataset with 99.9% precision, then
archives 0.968 AUROC in localization and 0.923 AU-
ROC in detection with corrupted training data, competitive
with current state-of-the-art supervised one-class classifi-
cation methods. We test our model up to 40% of training
data containing anomalies with negligibly affected perfor-
mance. The shift to fully unsupervised training simplifies
dataset creation and broadens possible applications. Code:
github.com/DeclanMcIntosh/InReaCh

1. Introduction

As a general field, beyond computer vision contexts,

anomaly detection seeks to detect abnormal data points

within a larger dataset [6, 26]. In this paper, we focus on

anomaly detection and localization in images, which proves

to be a highly challenging form of anomaly detection due

in part to the high dimensionality of the data [13, 34]. In

recent works, anomaly detection in images has solely fo-

cused on one-class classification, also known as cold-start

anomaly detection [2, 13, 25, 33, 34, 37]. Unsupervised

Figure 1. Examples of qualitative results of InReaCh on the

MVTec AD dataset [4]. Ground truth anomaly contours are shown

in red. Anomaly localization scores are shown using the Jet Col-

ormap, increasing from blue to red. The upper row shows example

object classes, and the bottom row shows textural classes.

problems have been avoided due to the increased difficultly

from anomaly corruptions in the dataset. Our primary goal

is to reverse this trend by presenting a fully unsupervised

anomaly detection method with competitive results to exist-

ing one-class classification methods. Industrial defect de-

tection is a natural application for image anomaly detection,

with its expectation of entirely nominal outputs for qual-

ity assurance, leading to any anomaly being considered a

defect, referred to as defect detection [4]. This domain is

challenging due to the subtlety of possible anomalies, such

as thin cracks or minor cuts, and the variety of classes,

such as textural classes like leather contrasted with com-

plex but small object classes such as transistors both from

the MVTec Anomaly Detection benchmark [4]. Figure 1

shows some examples of these challenges.

A wide assortment of methods has been proposed for

the one-class classification anomaly detection problem that

generally work in two stages. First, from the corruption-free

training dataset, generate a model of nominal features found

therein, then test new images for outliers from this model,

1

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

6285

which are then scored as anomalies based on the divergence.

Notably, for any methods using this methodology, anoma-

lies existing in the training data would be expected to be

classified as nominal if similar anomalies occur in testing

data. This need for anomaly-free training data exists for

all major categories of image anomaly detection, including

Density Estimation [12, 28, 44, 48], Explicit one-class clas-

sification [8, 29, 31, 48], Image Reconstruction [21, 22, 49],

and Self-Supervised Classification [1, 16, 19, 39]. More

specifically, some anomaly detection methods which use

this model-test scheme include Variational Autoencoders

[2, 3, 5, 38, 42], Generative Adversarial Networks [17, 30,

37, 41, 50], Self-Supervision [16, 1, 19, 39, 40, 25, 53],

Pre-Trained Convolutional Neural Network Patch Features

[13, 34, 46], Attention Guided [43, 45, 23], Structural Mod-

elling [51, 7, 14, 52, 9], and Normalized Flows [24, 35, 36].

This is even true for statistical methods based on Gaussian

Mixtures or other statistical models [33, 18, 32], which may

be somewhat tolerant of anomalies but still incorporate their

influence into the modelled nominal distribution. Similarly,

the self-supervised methods listed above are not unsuper-

vised and still require purely nominal data in the training

set [16, 1, 19, 39, 40, 25, 53]. Any corruption would consti-

tute label noise in their training data.

We present Inter-Realization Channels (InReaCh), a

fully unsupervised image anomaly detection method to

move past one-class classification. InReaCh builds on pre-

vious patch-based methods generating patch-based feature

descriptors from a pre-trained CNN’s intermediate feature

hierarchies. InReaCh associates patches based on these fea-

ture descriptors across images (realizations of the underly-

ing image distribution) into channels. Then using the as-

sumption that channels which associate well across realiza-

tion and span a sufficient portion of the training set realiza-

tions are nominal with high confidence. This creates a high-

precision filter for selecting nominal patches in the train-

ing data with medium recall. Finally, these filtered nom-

inal patches can be used in a similar context to previous

one-class classification methods, where similar patch-based

methods have been shown to be highly sample efficient [34],

mitigating the initial filter’s lower recall.

Our experiments on the MVTec AD dataset show that

our fully unsupervised method has comparative results to

state-of-the-art supervised one-class classification methods

[4]. InReaCh’s competitive results exist while our method is

trained on corrupted MVTec AD datasets as well as in direct

comparisons using uncorrupted data. InReaCh’s precision

enables these results on corrupted data by selecting nominal

patches with an average precision of 0.999 on the MVTec

AD dataset. Further, the shift from one-class classifica-

tion garners significant benefits outside of raw performance.

Our unsupervised method allows for (1) unsupervised data

collection allowing us to leverage larger amounts of data,

(2) windowed or recomputed nominal features for non-

stationary problems such as outdoor environmental moni-

toring, (3) application to problems where expected nominal

data is not known a priori and creating a curated one-class

classification dataset is impossible. InReaCh fundamentally

broadens possible applications for image anomaly detection

beyond well-controlled industrial applications.

2. Related Works
In the field of anomaly detection in images, there

have been several broad solution paradigms, including

compression-reconstruction [44, 49, 22], Generative Ad-

versarial Network (GAN) methods [41, 50, 17], struc-

tural modelling [51, 52, 12], robustness methods [25, 53],

and patch-wise feature modelling [34, 13]. Compression-

reconstruction methods as in [49] often use a CNN au-

toencoder structure to learn an efficient compression and

decompression of the nominal data [44, 49, 22]. Then

anomalous data will not be well reconstructed after com-

pression and detected [49]. Methods such as [41] use a

GAN training structure where an initial network generates

images similar to the training images [41, 50, 17]. Then a

second network tries to discriminate genuine or generated

images corresponding to nominal or anomalous during in-

ference [41, 50, 17]. Structural modelling methods incor-

porate the relationship between structure and texture to ad-

dress the drawbacks of the CNNs used commonly in other

methods’ bias towards textures [51, 52, 12]. Finally, patch-

wise methods first extract patch-based feature descriptors,

then test the similarity of test patches against their training

patches where significant differences are expected to high-

light anomalies [34, 13].

