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Abstract

Gender biases are known to exist within large-scale vi-
sual datasets and can be reflected or even amplified in
downstream models. Many prior works have proposed
methods for mitigating gender biases, often by attempt-
ing to remove gender expression information from images.
To understand the feasibility and practicality of these ap-
proaches, we investigate what “gender artifacts” exist in
large-scale visual datasets. We define a “gender artifact”
as a visual cue correlated with gender, focusing specifi-
cally on cues that are learnable by a modern image clas-
sifier and have an interpretable human corollary. Through
our analyses, we find that gender artifacts are ubiquitous
in the COCO and OpenImages datasets, occurring every-
where from low-level information (e.g., the mean value of
the color channels) to higher-level image composition (e.g.,
pose and location of people). Further, bias mitigation meth-
ods that attempt to remove gender actually remove more in-
formation from the scene than the person. Given the preva-
lence of gender artifacts, we claim that attempts to remove
these artifacts from such datasets are largely infeasible as
certain removed artifacts may be necessary for the down-
stream task of object recognition. Instead, the responsibil-
ity lies with researchers and practitioners to be aware that
the distribution of images within datasets is highly gendered
and hence develop fairness-aware methods which are ro-
bust to these distributional shifts across groups.

1. Introduction

It has been well established that machine learning sys-
tems contain gender biases [12, 15, 31, 76, 82, 83]. For
instance, image tagging systems have labelled similarly
posed female politicians differently than their male coun-
terparts [64], and image search engines can return stereo-
typical results mirroring harmful gender roles [38, 48, 50].
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Figure 1. We aim to understand gender artifacts in image datasets
by training a classifier to distinguish between images containing a
person labelled “female” vs. “male”. We find that such a classifier
frequently performs significantly above random chance even when
trained and evaluated on modified versions of images (e.g. where a
person’s appearance is obscured). On the left, we trained a CNN
on COCO [42] images with only the person segmentation mask
visible; on the right, we trained a logistic regression classifier us-
ing only 3 features (i.e. average color) per COCO image. Both
classifiers perform significantly above random chance, illustrating
how deeply gender artifacts are embedded within the dataset. We
visualize the classifiers’ top 20 (most “female”) and bottom 20
(most “male”) images (top), and further show the differences be-
tween their segmentation masks (left bottom) in normalized area,
distance from the center, and aspect ratio, and the differences be-
tween the R, G and B features (right bottom). These results sug-
gest that gender artifacts are pervasive in computer vision datasets,
and current “fairness through blindness” methods that aim to “re-
move” gendered information may not be as effective as hoped.

A prevailing assumption in the fairness community is
that biases in models originate in biases in the input data.
Thus, there has been an effort to mitigate these dataset
biases (and thus also model biases). While many biases
stem from the lack of representation of certain demographic
groups, including women [13, 82, 83], naively balancing
gender distributions has been shown to be insufficient for
mitigating model biases [76]. As a result, a large vein
of work has attempted to pursue “fairness through blind-
ness” [22] which operates under the assumption that remov-
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ing gendered information can remove the potential for gen-
der bias in the dataset. These attempts include using seg-
mentation masks to occlude the person in images [9, 31, 70]
or removing image features correlated with gender [75, 76].

In our work, we focus not on mitigating these dataset
biases, but rather on exploring to what extent gendered in-
formation can truly be removed from the dataset. To do
so, we develop a framework to identify gender artifacts,
or visual cues correlated with gender labels. We use the
term “artifact” to emphasize how these correlations may not
be related to gender presentation, rather simply a result of
the dataset collection process. While there can be infinitely
many potential correlations in an image, we focus on those
that are learnable (i.e., result in a learnable difference in a
model) and interpretable (i.e., have an interpretable human
corollary, such as color and shape).1 Overall, we do not
claim (nor believe) the existence of a specific gender arti-
fact necessarily leads to disparate performance on down-
stream tasks for different groups (a common measure of
fairness[13, 63, 80]), however, the source of disparate per-
formance lies in gender artifacts which are critical to study.

To discover gender artifacts, we use a gender classifier,
which we refer to as a “gender artifact model,” since the
model is not predicting gender so much as it is predict-
ing correlations to gender expression in the training dataset.
Our goal is to understand what the model uses as predic-
tive features and how variations of the dataset with partic-
ular gender artifacts removed may affect its performance.
Thus, we systematically manipulate the datasets (e.g., oc-
clude the person, occlude the background, etc.) and train
our model on this data to identify potential gender artifacts.
This framework for discovering gender artifacts is more
complex than prior work [74], as it goes beyond analyz-
ing annotated attributes to include higher level perceptual
components of the image (e.g., resolution, color) and per-
son and background artifacts to gain a deeper understanding
of where gender artifacts exist in visual datasets.

