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Abstract

We show how bidirectional transformers trained for
masked token prediction can be applied to neural image
compression to achieve state-of-the-art results. Such mod-
els were previously used for image generation by pro-
gressivly sampling groups of masked tokens according to
uncertainty-adaptive schedules. Unlike these works, we
demonstrate that predefined, deterministic schedules per-
form as well or better for image compression. This insight
allows us to use masked attention during training in ad-
dition to masked inputs, and activation caching during in-
ference, to significantly speed up our models (=4 x higher
inference speed) at a small increase in bitrate. '

1. Introduction

Recently, transformers trained for masked token predic-
tion have successfully been applied to neural image and
video generation [11, 35]. In MaskGIT [11], the authors
use a VQ-GAN [16] to map images to vector-quantized to-
kens, and learn a transformer to predict the distribution of
these tokens. The key novelty of the approach was to use
BERT-like [13] random masks during training to then pre-
dict tokens in groups during inference, sampling tokens in
the same group in parallel at each inference step. Thereby,
each inference step is conditioned on the tokens generated
in previous steps. A big advantage of BERT-like training
with grouped inference versus prior state-of-the-art is that
considerably fewer steps are required to produce realistic
images (typically 10-20, rather than one per token).

These models are optimized to minimize the cross en-
tropy between the token distribution p modeled by the trans-
former and the true (unknown) token distribution ¢, as mea-
sured via negative log likelihood (NLL). As is known from
information theory, this is equivalent to the bit cost required
to (losslessly) store a sample drawn from ¢ with a model
p [40]. Indeed, any model p that predicts an explicit joint
distribution over tokens in a deterministic way can be turned
into a compression model by using p to entropy code the to-
kens, rather than sampling them.

!Code will be released to github.
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Figure 1: Rate distortion results on Kodak. Our MT out-
performs the prior state-of-the-art ELIC [18]; M2T only in-
curs a small reduction in rate-distortion performance com-
pared to MT while running about 4 x faster on hardware
(see Fig. 4)

Motivated by this, we aim to employ masked trans-
formers for neural image compression. Previous work has
used masked and unmasked transformers in the entropy
model for video compression [38, 25] and image compres-
sion [29, 22, 15]. However, these models are often ei-
ther prohibitively slow [22], or lag in rate-distortion per-
formance [29, 15]. In this paper, we show a conceptually
simple transformer-based approach that is state-of-the-art in
neural image compression, at practical runtimes. The model
is using off-the-shelf transformers, and does not rely on
special positional encodings or multi-scale factorizations,
in contrast to previous work. Additionally, we propose
a new variant combining ideas from MaskGIT-like input-
masked transformers and fully autoregressive attention-
masked transformers. The resulting model masks both the
input and attention layers, and allows us to substantially im-
prove runtimes at a small cost in rate-distortion.

To train masked transformers, the tokens to be masked
in each training step are usually selected uniformly at ran-
dom. During inference, the models are first applied to mask
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Figure 2: LEFT: At the top we show the attention masks, at the bottom the first three inference steps. We first show the
MaskGIT-like approach MT, where the attention is not masked, and the same number of tokens is fed in each step. In our
M2T approach, both the attention and the input is masked, and we uncover the input one group at a time. The causal masks
used in the attention allow us to cache activations, i.e., for shaded blue regions we can cache. Together with the fewer tokens
fed in each (but last) step, this significantly speeds up the model. Finally, we show the fully autoregressive (Full AR) approach
for reference, as employed, e.g., in the standard transformer decoder [34]. Our M2T approach is a generalization that allows
for group sizes greater than one. RIGHT: Training, shown for 12 tokens only. Note that each input group corresponds to the
previous output group with additional mask tokens to align groups of different sizes. The group causal transformer is using

attention masking (see Sec. 3.6 for details).

tokens only, predicting a distribution for every single token.
A sample is then drawn from this distribution and a sub-
set of tokens is uncovered at the input (see Inference/MT in
Fig. 2). This step is repeated until no mask tokens remain.
Two important questions arise: i) How many tokens do we
sample in every step, and ii) which spatial locations do we
chose. In MaskGIT, an instance-adaptive scheme is used for
(ii), i.e., every sampled image will have a different schedule
of locations. In this work, we show that in terms of NLL
(and thus bitrate), a fixed schedule performs just as well.