The common philosophy of previous methods is first

modelling nominal structures from a cold start of nomi-

nal one-class data and testing new data for outliers of this

expected normality model [41, 50, 44, 49, 34, 13]. This

is either done explicitly by modelling nominal structures

[34, 49, 44] or using self-supervision to create a synthetic

second anomaly class [25, 13, 41], or statistically modelling

training features [33, 18, 32]. This diverges from general

anomaly detection, where it is assumed the training dataset

contains nominal and anomalous data, requiring an unsu-

pervised method[26, 29, 11]. We will further explore sev-

eral successful modern approaches to one-class-class classi-

fication anomaly detection, focusing on patch-based meth-

ods related to our proposed approach.

Li et al. proposed CutPaste, a self-supervised method

where random cuts and pastes of portions of training im-

ages are done to generate samples of a second anomaly

class [25]. From this, using a CNN, the authors then train

a binary classifier on these images as either nominal (all

training data) or anomalous (synthetic data) [25]. From this

trained CNN, they then use a Gaussian Density Estimator

6286

Figure 2. Overview of the proposed approach for Inter-Realization Channels. Pre-trained CNN features are used to associate patches

between image realizations in the dataset. Only nominal patches are expected to associate well across realizations of the underlying image

distribution to form channels. These patch channels are then filtered based on their span of the dataset and Standard Deviation (σ). Finally,

test patch features are compared to the component patches of these final channels to predict anomalies. This approach filters out anomalies

before modelling nominal patches, allowing it to train fully unsupervised with corrupted training data.

in conjunction with this trained CNN to predict image-wise

anomaly scores. To perform localization, they use Grad-

CAM to determine the attention of the trained CNN on spe-

cific regions expected to contain any existing anomalies in

the image [25].

Defard et al. proposed PaDiM, [13], which models

patch features generated from a pre-trained CNN as a Gaus-

sian distribution. Unlike CutPaste, this method directly

models the expected features of each patch over the en-

tire training set without any self-supervision. The authors

also perform random projections of the initial CNN fea-

tures into a smaller feature space to increase the method’s

efficiency. They take the Mahalanobis distance between the

modelled feature distribution for a specific patch and the test

patch’s features to predict anomaly scores per patch. Roth

et al. proposed PatchCore, which greedily sub-samples

all patches in the entire dataset using the same methodol-

ogy as selecting initial centers for K-Means++ initialization

[10, 34]. This gives them a smaller core set of patch features

for efficient testing, that is also well representative of all in-

put patches. New patches are scored based on their relative

distance to their best match and the next n closest patches

in the sub-sampled dataset. This core-set sub-sampling was

shown to be highly sample efficient [34].

These methods have made great strides in one-class

classification performance for anomaly detection, but they

do not generalize to fully unsupervised datasets where

anomaly corruptions may be present. This significantly

limits their utility for non-stationary problems that may re-

quire periodic re-computation of their nominal model, for

instance, outdoor scenes with day-night and seasonal cy-

cles. Further, the one-class classification assumption makes

all these models sensitive to label noise introducing corrup-

tions, which become blind spots for testing anomalies. Re-

cent methods have increased performance but at the cost of

increased sensitivity to dataset corruptions. For instance,

PatchCore, with its greedy core-set generation, intention-

ally retains training outliers to create a more comprehensive

model of nominal data, increasing its sensitivity to training

anomalies [34]. Our proposed method, InReaCh, addresses

the previously under-explored unsupervised anomaly detec-

tion problem while maintaining competitive performance to

previous state-of-the-art one-class classification methods.

3. Method

Rather than directly learning to differentiate nominal and

anomalous features from a potentially corrupted dataset, we

split our proposed method into two steps:

1. An unsupervised high precision, medium recall

method for extracting channels consisting of high con-

fidence nominal patches.

2. Testing new patches against a model of nominal patch

channels taken from step 1.

To achieve the first step, we propose InReaCh. InReaCh

considers each training image as a realization of the under-

lying image distribution. From this, we assume nominal

patches should both, associate closely across realizations to

similar patches, and these associations should span a sig-

nificant proportion of the training data. Based on these as-

sumptions InReaCh creates channels around seed patches

from a subset of randomly selected realizations across all

other training data. Channels with sufficiently tight distri-

butions and large spans are then considered nominal for the

second step. The second step takes these nominal channels

and measures the distance of new test patches to the chan-

nel patches, where anomalies are expected to be more dis-

tant than nominal patches. The performance of our method

is highly dependent on the precision of the first step in se-

lecting nominal patches, as any false positives will allow

6287

anomalies to be incorporated into the nominal distribution

model.

This section will describe in more detail our end-to-

end method for unsupervised anomaly detection in im-

ages: patch feature descriptors (3.1), conditional posi-

tional embedding (3.2), generating inter-realization chan-

nels (3.3), trimming inter-realization channels (3.4), and

anomaly scoring (3.5).