It is important to note we do not condone the use of au-
tomated gender recognition in practice. We perform gender
classification only to understand differences in data distri-
butions, not for the sake of classifying gender itself. We
never use the model outputs as the end goal and no causal
claims about the observed correlation between an attribute
and gender labels can be made. Instead, the outputs are
a means for better understanding the data. Furthermore,
our use of the term “gender” when referencing people in
image datasets refers to the binarized perceived gender ex-
pression. Since most image datasets do not include self-
reported gender identity, we rely on external annotators’
perception as gender labels [63]. To be consistent with prior
works [13, 31, 76, 82, 83], we use “male” and “female” to
refer to gender expression. Finally, we do not make any nor-

1See Appendix A for details on artifact constraints.

mative claims about the gender artifacts (i.e., if it is good or
bad); we focus simply on identifying which artifacts exist.

Using our proposed framework, we perform an in-depth
analysis into understanding the wide variety of gender arti-
facts present in two popular image datasets: Common Ob-
jects in Context (COCO) [42] and OpenImages [40]. Our
results show that gender artifacts are everywhere, from the
shape of the person segmentation mask (Fig. 1) to randomly
selected contextual objects. Even the average color of the
image is sufficient to distinguish between the genders: when
each image is represented by just three features, the mean
pixel value of the red, green, and blue color channels, the
classifier is able to achieve an AUC of 58.0%±0.4 in COCO
and 59.1%± 0.4 in OpenImages.

These findings have the following implications:

• Many prior works have proposed mitigation methods
that attempt to remove gender expression information
from the image [1, 9, 31, 70, 76]. In contrast, we show
gender artifacts are so intricately embedded in vi-

sual datasets that attempts to remove them via mit-

igation techniques may be a futile endeavor. This
is evidenced by experiments where even after a per-
son is entirely occluded with a rectangular mask and
the background is visible, the gender artifact model
is nevertheless able to reliably distinguish which of
the two genders is present in the image, achieving an
AUC of 70.8% in COCO [42] and 63.0% in OpenIm-
ages [40]. Using a popular adversarial approach [76]
as a case study, we find 76.8% of the removed infor-
mation comes from the scene rather than the person.

• We more realistically advise practitioners to adopt

fairness-aware models [22, 80] and disaggregated
evaluation metrics [5], which explicitly account for po-
tential discrepancies between protected groups.

• Since there are so many salient artifacts in image
datasets that are (spuriously) correlated with gender,
our findings point to an incoherence of gender pre-

diction. Any time a model predicts “gender,” we
should wonder what the prediction refers to; it could
easily be relying on the background scene color, rather
than societally meaningful forms of gender expression.

2. Related Work

Understanding model biases. Understanding where biases
arise in models is important to inform mitigation strategies.
One proposed method is experimentally manipulating fea-
tures in an image to isolate sources of gender biases. This
has been done using simple image processing techniques,
such as changing the image brightness [47], manually find-
ing counterfactual examples [69], or using generative ad-
versarial networks (GANs) to synthetically manipulate at-
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tributes [3, 21, 55, 67]. Another approach is to use in-
terpretability methods, such as attention heatmaps, to un-
derstand where the model focuses when making a predic-
tion [31]. While we use classifiers as a tool for understand-
ing gender artifacts, we focus on how these gender artifacts
manifest in datasets rather than in the models.

Identifying dataset biases. The presence of bias in datasets
has been well-studied. While dataset bias can be analyzed
along many axes both with respect to demographic [13, 51,
74, 82] and non-demographic attributes [19, 72, 74], we
focus on the presence of social biases in visual datasets.
Image datasets have been found to include imbalanced de-
mographic representation [13, 79, 82], stereotypical por-
trayals [15, 64, 73], and even harmful or offensive con-
tent [10, 82]. Looking more closely into gender arti-
facts, prior works have considered differences with respect
to demographic attributes [10, 13, 82] and contextual ob-
jects [10, 74, 83] (e.g., instance counts, distance from ob-
jects).