This allows us to generalize ideas used in fully autore-
gressive transformer decoders like the original model pro-
posed by Vaswani et al. [34], bridging between fully au-
toregressive and MaskGIT-like transformers, as follows: In
autoregressive models, the input sequence is shifted by one
token to the right, causing the outputs to align in a casual
way, i.e., the i-th output is trained to predict the (z — 1)-th
input (see “Full AR” in Fig. 2). This can be thought of as
a “group-autoregressive” schedule with group size equal to
1. We generalize this idea to group sizes >1: As shown in
Fig. 2 (“M2T”), we permute the input such that we can un-
cover it group by group from left to right, and permute the
targets such that each group at the input predicts the next
group at the output. To accommodate a sequence of increas-
ing group size (which leads to the best generation/compres-
sion performance in practice) we insert mask tokens at the

input to pad the ¢ — 1-th group to the length of the ith group.
During inference, this allows us to run the transformer first
on very few tokens, and then more and more. In contrast,
MaskGIT-like transformers always feed the same number of
tokens (some are masked), corresponding to the full image.
We apply this idea to neural image compression, and show
that our approach reduces the average compute per output
token as it processes fewer tokens in total, at a small cost in
bitrate.
Our core contributions in this paper are two models:

Model 1 (MT) A vanilla MaskGIT-like transformer that
obtains state-of-the art neural image compression results.
In contrast to previous work, we use a conceptually clean
approach relying on standard transformers applied to tiles;
our method does not require a multi-scale model (“hyper-
prior”), and we can span a large bitrate regime by using
scalar quantization.

Model 2 (M2T) We show how MT can be sped up by
masking the transformer twice: both at the input and in
the attention layers. As visualized in Fig. 2, the model is
faster because it is applied to fewer tokens and because the
attention masks make the transformer causal, allowing for
caching. Together, this leads to to 2.7x — 4.8 x runtime
improvements as measured on accelerators, vs. a MaskGIT-
like model.
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2. Related Work

Lossy neural image compression is an active field of re-
search, with advancements being made on two fronts: En-
tropy models (how to losslessy code a lossy, quantized rep-
resentation of the image) and transforms (how to encode/de-
code the representation from/to pixels).

On the transform side, earlier methods used resid-
ual blocks [32] and Generalized Divisive Normalization
(GDN) [5], but more recently residual blocks with sim-
plified attention [12, 18] and window-based transform-
ers [41, 42] have been employed in state-of-the-art meth-
ods. Another line of work tackles generative compression
where the synthesis transform is trained to generate texture
and low-level detail at low rates [33, 9, 2, 26, 15].

On the entropy modeling side, most methods have built
on top of the hyperprior [0] paradigm, where the repre-
sentation is modelled with a (two-scale) hieararchical la-
tent variable model. Further improvements include channel
autoregression, “CHARM” [28], and checkerboard model-
ing [19], employing a limited number of auto-regression
steps over space and/or channels. Fully autoregressive mod-
els are sometimes used in the literature [24, 27, 12, 22] to
further reduce bitrates, but their prohibitively slow runtimes
render them less practical (often requiring minutes to de-
code high-resolution images).

Recently, transformers have been investigated both for
the entropy models and the transforms. Qian et al. [29] fuse
together an autoregressive transformer and a hyperprior [6]
(using transformer encoders instead of CNNs there as well).
They introduce a top-k scheme in the attention layer and a
special relative positional encoding to handle arbitrary res-
olutions. El-Nouby et al. [15] use a Masked Image Model
(MIM) combined with a Product Quantization (PQ) vari-
ant of VQ-VAE. While the approach is promising for ex-
treme compression, in terms of rate-distortion the method
is lagging behind state-of-the-art significantly. Konyuncu et
al. [22] propose a transformer based entropy model that is
fully auto-regressive over the spatial and channel dimen-
sions, which leads to prohibitively slow decode times (10+
minutes for a 4K image). Other works [41, 42] have ex-
plored the use of window-based transformers for the syn-
thesis transform.