3.1. Patch Feature Descriptors

Given an input dataset of N images Xn where n ∈
{0...N}, containing possible anomalies with the corre-

sponding pixel-wise labels Yn : yi,jn ∈ {0, 1}, where

0 implies nominal pixels (labels are not available during

training). We generate feature descriptors from interme-

diate CNN feature maps using the method in [34]. Fol-

lowing this method, we use the intermediate feature maps

from a ResNet-based architecture pre-trained on ImageNet

[15, 47]. We diverge from previous methods in our selection

of feature hierarchies; we choose to use lower-level feature

maps. By selecting shallower feature maps, we increase

the generalizability of our feature descriptors and the per-

formance of our initial anomaly filtering, validated in Sec-

tion 4.3. We define our pre-trained network φk as a con-

catenation of the first k residual block’s feature maps. We

refer to k as the selected Feature Hierarchy Depth. The mo-

tivation for this choice is to reduce the bias of the patch fea-

ture descriptors toward specific classes in the pre-training

dataset, as deeper feature hierarchies include more class-

specific features. We also use the locally aware adaptive

average pooling aggregator of [34] to increase the receptive

field of our shallow features. We denote this aggregator as

Ag over a given neighbourhood N i,j
(h,w) of size (h,w), giv-

ing final patch features:

f i,j
n = Ag(φ

(a,b)
k (xn)|(a, b) ∈ N i,j

(h,w)) (1)

3.2. Conditional Positional Embedding

In choosing lower-level feature maps for our feature de-

scriptors, we have sacrificed some of the positional infor-

mation that CNNs learn in latter layers with larger receptive

fields. This can be solved by concatenating (� operator) the

normalized positional information, scaled by a Positional
Embedding Weight, pw to our feature vectors, modifying

our previous feature descriptor equation to:

f i,j
p,n = f i,j�

n ([i/imax, j/imax]pw) (2)

This modification has a significant drawback, as explicit

position information is helpful only for classes where the

position of patch features can imply an otherwise nomi-

nal texture or structure is an anomaly. In textural classes,

the position is purely noise in the patch feature descrip-

tors. To solve this, we propose a test to determine whether

positional embeddings are helpful. We first average each

pixel’s RGB values across all samples in the dataset X =∑N
n=1(Xn/N) and then calculate the L2 distance between

the average image and its transpose to generate a positional

embedding score Ps, then threshold based on this value.

Ps = ||X −X
T||L2 (3)

Some object classes which would benefit from positional

embeddings will fail the transpose test if the objects are ran-

domly oriented in the image. To address this, we attempt to

automatically rotationally align images of datasets that fail

this test, then re-test the dataset. If the rotationally aligned

version of the dataset fails the transpose test again, then it is

returned to its original state and positional embeddings are

not appended. If it passes, the aligned versions are kept and

the positional embeddings are added.

3.3. Inter-Realization Channels

To select high-confidence nominal features from the

training dataset before modelling our nominal patch distri-

bution for anomaly detection, we generate Inter-Realization

Channels, see Algorithm 1. To do this, we first assume that

the patches of each image in the training dataset should be

some realization of the underlying image distribution and

that nominal features, by definition, frequently occur from

this distribution. From this, we propose that any nominal

component of images in the dataset should be closely as-

sociated (be similar) between realizations, and these asso-

ciations should represent a significant span across training

realizations. For example, in the MvTec screw class, in each

nominal realization of the screw, we expect it to contain the

screw point; we should therefore be able to closely associate

the screw point between most realizations of the dataset [4].

Conversely, any patch not well associated between realiza-

tions or with a poor span of associations between realiza-

tions can be considered potentially anomalous.

Motivated by these assumptions, InReaCh uses the con-

cept of channels of associated patches through the dataset,

which can then be evaluated based on their span and spread,

where only high-span and low-spread channels are consid-

ered nominal; also see Section 3.4. We define a channel

through the dataset to only contain at most one patch from

each realization and each patch can only be associated with

a single channel. We randomly shuffle the dataset to initial-

ize channels and consider the patches of the first Associa-
tion Depth D, training image realizations as channel seeds.

Each of the first D realizations is compared with all remain-

ing realizations to associate patches between realizations.

Patches between realizations are compared based on the L2

distance between their feature descriptors. A training patch

is only associated with a seed channel patch if they create a

symmetrical optimal association to each other between the

6288

two realizations, and the training patch is not better associ-

ated with any previous seed channel patch. That is to say,

given patches, b and c of realization n optimally associate

with patch a of all seed patches from all seed patches and

||fseed(a) − fn(b)||L2 < ||fseed(a) − fn(c)||L2 then only

patch b of realization n will be included in the seed a patch’s

channel.

Algorithm 1 InReaCh : Inter-Realization Channels Filter.

Input: Patch Features F , Association Depth D.

Output: Inter Realization Channel Associations CA.

1: N, n patches, n channels = shape(F)

2: CA ←− [] /*Channel Associations*/

3: L ←− [∞] /*Association Distances*/

4: for k ∈ [0, D) do
5: for n ∈ [D,N) do
6: dist = L2cdist(Fk,Fn) /*Patch Distances*/

7: for a ∈ [0,n patches) do
8: if argmin(dist[argmin(dist[:,a]),:]) = a and

min(dist[:, a]) < L[n, a] then
9: L[n, a] ←− min(dist[:, a])

10: CA[n, a] ←− [k,argmin(dist[:, a])]
11: end if
12: end for
13: end for
14: end for
15: return CA

3.4. Channel Trimming

Once channels are generated in Section 3.3, one must

consider their quality in terms of spread and span, as these

could indicate the presence of anomalies in a channel. We

consider the channel’s standard deviation (σ) and length to

measure the quality of a channel’s spread and span. The first

trimming step removes component patches which are more

than the Maximum Channel σ standard deviations from the

channel’s mean. The second trimming step involves remov-

ing entire channels with a span length less than Minimum
Channel Span. More details on the influences of these trim-

ming steps can be found in Section 4.3.

3.5. Test-Time Anomaly Classification

Now that we have a collection of InReaCh channels con-

sisting of high precision, high confidence nominal patches,

we consider the union of all component patches of these

channels as our nominal model. To calculate patch-wise

anomaly scores, we measure test patches’ L2 distance to

their nearest neighbour in the nominal model. We choose to

use the L2 distance as it is consistent with our measure of

associations during the creation of the InReaCh channels.

Other methods, such as the Mahalanobis distance based on

channel statistics, were tested but showed no performance

gain and added complexity (details in supplemental mate-

rials). Following other anomaly segmentation methods, we

apply a Gaussian blur to generate pixel-wise predictions,

then image-wise anomaly scoring is generated by taking the

maximum pixel-wise anomaly score in the image [34, 13].