Mitigating dataset and model biases. Prior works have
proposed interventions at both the dataset and algorithmic
level. Proposed techniques for mitigating dataset bias in-
clude manual data cleanup [79] and applications of syn-
thetic methods, such as GANs [55, 60, 67]. Algorithmic
interventions have also been proposed to mitigate gender
biases. One common approach is to remove gendered in-
formation from the image by blurring or occluding pixels
corresponding to people [1, 9, 31, 70, 76]. For example,
Hendricks et al. [31] developed techniques encouraging the
model to be “confused” when predicting gendered words if
the person is occluded, and Wang et al. [76] use adversar-
ial methods that learn to obscure image features that cor-
respond with gender. Other examples of algorithmic miti-
gation techniques include domain independent training [77]
and corpus-level constraints [83]. In contrast, we focus on
analyzing where gender artifacts may originate in visual
datasets. We evaluate what these interventions that remove
gender artifacts actually address, and in turn, which artifacts
may still remain even after applying mitigation techniques.

Analysis of data collection practices. Analyzing dataset
collection practices is key to better understanding where and
how dataset biases arise; see e.g., Paullada et al. [52] for an
overview of how collection, annotation, and documentation
practices introduce biases into visual datasets. For example,
the common practice of scraping images from the internet
injects biases inherently present in image search engines,
such as gender [38, 48] or geographic biases [19, 66]. In
addition, prior work [49] has identified that crowdsourced
ground truth labels can be a potential source of bias as anno-
tators may systematically differ in their perceptions, often
influenced by their demographic background. In response,
fairer dataset collection practices have been suggested, e.g.,

drawing inspiration from other disciplines [35, 36]. One
focus has been on improving transparency, including cre-
ating public datasheets and tools to guide researcher inter-
vention [10, 26, 32]. There has also been an effort to create
more structured processes, including creating checklists and
advocating for more institutional oversight [45, 53].

3. Setup

3.1. Datasets

We focus our analysis on COCO [42] and OpenIm-
ages [40] as they are widely used across different com-
puter vision tasks [24, 33, 46], making it particularly im-
portant to investigate biases present in these datasets [18].
COCO has been the testbed for previous work on bias mit-
igation [31, 76, 83] making it central to our analyses. We
use OpenImages to validate that our findings on COCO are
generalizable. These datasets are also unique in that we are
able to derive labels from existing annotations for perceived
gender expression to train a gender artifact model.

For COCO, following Zhao et al. [83], we derive gen-
der labels using the COCO 2014 captions as this practice
is standard in existing bias mitigation methods [31, 76, 83].
For OpenImages, we use the More Inclusive Annotations
for People (MIAP) [63] and exclude images with more than
one person of different gender labels. Notably both datasets
are skewed male: 69.2% COCO and 62.9% OpenImages.

3.2. Model

Our gender artifact model is a ResNet-50 [30] pre-
trained on ImageNet [20] (see Appendix C for details). To
remove gender artifacts, we train and evaluate on selectively
modified versions of images. For a threshold agnostic per-
formance measure, we report area under the ROC curve
(AUC) and standard error on the test set. An AUC of 50%
suggests the classifier cannot distinguish between male and
female gender labels (i.e., there are no image artifacts that
allow the classifier to distinguish between these labels).

To note, AUC is not a fairness metric in the way equal-
ized odds [29], equality of opportunity [29], or statisti-
cal/prediction parity [6] are. A higher or lower AUC does
not indicate that a dataset is more or less fair. Rather, we
use AUC to help understand where correlations with gender
arise in visual datasets. We follow similar approaches to
research within the computational biology community that
finds that gender, race, and age can be inferred from various
medical imaging techniques (e.g., chest and hand X-rays,
mammograms, retinal fundus photography) due to subtle
cues in the input space [27, 34, 54]. They similarly predict
an attribute from medical images and report AUC.
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3.3. Ethical considerations

While we only use gender expression classification as a
discovery mechanism for visual artifacts, we acknowledge
that our setup, which predicts “male” or “female”, reifies
the notion of binary gender and grants it legitimacy. Gen-
der classifiers are fundamentally imperfect as gender is re-
duced to a simplistic binary that can be harmful to indi-
viduals from the trans and/or non-binary community who
may not fit into these narrow categories [28, 39]. While it
is important to understand where gender biases may arise
in automated systems, we do not condone the use of auto-
mated gender recognition in practice. The purpose of a gen-
der classifier in this project is solely for the study of gender
bias propagation. We are aware that by simply calling a
gender classifier a “gender artifact model” does not change
what it fundamentally is — however, by naming it as such
we underscore its purpose as a method of studying gender
artifacts only and not for its prediction output of gender.