For neural video compression, VCT [25] demonstrated
strong results with a temporal transformer for entropy mod-
eling and more recently [38] combined masked image trans-
formers with multi-scale motion context (via optical flow +
warping) to obtain state-of-the-art results.

3. Method
3.1. Overview

A high level overview of our approach is shown in Fig. 3.
Given an H xW image, we apply an encoder E to obtain a

Encoder
i3]
Decoder

Representation
(b,h,w,c)

Transformer

L NTRTY

Patched Repr.
(b",wr,w,c)

GMM Params
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Figure 3: Architecture overview. The Encoder maps a
batch of input images to a discrete representation of shape
(b, h,w,c). This representation is then split into patches
of size wr (folded into the batch dimension, so that b’ =
b - hw/w?). These are each entropy-coded independently
(and possibly in parallel) using the distributions predicted
by MT or M2T, which is parameterized by a GMM with
Ny=3 mixtures.

features of shape ([H/16], [W/16], ¢), which we quantize
element wise (scalar quantization), following many previ-
ous works [4, 24, 12, 18, 27, ...], yielding the representa-
tion y = Q(E(x)). From y, we can get a reconstruction
with a decoder D, & = D(y).

Since in general, £ # x, we call this a lossy auto-
encoder. We can turn it into a lossy image compression
scheme by storing y to disk losslessly. For example, we
could use the naive way of storing every element in y inde-
pendently with an int 32, resulting in a method that uses
32¢/162 bits per pixel (bpp). This results in a very poor
compression ratio, so instead, we follow previous work in
predicting a (discrete) distribution P(y), to then use entropy
coding to store y to disk using ~ ) . —log, P(y;) bits (in-
tuitively, more likely symbols should be stored with fewer
bits). We refer to previous work on the theoretical back-
ground, see, e.g., Yang and Mandt [40] and Balle et al. [3].
Here, we shall use a masked transformer to model P.

3.2. Autoencoder and Tokenization

Our main contributions lie in how we model P, so for
the autoencoder we use the convolutional ELIC encoder/de-
coder proposed by He et al. [18], with 256 channels for
all layers except for the last layer of the encoder which
predicts the c-dimensional representation. We use ¢=192
throughout. E downscales by a factor 16, and we use
h=[H/16],w=[W/16] as shorthand.” To get gradients
through the quantization operation, we rely on straight-
through estimation (STE) [32, 28].

2If the dimensions of an image do not divide by 16 during inference, we
pad the image, calculate the padded reconstruction and bitrate, and unpad
at the output, following previous work [27, 12, 26, ...]
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Figure 4: We compare our models MT and M2T in terms of speed vs. rate savings over VIM (lower is better). We compare
milliseconds per image on various platforms, where “image” is a large 1500x2000 pixel image. TPU numbers are obtained
by using 4 chips in parallel. The trade-off between rate savings and speed is controlled by adjusting the number of inference
steps .S, which we annotate for the first plot. We see that at the same rate savings, M2T is 2.7x — 4.8 x faster. Both models

start to saturate in terms of rate savings at S = 8.

Similar to previous work applying transformers to com-
pression [38, 25, 22], we do not consider each of the
h - w - c elements in this representation as a token, since
this would yield infeasibly long sequences for transform-
ers (e.g., a 2000x2000px image turns into a representation
with 125x125x192 = 3M symbols). Instead, we group
each 1x1xc column into a “token”, i.e., we get hw tokens
of dimension c each.