Both patch-wise and image-wise anomaly scores can sim-

ply be thresholded to generate binary classifications for pre-

dicted nominal and anomalous samples.

4. Experiments
Dataset: We evaluate our method on the MVTec AD

dataset. We selected this dataset as it encompasses a vari-

ety of representative classes, textural and object, natural and

engineered, and classes with and without positional anoma-

lies [4]. The MVTec AD dataset consists of 15 classes, with

the number of training images varying from 60 to 391 [4].

We follow the protocol of previous methods by re-sizing the

images in the MVTec dataset to 256x256, then center crop-

ping to 224x224 [34, 12, 25]. We do differ from previous

methods by introducing a constant number of randomly se-

lected test images into each class’s training dataset to eval-

uate our unsupervised method on non-curated data, distinct

from the previous one-class protocol. While adding a sub-

set of testing images into the training dataset, we still test

on the entire test set. This is done to simultaneously evalu-

ate both InReaCh’s ability to detect and localize anomalies

in images introduced during the training and generate an

effective nominal model to generalize to new images. As

our method is unsupervised, no label information is ever

utilized, whereas in previous one-class classification proto-

cols, nominal labels are implicitly given for all training data.

We also show InReaCh results on the uncorrupted dataset

to allow for direct comparison to previous methods. In sup-

plemental materials, we provide the corrupted training data

splits used in this paper.

Evaluation Protocol: We evaluate our InReaCh method

using 4 metrics. Following previous methods on this

dataset, we evaluate our image-wise anomaly detection and

pixel-wise anomaly localization with the Area Under Re-

ceiver Operator Curve (AUROC). We also consider the pre-

cision and recall of our InReaCh method for selecting nomi-

nal features from the corrupted datasets. We follow the pro-

tocols used by other methods by using the same pre-trained

WideResNet-50 weights for our patch feature descriptors to

directly compare these metrics [47, 34].

4.1. Performance of InReaCh

InReaCh presents nearly state-of-the-art localization per-

formance for pixel-wise anomaly detection on the MVTec

dataset, as shown in Table 1. We score an average pixel-

wise AUROC of 0.971, 0.968, and 0.960 for datasets with

0, 10 and 40 corrupt images in the training set, respec-

tively. A current state-of-the-art method in pixel-wise AU-

6289

Corrupt Images* 0 0 0 0 0 0 0 0 10 40
Class↓ Method → AESSIM γ−VAE+grad PatchSVDD SPADE Cut-Paste PaDiM PatchCore InReaCh InReaCh InReaCh

[4] [14] [46] [12] [25] [13] [34]

Bottle 0.93 0.931 0.981 0.984 0.976 0.983 0.986 0.982 0.981 0.980

Cable 0.82 0.880 0.968 0.972 0.900 0.967 0.984 0.972 0.962 0.960

Capsule 0.94 0.917 0.958 0.990 0.974 0.985 0.988 0.982 0.977 0.956

Carpet 0.87 0.727 0.926 0.975 0.983 0.991 0.990 0.993 0.993 0.993

Grid 0.94 0.979 0.962 0.937 0.975 0.973 0.987 0.982 0.982 0.982

Hazelnut 0.97 0.988 0.975 0.991 0.973 0.982 0.987 0.972 0.973 0.973

Leather 0.78 0.897 0.974 0.976 0.995 0.992 0.993 0.991 0.992 0.992

Metal Nut 0.89 0.914 0.980 0.981 0.931 0.972 0.984 0.981 0.977 0.963

Pill 0.91 0.935 0.951 0.965 0.957 0.957 0.974 0.953 0.936 0.923

Screw 0.96 0.972 0.957 0.989 0.967 0.985 0.994 0.948 0.957 0.947

Tile 0.59 0.581 0.914 0.874 0.905 0.941 0.956 0.960 0.960 0.952

Toothbrush 0.92 0.983 0.981 0.979 0.981 0.988 0.987 0.983 0.984 0.987

Transistor 0.90 0.931 0.970 0.941 0.930 0.985 0.963 0.953 0.947 0.942

Wood 0.73 0.809 0.908 0.885 0.955 0.949 0.950 0.934 0.933 0.910

Zipper 0.88 0.871 0.951 0.965 0.993 0.985 0.989 0.972 0.960 0.938

Average 0.87 0.888 0.957 0.960 0.960 0.975 0.981 0.971 0.968 0.960

Supervision* OCC OCC OCC OCC OCC OCC OCC None None None
Table 1. MvTec AD Anomaly Segmentation performance in pixel-wise AUROC. *Supervision is given as OCC (one-class classification)

or None (Unsupervised). *Corrupt Images are the number of anomalous images randomly added to the training set from the test set to

show the unsupervised filtering abilities of InReaCh.

Corrupt Images* 0 0 0 0 0 0 10 40
Class↓ Method → SPADE Cut-Paste PatchSVDD PaDiM PatchCore InReaCh InReaCh InReaCh

[46] [12] [25] [13] [34]

Average 0.855 0.909 0.921 0.953 0.991 0.903 0.923 0.914

Supervision* OCC OCC OCC OCC OCC None None None
Table 2. MvTec AD Anomaly Segmentation performance in image-wise AUROC. *Supervision is given as OCC (one-class classification)

or None (Unsupervised). *Corrupt Images are the number of anomalous images randomly added to the training set from the test set to

show the unsupervised filtering abilities of InReaCh. Breakdown by class in supplemental materials.

ROC, PatchCore, outperformed our method by only 0.01

AUROC in a direct comparison with no corruptions in the

training dataset [34]. We achieve this performance while us-

ing no supervision, where all benchmark methods use one-

class classification assumptions. Further, our method com-

fortably outperforms several other relevant one-class clas-

sification methods in image-wise anomaly detection with

and without dataset corruptions. We believe that our lower

relative performance to other patch-based methods, such

as PatchCore [34], is caused by our inefficient utilization

of training data for making a fully representative nominal

model, as we remove large portions of the training data

that we are not highly confident on being nominal. This

can be directly addressed by increasing the training dataset

size. Since our method is uniquely fully unsupervised, ad-

ditional training data is straightforward and does not require

labelling.

