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Abstract

Viewpoint is a fundamental modality that carries the in-

teraction between observers and their environment. This

paper proposes the first deep-learning framework for the

viewpoint modality. The challenge in formulating learning

frameworks for viewpoints resides in a suitable multimodal

representation that links across the camera viewing space

and 3D environment. Traditional approaches reduce the

problem to image analysis instances, making them compu-

tationally expensive and not adequately modelling the in-

trinsic geometry and environmental context of 6DoF view-

points. We improve these issues in two ways. 1) We pro-

pose a generalized viewpoint representation forgoing the

analysis of photometric pixels in favor of encoded viewing

ray embeddings attained from point cloud learning frame-

works. 2) We propose a novel SE(3)-bijective 6D viewing

ray, hyper-ray, that addresses the DoF deficiency problem

of using 5DoF viewing rays representing 6DoF viewpoints.

We demonstrate our approach has both efficiency and accu-

racy superiority over existing methods in novel real-world

environments.

1. Introduction

Viewpoints play a critical role in a broad range of tasks in

computer vision [15, 12, 33, 35], graphics [28, 10], robotics

[29, 23, 34, 32] and HCI [20, 2]. Whether given as input or

required as output, viewpoints embody complex dependen-

cies among capture dynamics/constraints, observer prefer-

ences and task-specific goals. To enable AI systems to un-

derstand and characterize these complex dependencies in a

data-driven manner, we propose a novel encoding scheme

and learning framework for the viewpoint modality, similar

to how images being encoded with CNNs. This is a first step

towards research and application focusing on, for example

cross-modal learning of text-and-view (i.e. find/describe

views with texts), text-based robot navigation or behavior

recognition from camera movements.

Viewpoint instances play the role of a geometric link be-

tween the environment and captured contents, with viewing

Generalize to Novel Environments

*Heatmap represents likelihood for placing viewpoints

Learning 6DoF 

Viewpoint Pattern

Figure 1: Viewpoint Learning. Examples showing our

method learns to replicate 6DoF viewpoint capture patterns

in novel environments.

rays conveying info on both capture-time camera pose and

scene content observability. However, existing approaches

[12, 15] focused on (rendered) viewpoint image analysis are

handicapped in two important ways: First, the inherently

local scope of individual photometric pixels obfuscates the

geometric and environmental contexts that are crucial cues

to characterize the viewpoint. Second, sampling the view-

ing space through image rendering is computationally de-

manding. Addressing both of these shortcomings requires

novel data representations and compute frameworks.

Photometric pixels, which convey the signal carried by

viewing rays, are widely used in existing viewpoint repre-

sentations. However, the geometry of viewing rays (i.e. ori-

gin, length and direction) is usually ignored, even though

such parameters govern the mapping from scene content to

the observer. Importantly, viewing ray geometry uniquely

describes the capture-time camera pose and observed scene

geometry of a given viewpoint. Hence, we represent view-

points as a collection of viewing rays, which are in turn

encoded in terms of both their geometry and their carried

signal. To encode viewing rays, we tightly couple the

ray encoding process with point cloud learning frameworks
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through our proposed Harmonics Ray Encoders (HREs).

The HREs are spherical feature fields that can differentiably

encode a generalized range-bearing feature of the viewing

rays emanating from the observer to the scene elements. In

this way, the ray geometry and the corresponding environ-

mental content can be jointly encoded into latent embed-

dings with rich geometric and semantic context. Given that

HREs are parameterized by a compact learnable set of co-

efficients, they are suitable as an extension for off-the-shelf

point cloud learning frameworks.

Next, we address the heavy computational burden of

viewpoint learning frameworks induce by the DoF defi-

ciency problem of using viewing rays (5DoF) for represent-

ing viewpoints (6DoF). Due to the lower DoF of viewing

rays, the methods need to spend large computation budgets

on rendering an over-specified set of pixels/rays to uniquely

characterize a viewpoint. This also results in a same view-

ing ray belonging to many different viewpoints, which lays

heavy burden on the subsequent analyzer to inspect the in-

terplay of the viewpoints’ ray bundles for characterizing dif-

ferent viewpoints. Therefore, we propose a novel SE(3)-

bijective 6D viewing rays, namely hyper-rays, where each

hyper-ray can uniquely represent a 6DoF viewpoint. The in-

troduction of hyper-rays removes the correlation among the

viewing rays within a viewpoint, which greatly improves

the efficiency by relieving the burden on the post-analysis

stage as well as allowing sparser ray samplings.

Finally, we integrate our proposed ray representation and

encoding mechanism into a hierarchical learning framework

that first examines the panoramic environment to determine

a location sanity score, followed by a 6DoF viewpoint san-

ity evaluation. By decoupling the location and viewpoint,

we can quickly filter the search space by discarding the

viewpoints at unlikely locations, as well as enhancing the

viewpoint analysis with its panoramic environment. Since

our method only needs a sparse point cloud as input, it can

efficiently sample and analyze dense 6DoF viewpoint hy-

potheses of indoor environments within ∼10 seconds on a

commodity GPU. We summarize our main technical contri-

bution/insights as:

• We propose a new viewpoint representation using en-

coded viewing rays to endow rich geometric context for

viewpoint learning.