3.3. Transformer

We use a standard transformer encoder in the pre-norm
setup (see, e.g., [14, Fig. 1] and [39]) with the Base (“B”)
config [13, 14] (12 attention layers, width 768, and MLPs
with hidden dimension 3078). We apply two compression-
specific changes: since our input is a vector of c scalar-
quantized integers, we cannot use the standard dictionary
lookup-based embedding (as the vocabulary size is theoret-
ically infinite). Instead, we normalize the vectors by di-
viding with a small constant =5 and apply a dense layer
shared across tokens to function as the “embedding layer”.
Similarly, at the output, we cannot simply predict a finite
number of logits. Rather, we follow the standard practice
in neural compression and pixel-autoregressive generative
modeling to model each entry of a token using a continu-
ous, parametrized distribution, which is then quantized to
a PMF as described below. Inspired by [31, 12], we use a
mixture of Gaussians (GMM) with Ny = 3 mixtures, each
parameterized by a mean p, scale o, and weight w.

Patched inference For standard transformers, a positional
embedding is typically learned for every input token, and
we also apply this. This means that these models are not
applicable to arbitrary resolutions during inference without
carefully adapting the positional embedding, which often

involves finetuning on the target resolution. However, for
image compression, datasets of widely varying image size
are the norm. To reconcile this, we use a simple solution:
we apply the transformer on patches of wp X wp tokens. We
use wr = 24 since this corresponds to full representation
size during training (we use 384px crops during training,
yielding h = w = 24). Since we use the transformer
for losslessly coding the representation, we do not see any
boundary artifacts from this technique. The only downside
is that some correlations across patches are not leveraged
to drive down the bitrate even further. Concretely, this im-
plies the following flow of tensors shown in Fig. 3 during
inference.

We emphasize the simplicity of our proposed scheme,
using off-the-shelf transformers in a patched manner. In
contrast to, e.g., Entroformer [29], we do not have to adapt
the attention mechanism or use a relative positional embed-
ding. This means that our approach will benefit from future
research into speeding up standard transformers.

3.4. Masking Schedules

We consider various masking schedules in this work.
A masking schedule is a sequence of masks M =
{Mi,..., Mg}, where S is the number of masks (or,
equivalently, inference steps), and each tensor M; is a bi-
nary mask tensor of length wZ. M;[j] = 1 indicates that
the j-th token is predicted and uncovered at step i. As out-
lined in the introduction, there are two important axes when
building M besides the number of masks S:

1. Group Size Schedule: How many token are uncovered in
each step, i.e., whatis 3, M;[j] Vi.

2. Location Schedule: Which tokens are chosen to be un-
covered, i.e., which indices in each M, are set to 1.
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We parameterize the “group size schedule” via the cumu-
lative number of tokens that are uncovered after = steps us-
ing a strictly monotonically increasing function f(x). Moti-
vated by MaskGIT, we limit ourselves to a power schedule,
ie., f(r) = Ngoz%, where a controls how fast we un-
cover, and N, normalizes such that we uncover all w2
tokens in S steps. Fig. 5 shows f(x) for some a.

For “location schedules” we consider three different op-
tions, visualized at the top of Fig. 5. Again motivated
by MaskGIT, we start with an entropy-based schedule.
MaskGIT uses a schedule where in the i-th step, the model
is applied to the current input, a distribution p; is predicted
for every masked token, and a value x; is sampled for every
masked location j. A “confidence score” of x; is obtained
as p;(x;) and a number of tokens (governed by the group
size schedule) with the highest confidence score is retained.
This also determines the masked locations of the next step
1 + 1. For compression, since we aim to produce short bit-

steams, and the bitrate is a function of the predicted entropy,
we follow [38] and adapt this schedule to our use case by
retaining tokens with the lowest entropy instead of the con-
fidence score.

The second schedule is called random, where we fix a
seed and sample locations at uniformly at random (with a
fixed seed), motivated by the fact that this mimics the train-
ing distribution of mask locations.