Notably, our results show our method is exceptionally

tolerant to anomalies in the dataset, so much so that its per-
formance can even increase with anomaly corruptions in-

corporated into the training set for image- and pixel-wise

AUROC, as seen in Table 2. We expect this behaviour

because the InReaCh’s 0.999 average precision in pre-
dicted initial nominal features can accurately block training

anomalies from entering our nominal model. So the addi-

tion of the corrupted data almost solely provides additional

nominal patch samples to InReaCh, allowing InReaCh to

create an improved nominal model. Based on our patch-

and image-wise anomaly detection AUROC for 0, 10, and

40 anomalies in each training set, there does not seem to

be a strong correlation positive or negative for including ad-

ditional corruptions in the training set. For instance, we

scored 0.923 AUROC with 10 corruptions in each train-

ing dataset, increasing from 0.903 AUROC when trained

on a dataset with no corruptions. Even a quadrupling in the

number of anomalous images in the dataset only slightly de-

creased performance by 0.010 and 0.009 in average pixel-

and image-wise AUROC, respectively. We also show that

our initial nominal channel selection, Section 3.3, has a suf-

ficient average recall of 0.297 to model the nominal features

of the dataset well, see Table 4. It has been noted in previ-

ous similar patch-based methods that they can perform well

using only 10% of the dataset patches to model nominal

features [34].

In an extreme case, InReaCh also performs well in the

toothbrush class, which contains only 60 training images.

This performance continues to hold true when 40% of the
dataset images contain anomalies, the pixel-wise AUROC

6290

Dataset↓ Method → SPADE [12] PaDiM [13] PatchCore [46] InReaCh
MVTecAD — Image AUROC [4] 0.855 0.835 0.839 0.953 0.878 0.816 0.991 0.894 0.728 0.903 0.923 0.914
MVTecAD — Pixel AUROC [4] 0.960 0.858 0.659 0.975 0.948 0.929 0.981 0.868 0.611 0.971 0.968 0.960
BTAD — Image AUROC [27] 0.876 0.873 0.871 - - - 0.930 0.862 0.764 0.903 0.900 0.890
BTAD — Pixel AUROC [27] 0.977 0.899 0.816 - - - 0.974 0.894 0.755 0.969 0.965 0.961
MTD — Image AUROC [20] 0.742 0.725 0.689 0.865 0.828 0.746 0.934 0.880 0.748 0.844 0.834 0.809
MTD — Pixel AUROC [20] 0.873 0.870 0.763 0.814 0.813 0.785 0.884 0.875 0.778 0.825 0.818 0.780
Corrupt Training Images 0 10 40 0 10 40 0 10 40 0 10 40

Table 3. Results of InReaCh compared with competitive OCC methods in the noisy label setting on multiple datasets. We were unable to

give results for PaDiM [13] on the BTAD due to computational resource limitations on the larger training set of BTAD [27].

even improves over training with no anomalies. This shows

the robustness of our method to prevalent yet internally

heterogeneous anomalies, where any patch which does not

span a sufficient portion of the dataset is discarded while

maintaining enough nominal features to model the nominal

distribution fully. This tolerance enables simpler creation

for our method without manual curation and integrates pre-

viously deemed unsuitable collected data containing cor-

ruptions to be added to the training data. This allows for

larger datasets and, therefore, improves our method’s over-

all modelling of nominal features. Our method outperforms

all benchmarks for any number of corruption in the dataset,

except for PatchCore on MTD with 10 training corruptions;

this represents only 2.5% corrupt training data, see Table 3.

In all settings with a larger than 2.5% image-wise anomaly

rate, we outperform existing state-of-the-art OCC methods.

Cumulative

Configuration

Pixel

AUROC

Image*

AUROC

Precision Recall

Base 0.95396 0.90998 0.99849 0.84490

Local

Aggregator*

0.95395 0.90984 0.99849 0.84489

Span Filter 0.95396 0.91007 0.99849 0.84490

σ Filter 0.96431 0.91674 0.99897 0.29873

Pos. Embedding 0.96763 0.92327 0.99892 0.29659

Table 4. Ablation study. Testing is done with 10 corruptions in the

dataset for each class. *Note that while the aggregator has negli-

gible impact on performance, it reduces the patch features’ dimen-

sionality, speeding up the training and inference. Breakdown by

class in supplemental materials.

4.2. Ablation Study

Our ablation study, see Table 4, shows clear benefits

from using our span trimming, σ trimming, and use of po-

sitional embeddings. Our base configuration of InReaCh

has strong performance in Precision, only 0.0043 below our

complete method, without additional trimming, showing

that symmetrically optimal associations between patches of

separate image realizations are an intrinsically strong indi-

cation of nominal features. Without the need for the hy-

perparameters for span and σ trimming, this performance

lends our method towards being effectively deployed with

no knowledge of or tuning for a specific domain, thus broad-

ening the applicability of this method. Both the span and σ
trimming increase pixel- and image-AUROC and precision.

The increase in precision from the σ trimming does come

at the cost of a much lower recall, but from the sample effi-

ciency of patch-based nominal feature models, the benefits

of the increase in precision outweigh this [34]. Notably,

performance was not affected by using PatchCore’s local

aggregator, but it does decrease patch feature dimensional-

ity and reduce training and inference time [34].

4.3. Effects of Hyperparameters on InReaCh

Figure 3. Segmentation AUROC, Image AUROC, InReaCh Preci-

sion, and InReaCh Recall vs. Association Depth. Testing is done

with 10 corruptions in the dataset for each class.