4. Resolution and Color

To start, we analyze the higher-level perceptual compo-
nents of the image that may serve as gender artifacts. We
specifically investigate the resolution and color of the im-
ages. The scenarios we experiment with are images (orig-
inally 224x224) downsampled to 112x112, 56x56, 28x28,
14x14, 7x7. As the images decrease in resolution, it be-
comes harder to distinguish the contents, such that color
becomes one of the more salient artifacts. Thus, we also
consider these images of lower resolution in grayscale, to
better understand what the model is relying on when the
image has been distorted such that individual objects and
people are not perceptible. All results are in Fig. 2.

The experiments in manipulating image resolution are
motivated by previous work that finds a spatial resolution
of 32x32 is sufficient to identify the semantic category of
real world scenes [71]. We downsample the images to ana-
lyze what happens to a gender artifact model when the in-
put images are beyond a discernible image resolution. The
model’s AUC plateaus at around 61.9% for color and 51.9%
(near-random) for grayscale COCO images at 28x28 reso-
lution. These results suggest that the shapes in an image are
no longer meaningful at that resolution, and the gender arti-
fact model must be predominantly relying on color features.

It is also surprising to see that a gender artifact model
trained and evaluated on 7x7 images (a resolution at which
almost all image artifacts except color are removed from
an image) still achieves an AUC of above random chance
(59.2% for COCO and 63.9% for OpenImages).

Exploring this further, we train a logistic regression
model2 on three features: the mean pixel value of the red,
green, and blue color channels. Surprisingly, this simple

2This model is trained with L2 regularization, � = 1.

OpenImagesCOCO

Figure 2. AUC of the gender artifact models on the COCO [42]
(top left) and OpenImages [40] (top right) datasets. The mod-
els trained and evaluated on color images (blue curves) perform
significantly above random chance (pink lines) even as the image
resolution gets as low as 7x7. The models trained on grayscale
images (gray curves) approach random chance around 28x28 res-
olution. A sample image at different resolutions is shown on the
bottom. Most interestingly, as also highlighted in Fig. 1, the lo-
gistic regression classifier trained on just the mean red, green and
blue channel values (purple line) performs above random chance
on both datasets, underscoring the role of color as a gender artifact
and the overall ubiquity of gender artifacts in image datasets.

model achieves an AUC of 58.0% ± 0.4 on COCO and
59.1% ± 0.4 on OpenImages. This likely occurs as many
images of people labeled male are in grassy sports fields,
whereas many images of people labeled female are of the
person, generally of lighter skin tone [82], up close. The
fact that just three color values are sufficient for a model to
differentiate between images of two different genders, em-
phasizes how ubiquitous gender artifacts are in the dataset.

5. Person and Background

Next, we turn to disentangling gender artifacts arising
from the person versus the background (i.e., non-person
parts of the image). Prior bias mitigation works [31, 76] as-
sume that background information should not contain gen-
der artifacts. For example, Hendricks et al. [31] propose a
bias mitigation strategy for image captioning that encour-
ages the model to be “confused” when predicting gendered
words if the person is occluded. Similarly, adversarial meth-
ods [76] learn to obscure person information from the input
image. However, additional work has shown models can
achieve non-trivial accuracy in image classification by re-
lying on the background alone [78]. A natural question is
whether other aspects of the image (e.g., background, per-
son pose, person size) contain gender artifacts as well.

Experimental setup. We use a series of occlusions on
COCO and OpenImages. For simplicity, our experiments
adhere to the nomenclature shown at the bottom of Fig. 3.
We train and evaluate the gender artifact model from Sec. 3
on the manipulated images. All models are trained and
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Figure 3. AUC of gender artifact models (top) trained and evalu-
ated on images with different levels of occlusions (shown on bot-
tom). The naming refers to what from the person is shown in an
image: all person pixels (Full), segmentation mask (MaskSegm),
or bounding box (MaskRect). “NoBg” denotes a masked back-
ground. The pink line represents random chance.

tested on the same occlusions (e.g., model trained on images
with occluded background are tested on images with oc-
cluded background). Additionally, since COCO and Open-
Images are skewed by gender, we consider the effect of
the imbalanced datasets, replicate these experiments on bal-
anced dataset, and find similar results (see Appendix F).