Our last schedule is a novel schedule proposed in this pa-
per, QLDS (“quantized low-discrepancy sequence”), which
is loosely motivated by information theory: We note that at
every step i, we entropy code the tokens in the i-th group
in parallel, and conditionally on the tokens of all previous
groups (this is possible, as these tokens will be available in
the ¢-th decoding step). Hence, to get good prediction of all
available at tokens in the i-th group, the mutual information
between the i-th group and all previous groups should be
maximized. At the same time, all tokens within a group are
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Figure 6: Visualizing how the quantized low-discrepancy
sequence (QLDS) fills a 16x16 window in a regular fash-
ion. We split this into a sequence of S masks for our model
(see Fig. 5 for S = 8).

encoded in parallel, and we can thus not leverage their mu-
tual information, meaning the schedule should minimize the
mutual information within groups. For images we can use
distance in pixel space as a proxy for mutual information,
since we expect nearby pixels to be more correlated than
pixels far apart. Intuitively, this implies that tokens within a
given group should be far from each other spatially, and at
the same time close to tokens in previous groups.

To this end, we use low-discrepancy sequences
(LDS) [23, Ch. 2]. These are pseudo-random sequences that
minimize the “discrepancy” for any subsequence, meaning
among other things that when the sequence is cut off at an
arbitrary index ¢, all elements up to 7 are close to evenly
distributed (see Sec. A.1 for a formal definition). An LDS
in 2D is given by a sequence of points X = xi,...,ZnN.
This can be turned into a masking schedule by specifying
K group sizes that sum to N, and then simply splitting X
into K groups. The fact that X is an LDS implies the de-
sired properties mentioned above, i.e., all points in a group
are far from each other, while at the same time merging all
groups up to a certain step yields a set of points that near-
uniformly cover the space. We use an LDS proposed by
Roberts [30], described in Sec. A.1, visualized in Fig. 6.

3.5. Masking Model 1: MT

For our MaskGIT-like model, MT, we use masked trans-
formers similar to what was proposed in previous language
and image generation work [13, 11, 10].

Training Given the representation y = FE(z), we ran-
domly sample a mask M for every batch entry, which is a
binary vector of length w2, where 5-99% of the entries are
1. The corresponding entries in y are masked, which means
we replace them with a special mask token (this is a learned
c-dimensional vector). The resulting tensor, yps, is fed to

the transformer, which predicts distributions of the tokens.
Each distribution is factorized over the c channels. We only
consider the distributions corresponding to the masked to-
kens to compute the loss, i.e.,

Lo =By umtizos [ Y, — 108 p(yi + ulyamr)],

ie{l,..,wa},
M(i]=1

)]
where we use additive i.i.d. noise to simulate quantiza-
tion during training [40]. Here, we use the standard trick
(e.g. [40]) of integrating the continuous distribution p pro-
duced by the model on unit-length intervals, to obtain

P(y) = fyff/;p(U)du,y € Z.

Y

Inference For inference, we apply the model S times fol-
lowing one of the schedules outlined in Sec. 3.4. In the
first iteration, we only feed mask tokens, then we entropy
code the tokens corresponding to M, uncover them at the
input, and repeat until all tokens have been entropy coded.
This is detailed in Fig. 2 (left) and Alg. 1 in the Appendix.
In Fig. 7 we qualitatively visualize how the prediction gets
more confident in each step as more tokens are uncovered.

3.6. Masking Model 2: M2T

As we shall see in Sec. 5.1, we can use a deterministic
schedule for inference without hurting bitrate in MT. This
motivates our fast model that masks twice: once at the in-
put, once in the attention, called M2T (see Fig. 2).

Recall that fully autoregressive transformer decoders
like the original approach by Vaswani et al. [34] use a di-
agonal attention mask during training to enforce causality.
We generalize this idea here. Given a sequence of masks
M, we construct i) a permutation of the input, ii) attention
masks, iii) a permutation of the targets, which together al-
low us to get the complete token distribution with a single
forward pass during training, and, crucially allow us to do
fast inference.