Association Depth: Increased associations depths up

until depths of 10 were noted to significantly increase per-

formance in pixel and image-wise AUROC, as seen in Fig-

ure 3. This sharp increase in performance seemed to drop

off at the same time as the total recall for InReaCh peaked.

The increase in additional seeded centers for the Inter-

Realization Channels increases recall as patches will have

more chances to associate with a channel. Too many chan-

nel seeds, however, reduce channel spans, and, therefore,

overall recall. Further increasing the association depth also

proportionally decreased InReaCh precision because addi-

tional seed channel centers make the probability of anoma-

lies optimally associating into a channel larger. This de-

crease in overall precision did not seem to affect prediction

performance significantly. This is likely because InReaCh

is still relatively precise, decreasing to just below 99.85%.

Maximum Channel σ: Intuitively increasing the max-

imum standard deviation (σ) decreases precision as the

6291

Figure 4. Segmentation AUROC, Image AUROC, InReaCh Pre-

cision, and InReaCh Recall vs. Maximum Channel σ. Testing is

done with 10 corruptions in the dataset for each class.

threshold for removing patch components of channels far

from their mean is larger, decreasing sensitivity to anoma-

lies. Conversely, as is seen in Figure 4, the recall increases

as the Maximum Channel σ increases. We find that a lower

σ threshold and lower overall recall, but higher precision

leads to better localization performance, but very low values

lead to poor overall performance, likely as too much of the

nominal data is filtered as expected anomalies. Therefore,

this value can be considered a partial control of the filter’s

sensitivity to anomalies. We expect the divergence between

image- and pixel-wise performance is caused by their rela-

tive sensitivity to false positive noise. As we take the maxi-

mum pixel-wise anomaly score as the image anomaly score,

this metric is more sensitive, leading to worse performance

at lower channel σ values.

Figure 5. Segmentation AUROC, Image AUROC, InReaCh Preci-

sion, and InReaCh Recall vs. Minimum Channel Span. Testing is

done with 10 corruptions in the dataset for each class.

Minimum Channel Span: Increasing the minimum

channel span before a considered channel is removed gen-

erally reduces recall and increases precision, as expected.

Increasing the minimum channel span significantly reduces

performance in both image- and pixel-wise AUROC. This

is likely due to removing examples of more heterogeneous

nominal features, which do not associate over a large span

of the training data. So the relatively small reductions in the

recall significantly affect the nominal patch model used for

testing new patches.

Positional Embedding Strength: The inclusion of posi-

tional embedding increases scores in pixel- and image-wise

Figure 6. Segmentation AUROC, Image AUROC, InReaCh Pre-

cision, and InReaCh Recall vs. Positional Embedding Strength.

Testing is done with 10 corruptions in the dataset for each class.

AUROC, but the benefits level off quickly. Additionally,

a high relative weighting of positional to CNN feature rep-

resentations decreases performance, most notably in image-

wise AUROC. The selection of positional embedding shows

no substantial influence on InReaCh’s recall or precision.

5. Conclusion
We propose Inter-Realization Channels (InReaCh), a

fully unsupervised method of detecting and localizing

anomalies. InReaCh assumes nominal features should be

closely associated between image realizations, and these as-

sociations should span a significant portion of training re-

alizations. Using this, InReaCh extracts high-confidence

nominal patches from training data by associating them be-

tween image realizations into channels, only considering

channels with high spans and low spread. We then create

our nominal model from the patches of these channels to

test new patches against. This definition is intuitive and

has shown to be effective with near state-of-the-art results

of 0.968 anomaly localization AUROC and 0.923 anomaly

detection AUROC. We also show our method is tolerant to

large amounts of training anomalies; even 40% of training

images containing anomalies negligibly effects InReaCh

performance.

Impact: InReaCh, being a fully unsupervised, high-

performance method, is expected to broaden the applica-

tion space for anomaly detection significantly. InReaCh’s

nominal model can be periodically updated to follow non-

stationary distributions. Our method also will work in cases

where nominal features are unknown, so curated nominal

datasets cannot be created.

Limitations and Future Work: Our method relies on

a pre-trained CNN, which may degrade its performance

in domains significantly different from the ImageNet pre-

training dataset. This reliance also degrades our claims of

fully unsupervised operation due to reliance on a super-

vised task for learning useful feature extractions. Gener-

ating these features from training data to remove this bias is

left for future work. Future works could also adapt InReaCh

to learn nominal features online for live applications.

6292

References
[1] Rabia Ali, Muhammad Umar Karim Khan, and Chong Min

Kyung. Self-supervised representation learning for visual

anomaly detection. arXiv preprint arXiv:2006.09654, 2020.

[2] Jinwon An and Sungzoon Cho. Variational autoencoder

based anomaly detection using reconstruction probability.

Special lecture on IE, 2(1):1–18, 2015.

[3] Christoph Baur, Benedikt Wiestler, Shadi Albarqouni, and

Nassir Navab. Deep autoencoding models for unsupervised

anomaly segmentation in brain mr images. In Brainlesion:
Glioma, Multiple Sclerosis, Stroke and Traumatic Brain In-
juries: 4th International Workshop, BrainLes 2018, Held in
Conjunction with MICCAI 2018, Granada, Spain, Septem-
ber 16, 2018, Revised Selected Papers, Part I 4, pages 161–

169. Springer, 2019.

[4] Paul Bergmann, Michael Fauser, David Sattlegger, and

Carsten Steger. Mvtec ad–a comprehensive real-world

dataset for unsupervised anomaly detection. In Proceedings
of the IEEE/CVF conference on computer vision and pattern
recognition, pages 9592–9600, 2019.

[5] Paul Bergmann, Sindy Löwe, Michael Fauser, David Sattleg-

ger, and Carsten Steger. Improving unsupervised defect seg-

mentation by applying structural similarity to autoencoders.

arXiv preprint arXiv:1807.02011, 2018.

[6] Monowar H Bhuyan, Dhruba Kumar Bhattacharyya, and Ju-

gal K Kalita. Network anomaly detection: methods, sys-

tems and tools. Ieee communications surveys & tutorials,

16(1):303–336, 2013.