Person’s appearance is a gender artifact. We start by ex-
amining the artifacts arising from the person pixels. First,
we consider the model trained on Full (i.e., no occlusions)
which achieves an AUC of 93.4%±0.2 on COCO. We then
compare the performance on Full with on Full NoBg (i.e.,
only the outline of the person is visible against a black back-
ground).3 The model’s performance does not change con-
siderably even after the background is removed, achieving
an AUC of 92.7%± 0.2 (see blue bars in Fig. 3).

A gender artifact model performs above random chance

when trained on the person’s shape and location. Subse-
quently, we question what about the person, namely in their
shape and location, is a gender artifact. To isolate artifacts
arising from the person’s shape, we occlude the background
and then gradually remove information about the person’s
appearance (see orange bars in Fig. 3). First, looking at
MaskSegm NoBg (i.e., person occluded with white pixels
against the black background), we observe that the model
performs considerably better than random chance with an
AUC of 74.8%±0.3 for COCO. This result may be expected
as the segmentation shapes themselves still reveal informa-
tion about appearance, such as clothing or hair length.

Next, removing even more information about the person,
we train our model using only the 17 person keypoint loca-
tions from COCO. The model continues to perform above
random chance (AUC of 64.8% ± 0.4). Further, to disen-
tangle the role of pose versus other image factors (e.g., size,
location), we resize the keypoints to have an area of 4,000

3Results when occluding with white pixels are similar; in Appendix E.

pixels and center the keypoints in the image. These images
are then used to train a multi-layer perceptron (MLP) for
100 iterations, achieving an AUC of 58.0%± 0.0, suggest-
ing pose is a salient gender artifact. Finally, we inspect the
poses with the greatest absolute scores and find the poses
predicted to be more likely male are smaller and in action
(e.g., playing a sport, jumping) whereas those predicted to
be more likely female tended to be larger and standing still.

There is a learnable difference between the size and lo-

cation of people of different gender expressions. Since
we observe a difference in the size for poses, we further
question whether the model can use only the size and lo-
cation of people as gender artifacts. We use MaskRect
NoBg, (i.e., only the bounding box around the person oc-
cluded with white pixels against a black background). Al-
though performance decreases from when pose information
was provided, the model continues to find a learnable dif-
ference with an AUC of 58.0% ± 0.4 on COCO. This pat-
tern is also reflected in OpenImages (62.2%± 0.4). In fact,
in the COCO training set, the size of people labeled as fe-
male (normalized by the image area) is 0.18 ± 10�4 and
0.13 ± 10�5 for people labeled as male. This difference
is statistically significant with p < 0.01 level. The same
pattern holds for OpenImages.

We also verify whether location is predictive. Using a
one-hot encoding of the 32x32 image where each pixel is
set to 0 except the center of the person bounding box, we
train an MLP for 100 iterations. The model achieves an
AUC of 51.5% ± 0.0. Considering only the center pixel’s
location provides a slight learnable difference.

Backgrounds are significantly different for images with

people of different gender expressions. Next we oc-
clude information about the person but keep the background
intact (see purple bars in Fig. 3). For both MaskSegm
(79.6%± 0.3) and MaskRect (70.8%± 0.3) the model per-
forms better than random chance on COCO. The same is
true for MaskRect for OpenImages (63.1% ± 0.4). Here,
our occlusions match those from proposed mitigation strate-
gies [31, 76]. Once again, occluding only the person’s ap-
pearance is insufficient to remove all the gender artifacts in
the image. Thus, any attempt to remove person-related gen-
der artifacts shifts the source of artifact information from
the person to the background, thus not satisfying the goal of
removing these artifacts altogether.

Qualitative analysis validates our findings. To better un-
derstand the impact of background as a gender artifact,
we qualitatively inspect images with the highest and low-
est scores from our gender artifact model (Fig. 4). In
(c) MaskSegm, the person’s location, together with back-
ground, is used as a gender artifact; the model associates
city backgrounds with “female” and athletic scenes with
“male.” Also, from (d) MaskSegm NoBg, we corroborate
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Figure 4. Images with highest and lowest scores for models trained
on the following occlusions: a) Full, b) Full NoBg, c) MaskSegm,
and d) MaskSegm NoBg. 100 corresponds to the model predicting
“female ” and 0 to “male.” Face pixelation is not in the COCO
image but included to partially preserve privacy.

Table 1. Out-of-distribution evaluation between the two datasets
(e.g., training on COCO and evaluating on OpenImages) and the
AUC for the three occlusion settings. We report the 95% confi-
dence interval from bootstrapping.