As visualized in Fig. 2, we can (i) form the permuted
inputs by constructing |M| groups, where the i-th group
consists of the tokens in group M,_; followed by mask
tokens to pad the subsequence to length > M;. M also
induces (ii) an attention mask A, a “block triangular” ma-
trix (see Fig 2) which ensures causal dependence structure
across groups. Finally, (iii) the permutation of the targets is
simply putting tokens of the same group next to each other.

We emphasize that mask tokens at the input enable non-
linear schedules where the current step predicts more to-
kens than the previous step, by simply padding the previ-
ously predicted/decoded tokens at the input to the length of
the output of the current step. Further, masking the atten-
tion turns the model into a causal transformer which allows
teacher forcing during training [37], i.e., all steps can be
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Figure 7: Visualizing the uncertainty of the model for a QLDS masking schedule with a=2.2 and S=12. Above each image
we show the cumulative mask at the corresponding step, where transmitted token locations are indicated with a white dot.
We show the cost for storing these tokens to disk in kilobits (kbits). To visualize the uncertainty of the model, we sample
the remaining (non-transmitted) tokens 50 times and average the corresponding decoded images. We see how the QLDS

schedule leads to a coarse-to-fine transmission of the data.

trained simultaneously. This also enables caching at infer-
ence time.

We highlight that this scheme is a generalization
of full autoregressive training with attention masks:
We recover it with a sequence of masks M =
{[1,0,...],[0,1,...],...,]...,0,1]} that uncover the la-
tent in raster scan order. Using this, we obtain groups of
size 1, and the standard triangular A (see Fig. 2, “Full AR”).
According to our algorithm outlined above, we only insert a
single mask token at the start of the input. This corresponds
to the START token typically used with fully autoregressive
models. We do not study this setting here, since running
fully autoregressive transformers for compression leads to
impractically long decoding times.

Training During training, we apply the components
above: (i) we permute the input, obtaining y;,, (ii) feed it
to the transformer masked with attention masked by A, and
(iii) get the permuted output Yoy, yielding

Lyt = By [ — 1085 p(You|¥in) | - )

In contrast to the loss for MT (Eq. 1), this loss corresponds
to the bitrate required to compress the full y.

Inference For inference, we feed slices of the input as
shown on the left of Fig. 2. We cache activations for
the tokens we previously fed, which works thanks to the
causality we induce during training with A. Note that
default attention caching implementations usually is only
valid for the fully autoregressive case, and we thus im-
plemented our own Flax [20] attention caching. Code for
this is shown in App. A.6. We further note that MT uses
the flax MultiHeadDotProductAttention without
modification as it does not invove attention masking.

3.7. Loss

We train the autoencoder and transformer jointly end-
to-end, minimizing the rate-distortion trade-off r(y) +
Ad(z,&). We use either Lyt or Lypr for r(y) and MSE
for d. The hyperparameter A controls the trade-off between
the bitrate and distortion.

4. Experiments

Models We call our base transformer model without at-
tention masking MT, and our model that masks twice
M2T. They share all hyperparameters. @ We explore
S={2,4,8,12}. For the main results, we fix «=2.2, and
use S=12. In terms of rate distortion, we compare to var-
ious models listed in Sec. 2. We run VIM 17.1 [17], the
state-of-the-art non-neural codec, with the same settings as
previous work [, Sec. A.2].

Training We train our models from scratch end-to-end,
including the autoencoder E, D. Our training data consists
of a set of 2M high-resolution images collected from the
Internet, from which we randomly sample 384x384 crops
with batch size 32. We optimize the training loss for five
values of \ € 2¢ : i € {—4, ..., 0}, training for 1M steps for
each A\. We use “\ warmup” where we set A 10x higher for
the first 15% of training. We set the base learning rate to
10~%, and use linear warmup for 10k steps, keep the learn-
ing rate constant until 90% of the training is completed, and
then drop it by 10x. This tends to boost PSNR and is com-
monly done [28, 25]. Sec. A.3 shows implementation de-
tails.

Test Data We use the common Kodak [21] dataset to eval-
uate our model. This is a dataset of 24 images, each of res-
olution 512x 768 or 768 x512. We also evaluate on the full
CLIC2020 dataset, which consists of 428 images of up to
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Figure 8: Rate distortion results on CLIC2020.