[7] Tobias Böttger and Markus Ulrich. Real-time texture error

detection on textured surfaces with compressed sensing. Pat-
tern Recognition and Image Analysis, 26:88–94, 2016.

[8] Philippe Burlina, Neil Joshi, I Wang, et al. Where’s wally

now? deep generative and discriminative embeddings for

novelty detection. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages

11507–11516, 2019.

[9] Diego Carrera, Giacomo Boracchi, Alessandro Foi, and

Brendt Wohlberg. Scale-invariant anomaly detection with

multiscale group-sparse models. In 2016 IEEE International
Conference on Image Processing (ICIP), pages 3892–3896.

IEEE, 2016.

[10] M Emre Celebi, Hassan A Kingravi, and Patricio A Vela. A

comparative study of efficient initialization methods for the

k-means clustering algorithm. Expert systems with applica-
tions, 40(1):200–210, 2013.

[11] Varun Chandola, Arindam Banerjee, and Vipin Kumar.

Anomaly detection: A survey. ACM computing surveys
(CSUR), 41(3):1–58, 2009.

[12] Niv Cohen and Yedid Hoshen. Sub-image anomaly

detection with deep pyramid correspondences. CoRR,
abs/2005.02357, 2020.

[13] Thomas Defard, Aleksandr Setkov, Angelique Loesch, and

Romaric Audigier. Padim: a patch distribution modeling

framework for anomaly detection and localization. In Pat-
tern Recognition. January 10–15, 2021, pages 475–489.

Springer, 2021.

[14] David Dehaene, Oriel Frigo, Sébastien Combrexelle, and

Pierre Eline. Iterative energy-based projection on a nor-

mal data manifold for anomaly localization. arXiv preprint
arXiv:2002.03734, 2020.

[15] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,

and Li Fei-Fei. Imagenet: A large-scale hierarchical image

database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248–255. Ieee, 2009.

[16] Izhak Golan and Ran El-Yaniv. Deep anomaly detection us-

ing geometric transformations. Advances in neural informa-
tion processing systems, 31, 2018.

[17] Xu Han, Xiaohui Chen, and Li-Ping Liu. Gan ensemble

for anomaly detection. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, volume 35, pages 4090–4097,

2021.

[18] Geoffrey G Hazel. Multivariate gaussian mrf for multispec-

tral scene segmentation and anomaly detection. IEEE trans-
actions on geoscience and remote sensing, 38(3):1199–1211,

2000.

[19] Dan Hendrycks, Mantas Mazeika, Saurav Kadavath, and

Dawn Song. Using self-supervised learning can improve

model robustness and uncertainty. Advances in neural in-
formation processing systems, 32, 2019.

[20] Yibin Huang, Congying Qiu, and Kui Yuan. Surface defect

saliency of magnetic tile. Vis. Comput., 36(1):85–96, jan

2020.

[21] Nathalie Japkowicz, Catherine Myers, Mark Gluck, et al. A

novelty detection approach to classification. In IJCAI, vol-

ume 1, pages 518–523. Citeseer, 1995.

[22] Ki Hyun Kim, Sangwoo Shim, Yongsub Lim, Jongseob Jeon,

Jeongwoo Choi, Byungchan Kim, and Andre S Yoon. Rapp:

Novelty detection with reconstruction along projection path-

way. In International Conference on Learning Representa-
tions, 2020.

[23] Daiki Kimura, Subhajit Chaudhury, Minori Narita, Asim

Munawar, and Ryuki Tachibana. Adversarial discriminative

attention for robust anomaly detection. In Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer
Vision, pages 2172–2181, 2020.

[24] Nishant Kumar, Pia Hanfeld, Michael Hecht, Michael Buss-

mann, Stefan Gumhold, and Nico Hoffmann. Inflow: Robust

outlier detection utilizing normalizing flows. arXiv preprint
arXiv:2106.12894, 2021.

[25] Chun-Liang Li, Kihyuk Sohn, Jinsung Yoon, and Tomas

Pfister. Cutpaste: Self-supervised learning for anomaly de-

tection and localization. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,

pages 9664–9674, 2021.

[26] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. Isolation-

based anomaly detection. ACM Transactions on Knowledge
Discovery from Data (TKDD), 6(1):1–39, 2012.

[27] Pankaj Mishra, Riccardo Verk, Daniele Fornasier, Claudio

Piciarelli, and Gian Luca Foresti. Vt-adl: A vision trans-

former network for image anomaly detection and localiza-

tion. In 2021 IEEE 30th International Symposium on Indus-
trial Electronics (ISIE), pages 01–06, 2021.

[28] Eric Nalisnick, Akihiro Matsukawa, Yee Whye Teh, Dilan

Gorur, and Balaji Lakshminarayanan. Do deep generative

6293

models know what they don’t know? In International Con-
ference on Learning Representations, 2019.

[29] Caleb C Noble and Diane J Cook. Graph-based anomaly de-

tection. In Proceedings of the ninth ACM SIGKDD interna-
tional conference on Knowledge discovery and data mining,

pages 631–636, 2003.

[30] Pramuditha Perera, Ramesh Nallapati, and Bing Xiang. Oc-

gan: One-class novelty detection using gans with constrained

latent representations. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages

2898–2906, 2019.

[31] Pramuditha Perera and Vishal M Patel. Deep transfer learn-

ing for multiple class novelty detection. In Proceedings
of the ieee/cvf conference on computer vision and pattern
recognition, pages 11544–11552, 2019.

[32] Jiahui Qu, Qian Du, Yunsong Li, Long Tian, and Haoming

Xia. Anomaly detection in hyperspectral imagery based on

gaussian mixture model. IEEE Transactions on Geoscience
and Remote Sensing, 59(11):9504–9517, 2020.