Train / Test Full MaskRect MaskRect NoBg

COCO / COCO 93.4 ±0.1 70.7 ±0.1 58.3 ±0.2
COCO / OI 91.2 ±0.2 60.7 ±0.4 63.2 ±0.4
OI / COCO 76.4 ±0.3 57.9 ±0.4 54.4 ±0.4
OI / OI 81.2 ±0.2 63.3 ±0.4 59.7 ±0.7

our finding that the model learns to associate larger, static
poses with “female” and smaller, active poses with “male.”
However, we do note that when the person pixels are in-
cluded, the model is able to make more confident predic-
tions for images with non-stereotypical settings (e.g., per-
son labeled female playing tennis, person labeled male in a
static, close-up shot) as seen in rows (a) and (b).

Gender artifacts generalize across datasets. Finally,
we examine whether gender artifacts are dataset-specific,
i.e., resulting from a dataset’s specific collection process
and distribution. We conduct out-of-distribution evaluation
(e.g., training on COCO and evaluating on the same occlu-
sion setting on OpenImages). Across occlusion settings, the
models perform above random chance even when evaluated
on an out-of-distribution test set (Tbl. 1). This suggests
that these gender artifacts may be common across visual
datasets. To verify that our findings are not restricted to
models pre-trained on ImageNet, for which there are known
gender biases [10, 79], we also use a model pre-trained on
other datasets and obtain similar results (see Appendix C).

6. Contextual Objects

In the previous section, we discovered that gender ar-
tifacts are present in both person and background pixels.
In this section, we work to better understand these gender

artifacts in the background, or non-person parts of the im-
age, and distinguish between two components of the back-
ground: the objects4 and the “scenes” (i.e., the rest).

Prior works [31, 76] often assume gender artifacts in
the background (i.e., objects or scene) are forms of “bias”
and aim to mitigate them by studying object-gender co-
occurrences. Additionally, prior works such as Singh et
al. [68] point out the dangers of bias from contextual ob-
jects, particularly in visual recognition datasets, and pro-
pose mitigation techniques to recognize an object or at-
tribute in the absence of its typical context and account for
imbalances in object co-occurrences.

In this section, we describe how we identify the relative
gender artifact contributions of the objects, as well as which
objects contribute to the model’s ability to differentiate im-
ages of people of different genders.

Top objects contributing to gender prediction. We an-
alyze the role of specific objects in gender prediction by
training a logistic regression model using a binary presence-
absence vector as input, where each value of the vector cor-
responds to the presence of an annotated object (1 if the
object is present and 0 otherwise).5 COCO contains 80
objects chosen by the dataset creators as a representative
set of all categories, relevant to practical applications, and
occurring with high enough frequency [42]. OpenImages
contains 599 objects, but explicitly gendered objects (i.e.,
woman, man, girl, boy) are removed before training the
classifier [40]. The model achieves an AUC of 75.4% on
COCO (Fig. 5) and 63.3% on OpenImages. The perfor-
mance of the OpenImages classifier is significantly lower
than that of COCO; this may be attributable to the differ-
ence in annotated objects in the train and test distribution
(the OpenImages test set has an average of 7.7 object in-
stances annotated per image while the training set has an
average of 3.7).6

This classifier’s weights loosely correspond to the ob-
ject’s role in gender classification. We use the weights to
identify the most relevant objects that contribute to gen-
der prediction sorted by importance. For COCO, the bot-
tom 10 classifier weights correspond to the top 10 objects
most useful to classify male (e.g., skateboard, tie,
snowboard). The top 10 classifier weights correspond to
the top 10 objects most useful to classify female (e.g., hair
drier, handbag, teddy bear) (see Fig. 5).

To further understand the role of contextual objects, we
iteratively remove objects from the logistic regression clas-
sifier (by decreasing the input vector dimension) to “break”
the classifier. That is, we want to see how many objects
need to be removed before the classifier performs at random

4Albeit limited to the objects labeled by COCO and Open Images.
5Trained with L1 regularization, reg. strength of 1, and liblinear solver.
6OpenImages dataset creators generated denser labels for the validation

and test splits than for the train split [40].
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Figure 5. The change in AUC (%) as objects are iteratively re-
moved from a logistic regression classifier trained on COCO (left).
Our goal is to see how many objects must be removed before the
classifier performs at random chance. When removing random ob-
jects, we report the mean and confidence interval from bootstrap-
ping and train five separate random classifiers (see Appendix D).
We also show the 10 most relevant objects in descending order, as
identified by the weights of the logistic regression classifier (right).