2000x1000px.> We report bits-per-pixel (bpp), PSNR, as
well as BD-rate savings [8].

Runtime We measure the runtime of our transformers on
multiple accelerators: NVidia P100, V100, A100, 3090Ti
GPUs, and Google Cloud TPUv3 and TPUv4. We measure
the S forward passes required through the models, ignor-
ing device transfer times, range coding, and the decoder
D, since these are constant across all models. We report
GFLOPS/image and milliseconds per image, where “im-
age” means 2000x1500px. For each accelerator, we chose
the largest batch size that saturates it. For TPUs, we paral-
lelize the model over 4 chips.

5. Results

Rate-distortion In Fig. I, we compare rate-distortion per-
formance on Kodak. We can see that our model outperforms
the previous state-of-the-art. In Fig. 8, we present results on
CLIC2020 to show that also there, we significantly outper-
form the non-neural state-of-the-art VTM. We use S=12
for MT. Sec. A.7 provides the data underlying these plots.

Runtime In Fig. 4, we compare inference speeds of our
models on TPU v3/4 and 3090Ti/A100 GPUs. In Sec A.2,
we also show P100, V100 and FLOPS. Depending on the
accelerator, M2T achieves 2.7x — 5.2 x practical wall clock
speedups over the MT model. We note that M2T operates
in the subsecond-per-large-image regime (2000x 1500px),
putting it in the realm of practical image compression
schemes. MT also achieves subsecond inference on a con-
sumer GPU (3090Ti) if we use S=8.

However, we would also like to note that the runtime
optimized channel-autoregressive and checkerboard-based
convolutional entropy model in ELIC reports 46.06ms for a
1890x2048px image on a consumer NVidia Titan XP [18,
Table 3]. On the other end of the spectrum, the transformer-
based ContextFormer reports full decoding speeds in the or-
der of multiple minutes [22, Table 1]. As such, our con-
tribution lies in developing a fast and simple transformer

3www.tensorflow.orq/datasets/cataloq/clic

Model C  Njp; BD-rate savings
MT (default) 192 3 -11.6%
MT (more channels) 320 3 -8.27%
MT (one mixture) 192 1 -7.95%

Table 1: Ablating number of channels in the representation
C and number of mixtures /V,;. Rate savings are over VITM
(lower is better).

model that is largely based on the vanilla transformer en-
coder architecture used in BERT [13] and ViT [14], and still
achieves state-of-the-art rate-distortion performance.

Certainty We visualize the certainty of the entropy model
of MT in Fig. 7 by sampling from the model multiple times
and showing the sample mean. The underlaying samples
are shown in Sec. A.S.

5.1. Ablations

Masking Schedules For the MT model trained for A =
0.00125, we show the impact of various masking schedules
in Fig. 5. We see that using o > 1 is crucial to get low
rates, but the gains start to saturate at around o« = 2.2. We
see that for lower «, the entropy-based masking schedule
is optimal (top part of the lower right plot, lines with circle
marker). As we go towards the optimal o, QLDS becomes
the optimal schedule. Finally, we see that increasing the
number of autoregressive steps beyond 8 leads to limited
gains if o > 1.

Architecture Our approach relies on standard compo-
nents, so we only ablate the compression-specific choices:
We explore using C=320 channels, since this is a common
choice in the literature (e.g., [18, 28]). We also explore
training with a single mixture instead of 3. The results are
shown in Table 1.

6. Conclusion

In this work, we made two significant contributions: We
showed how a vanilla MaskGIT-like transformer can be ap-
plied to neural image compression to obtain state-of-the-art
results at practical inference times on various accelerator
platforms, without relying on a multi-scale model. We also
demonstrated that this model performs well with a fixed,
deterministic schedule independent of the input, which al-
lowed us to develop a second model class with masked at-
tention, M2T. This model bridges between MaskGIT-like
transformers and autoregressive transformers.
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