[33] Oliver Rippel, Patrick Mertens, Eike König, and Dorit Mer-

hof. Gaussian anomaly detection by modeling the distri-

bution of normal data in pretrained deep features. IEEE
Transactions on Instrumentation and Measurement, 70:1–

13, 2021.

[34] Karsten Roth, Latha Pemula, Joaquin Zepeda, Bernhard

Schölkopf, Thomas Brox, and Peter Gehler. Towards to-

tal recall in industrial anomaly detection. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 14318–14328, 2022.

[35] Marco Rudolph, Bastian Wandt, and Bodo Rosenhahn. Same

same but differnet: Semi-supervised defect detection with

normalizing flows. In Proceedings of the IEEE/CVF winter
conference on applications of computer vision, pages 1907–

1916, 2021.

[36] Marco Rudolph, Tom Wehrbein, Bodo Rosenhahn, and Bas-

tian Wandt. Fully convolutional cross-scale-flows for image-

based defect detection. In Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision,

pages 1088–1097, 2022.

[37] Mohammad Sabokrou, Masoud Pourreza, Mohsen Fayyaz,

Rahim Entezari, Mahmood Fathy, Jürgen Gall, and Ehsan

Adeli. Avid: Adversarial visual irregularity detection. In

Computer Vision–ACCV 2018: 14th Asian Conference on
Computer Vision, Perth, Australia, December 2–6, 2018,
Revised Selected Papers, Part VI, pages 488–505. Springer,

2019.

[38] Mayu Sakurada and Takehisa Yairi. Anomaly detection us-

ing autoencoders with nonlinear dimensionality reduction. In

Proceedings of the MLSDA 2014 2nd workshop on machine
learning for sensory data analysis, pages 4–11, 2014.

[39] Vikash Sehwag, Mung Chiang, and Prateek Mittal. Ssd:

A unified framework for self-supervised outlier detection.

arXiv preprint arXiv:2103.12051, 2021.

[40] Jihoon Tack, Sangwoo Mo, Jongheon Jeong, and Jinwoo

Shin. Csi: Novelty detection via contrastive learning on dis-

tributionally shifted instances. Advances in neural informa-
tion processing systems, 33:11839–11852, 2020.

[41] Ta-Wei Tang, Wei-Han Kuo, Jauh-Hsiang Lan, Chien-Fang

Ding, Hakiem Hsu, and Hong-Tsu Young. Anomaly detec-

tion neural network with dual auto-encoders gan and its in-

dustrial inspection applications. Sensors, 20(12):3336, 2020.

[42] Yao Tang, Lin Zhao, Shanshan Zhang, Chen Gong, Guangyu

Li, and Jian Yang. Integrating prediction and reconstruc-

tion for anomaly detection. Pattern Recognition Letters,

129:123–130, 2020.

[43] Shashanka Venkataramanan, Kuan-Chuan Peng, Ra-

jat Vikram Singh, and Abhijit Mahalanobis. Attention

guided anomaly localization in images. In Computer
Vision–ECCV 2020: 16th European Conference, Glasgow,
UK, August 23–28, 2020, Proceedings, Part XVII, pages

485–503. Springer, 2020.

[44] Tomas Vojir, Tomáš Šipka, Rahaf Aljundi, Nikolay

Chumerin, Daniel Olmeda Reino, and Jiri Matas. Road

anomaly detection by partial image reconstruction with seg-

mentation coupling. In Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision, pages 15651–

15660, 2021.

[45] Pei Xiang, Jiangluqi Song, Hanlin Qin, Wei Tan, Huan Li,

and Huixin Zhou. Visual attention and background subtrac-

tion with adaptive weight for hyperspectral anomaly detec-

tion. IEEE Journal of Selected Topics in Applied Earth Ob-
servations and Remote Sensing, 14:2270–2283, 2021.

[46] Jihun Yi and Sungroh Yoon. Patch svdd: Patch-level svdd

for anomaly detection and segmentation. In Proceedings of
the Asian Conference on Computer Vision, 2020.

[47] Sergey Zagoruyko and Nikos Komodakis. Wide residual net-

works. In British Machine Vision Conference 2016. British

Machine Vision Association, 2016.

[48] Muhammad Zaigham Zaheer, Jin-ha Lee, Marcella Astrid,

and Seung-Ik Lee. Old is gold: Redefining the adversarially

learned one-class classifier training paradigm. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 14183–14193, 2020.

[49] Vitjan Zavrtanik, Matej Kristan, and Danijel Skočaj. Recon-

struction by inpainting for visual anomaly detection. Pattern
Recognition, 112:107706, 2021.

[50] Houssam Zenati, Chuan Sheng Foo, Bruno Lecouat, Gau-

rav Manek, and Vijay Ramaseshan Chandrasekhar. Efficient

gan-based anomaly detection, 2018.

[51] Kang Zhou, Jing Li, Yuting Xiao, Jianlong Yang, Jun Cheng,

Wen Liu, Weixin Luo, Jiang Liu, and Shenghua Gao. Mem-

orizing structure-texture correspondence for image anomaly

detection. IEEE Transactions on Neural Networks and
Learning Systems, 33(6):2335–2349, 2021.

[52] Kang Zhou, Yuting Xiao, Jianlong Yang, Jun Cheng, Wen

Liu, Weixin Luo, Zaiwang Gu, Jiang Liu, and Shenghua

Gao. Encoding structure-texture relation with p-net for

anomaly detection in retinal images. In Computer Vision–
ECCV 2020: 16th European Conference, Glasgow, UK, Au-
gust 23–28, 2020, Proceedings, Part XX 16, pages 360–377.

Springer, 2020.

[53] Yang Zou, Jongheon Jeong, Latha Pemula, Dongqing Zhang,

and Onkar Dabeer. Spot-the-difference self-supervised pre-

training for anomaly detection and segmentation. In Com-
puter Vision–ECCV 2022: 17th European Conference, Tel

6294

Aviv, Israel, October 23–27, 2022, Proceedings, Part XXX,

pages 392–408. Springer, 2022.

6295

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