chance. We remove the “most gendered objects” as defined
by the object-based logistic regression model’s weights as
shown in the table in Fig. 5. In the first iteration, the objects
corresponding to the highest and lowest classifier weights
are removed and the model is retrained. For the second it-
eration, the objects corresponding to the top 2 highest and
top 2 lowest weights are removed, etc. Interestingly, while
removing the gendered objects does force the AUC to de-
crease faster, we find that this classifier still performs above
50% AUC and can achieve an AUC of 72.1% when given
14 of the most gendered objects (as noted by iteratively re-
moving the “least gendered objects” or objects correspond-
ing to the lowest classifier weights). As shown in Fig. 5, we
also experiment with removing randomly selected objects
and find that even when given a small number of random
objects, the gender artifact model is able to perform above
random chance with an AUC of 66.8% trained only the one-
hot encodings of 30 randomly chosen objects among the 80
annotated objects and 58.0% with 10 random objects.

The analysis of contextual object underscores the main
takeaway: gender artifacts are everywhere. Even when only
presented with one-hot encodings of objects, a gender arti-
fact model can still perform above random chance.

7. Fairness through Blindness Methods

One common approach to fairness in computer vision
is that of “fairness through blindness” where the classifier
explicitly does not use the sensitive attribute e.g., gender.
Such bias mitigation methods will remove gender artifacts
and occlude gender-related features [32, 72, 78] (e.g., face,
person segmentation mask, person bounding box [78]) to
encourage the model to learn representations not reliant
on gendered information. In this section, we use Wang et
al.’s [76] adversarial approach as a case study and investi-

gate what gender artifacts are being removed or debiased.

Method. As in [76], we train a U-Net [58] on COCO train-
ing images to do gender debiasing by removing image pix-
els corresponding to salient gender artifacts. We then iden-
tify and analyze the pixels in COCO validation images (with
� 1 person object) that were removed in the debiasing
process (see Appendix G for details).

Results. Intuitively, we would assume that fairness-
through-blindness approaches remove gender artifacts by
removing the person; however, in practice, we find the
method removes artifacts that overwhelmingly come from
the background, not the person. Of the pixels that are debi-
ased (i.e., removed) 23.2% are in the person and 76.8% are
in the background. Notably, this results in 20.4%±15.7% of
all the background pixels are masked out (see Appendix G
for more results). While fairness-through-blindness meth-
ods may purport to be removing gender cues primarily from
the person, we find that much of the removed information
comes from important parts of the image that may be nec-
essary for the downstream task of object recognition.

8. Discussion

The results of most of our experiments are that the la-
belled gender expression is consistently discernible, i.e.,
classifiable at above random chance. This result holds even
when an image is reduced to its average color (i.e. RGB
values). Removal of such artifacts can be harmful if they
lead to downstream allocational or representational harms
(e.g., stereotyping, differences in performance) [4, 11].

8.1. Implications for bias mitigation

Fairness-through-blindness approaches are still common
in computer vision; the community has not fully shifted to
the fairness-aware approach [23, 43] this analysis recom-
mends. Prior work in computer vision fairness [9, 31, 76]
has operated under the notion that gender bias in datasets
solely comes from a person’s appearance and not differ-
ences in the background or the average color of the image.
Thus, these mitigation efforts attempt to remove gender
bias by directly removing gender artifacts from the person.
We engage with these prior works by showing that visual
datasets have distinctly different distributions for images
containing people of different genders. Similar to how prox-
ies for protected attributes exist in tabular data [16, 17, 25]
thus rendering efforts to naively remove these attributes in-
effective, removing gender artifacts in computer vision bias
mitigation techniques may also be ineffective.

Overall, our results have three main implications for
bias mitigation methods. First, gender cannot be removed
from a visual dataset without removing information that is
relevant for the downstream task (e.g., removing objects,
scene). Thus, fairness-through-blindness approaches in-
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evitably remove information that affects the model’s per-
formance. Second, while some methods assume removing
part of a person’s appearance will remove the parts of the
image that reveal gender [76], we find in practice that these
methods heavily rely on artifacts outside of the person. Fi-
nally, we encourage researchers and practitioners to shift
away from fairness-through-blindness approaches towards
those considering fairness through awareness [22], as gen-
der artifacts are simply too ubiquitous to consider trying to
remain blind to. Existing fairness-aware methods first ex-
plicitly encode domain information and then explicitly mit-
igate the domain information [22]. One form of fairness-
aware methods can include constructing decoupled classi-
fiers [23] in which a separate classifier is trained for differ-
ent sub-groups of a sensitive attribute such as gender. These
algorithms do not try to erase gender, rather to accept its ex-
istence, and adjust algorithms accordingly.

8.2. Implications for dataset construction

The solution is not to accept different distributions of im-
ages for people of different genders as an inevitable con-
clusion and make no efforts during dataset construction to
consider gender representation. Rather, we point out these
potentially harmful correlations and encourage practitioners
to decide what kinds of gender artifacts they deem permis-
sible or not in each specific context.

The gender artifacts we discover and the differences in
input distribution more broadly are not necessarily harmful.
These differences can often represent historically important
distinctions between groups of people. Moreover, gender,
socially constructed as it is, is important to many social con-
cerns about equal treatment [44, 56, 57]. A participatory
and iterative process can help to elucidate which artifacts
should be removed (e.g., offensive stereotypes) and which
may be appropriate to persist depending on the context.

It is also important to consider the downstream task to
determine what kinds of gender artifacts are permissible.
One way of determining what kinds of artifacts may be
more permissible is performing disaggregated measures of
evaluation. Of course, there are many nuances here to con-
sider as well [5], and awareness about prominent gender
artifacts can help guide the selection of axes along which to
perform disaggregated analysis (beyond just demographic
groups). For example, if scene is known to be a prominent
gender artifact and the downstream task is scene classifica-
tion, evaluation could be done across demographic group
as well as scene type, to understand if specific scenes are
always misclassified for people of a particular gender. An-
other way can be through engaging with communities af-
fected by these downstream technologies [8, 11, 37], as
some gender effects such as those encoding harmful stereo-
types, may be inherently harmful.

Finally, it is important to note we are only stating the

presence of such artifacts and not claiming these artifacts
are necessarily harmful. While our analysis reveals these ar-
tifacts do exist in datasets, it does not guarantee the artifacts
will be captured by a task-specific downstream problem or,
even if they are captured, whether they lead to any harms.
Nonetheless, it can be useful for practitioners to identify ar-
tifacts, following a similar process to that used in this work,
and provide documentation for dataset users.

8.3. Incoherence of gender predictions

Finally, our analysis of gender artifacts elucidates an-
other takeaway: we might consider that what our gender ar-
tifact model (i.e., a gender classifier) predicts in these con-
texts to be a nearly incoherent concept. The fact that the
outline of a person, or even a pixelated 7x7 square, leads
to high predictive performance of the notion of gender we
have operationalized, should lead us to wonder about what
exactly the model is predicting. Perhaps what the model is
actually outputting is “the gender expression of the person
most likely to be holding an umbrella,” or “the gender ex-
pression of the person most likely to be in a running pose.”
All of these are notably different from predicting the per-
son’s gender.

While normative arguments against gender prediction
[39, 41, 62] are sufficient to hinder its usage, our results
suggest that a model’s prediction of gender has little to do
with the notion of gender the model designer is interested
in. Although explicit gender prediction is now less common
due to consciousness-raising on the topic, it is still prevalent
in image captioning [7, 9]. As prior work [61] has shown,
different gender classification systems frequently produce
conflicting gender annotations. The concept of “gender”
the model learns is as likely to be the most salient visual at-
tribute correlated with gender in the dataset, as it is any kind
of gender performance we deem socially meaningful [14].
We must be careful should we ever find ourselves imbuing
any meaning or value to the “gender” prediction of a model.

9. Conclusion

Given the importance of datasets in computer vision,
works critically examining these datasets provide insight
into their limitations and have implications for the many
methods evaluated on them. We go beyond prior works that
analyze only annotated attributes and conduct a more com-
prehensive analysis of gender artifacts by studying what a
“gender classifier” relies on to make predictions. We ana-
lyze gender artifacts by occluding various combinations of
color, person and background, and contextual objects. Gen-
der is consistently discernible despite different manipula-
tions to the input image. This analysis highlights the infea-
sibility of removing gender artifacts as a means for bias mit-
igation. Further, our work points to a general incoherence
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in the outputs of gender prediction models, as they appear
to rely on any number of spurious correlations.

The permeation of gender artifacts throughout image
datasets reveals it is futile to control for all possible dif-
ferences. The aim for researchers should not be to remove
these artifacts, but rather critically consider which gender
artifacts are permissible and further to propose methods that
are robust to these distribution differences.
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