• We propose harmonics ray encoders to bridge ray encod-

ing with existing point cloud networks, endowing the em-

beddings with rich environmental context.

• We extend the representation dimension of viewing rays

to enable unambiguous encoding of a SE(3) camera pose

in each ray’s geometry.

• We propose an efficient inference workflow decouples

location and orientation, enabling efficient dense 6DoF

viewpoint sampling and analysis.

2. Related Works

Viewpoint Learning. The concept of viewpoint learning

rises from the empirical observations that human share com-

mon pattern of viewpoint preference for 3D objects [5].

Many works focus on finding good features for evaluating

human 2DoF viewpoint (i.e. azimuth+altitude) preferences

of an object model. Early works measure the surface vis-

ibility [50] and mesh saliency [24] as viewpoint metrics.

More recent works propose to use segmented-parts visibil-

ity [51], surface distinctness [25] and CNN-based image

analysis [53, 22]. Hybrid works use a composition of geo-

metric, appearance and semantic features [43, 28, 47, 18, 9]

to evaluate a viewpoint in multiple aspects, where a sum-

mary can be found in [6]. Learning 6DoF viewpoint gen-

eralizes the scope of 2DoF object viewpoint into a com-

plex traversable 3D environment. The extra 4DoF involves

many more practical applications [20, 15, 12, 29] but also

introduced many challenges due to the huge 6D pose space.

To accommodate the extra DoF, works for indoor scenes

[15, 46, 54] usually assume a known scene gravity and

fix/restrict camera height, tilt and roll with prior knowledge

to reduce the search space as well as keep a certain dis-

tance to surrounding objects. Viewpoint goodness is then

rated by examining depth and semantics statistics of ren-

dered view w.r.t. the prior data, e.g. Kyle et al. [12] pro-

posed to build 3D histogram on camera frustums to record

the depth map statistics of each semantic class respectively.

The 6DoF works commonly analyze rendered image and

depth structure, while disregards the capture time camera

pose and its relationship to the environment. Only few

works [15, 46, 54] weakly constraint the camera state with

simple heuristics (e.g. height, tilt, and collisions). While

discarded camera pose info may be partially recoverable

by performing post-hoc analysis on the rendered content,

doing so inherently compromises overall efficiency, robust-

ness and accuracy of a viewpoint analysis system. Our work

provides a general viewpoint representation which is aware

of the full SE(3) camera pose. Built on this, viewpoint

patterns can be accurately learnt from data, obviating the

need for designing heuristic priors on camera poses or im-

age contents.

View Selection with Metrics. View selection applications

with clear metrics such as minimizing reconstruction uncer-

tainty [23, 55, 42, 36], maximizing coverage [30] or explor-

ing [40, 29] usually do not learn viewpoint metrics from

data. However, Sun et al. [48] recently shows that learn-

ing to approximate well-defined metrics (i.e. coverage) us-

ing neural networks enables fast optimization from a coarse

scene geometric proxy. Suggesting the use of deep learning

in view selection problems may reduce the demanding for

scene fidelity and optimize the selection process.

Scene Representation Learning. 3D scene representation

learning has been widely studied, where diverse network
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architectures are designed for semantic scene understand-

ing including MLP-based [37, 38], Point-convolution [27,

49, 52], GNN/Transformer [56, 14] and 3D-CNN [39, 46].

Given the close relationship between the viewpoints and

its scene environment, this work tightly couples viewpoint

learning with point cloud representation learning to endow

our viewpoint representations with view-dependent rich en-

vironmental context extracted from the point cloud.

View-Dependent Encoding. In the graphics domain,

image-based rendering (IBR) methods [26, 13, 44] model

plenoptic functions to map viewing rays into photo-realistic

appearance. Model-based renderings [45, 11, 41, 31] also

model the view-dependent effects using BRDF, spherical

harmonics or MLPs. While sharing similar ideas, we gener-

alize the concept of rendering to viewpoint learning by ag-

gregating view-dependent features from environmental con-

tent instead of rendering photo-realistic images.

Viewing Ray Representations. Many image-based render-

ing methods [26, 13, 44] have studied dimensionality reduc-

tion of generic 5D viewing rays. While this simplifies their

plenoptic parameterization, it introduces degenaracies into

the viewing space (i.e. camera pose space). Conversely,

our method lifts the ray dimension to 6D, for a single ray to

unambiguously represent camera poses in SE(3), allowing

efficient and effective viewpoint learning.

3. Method

Problem Formulation. To study viewpoint learning frame-

works with minimal distractions, we focus on a simple and

controlled setup that evaluates whether a method’s induc-

tive bias can faithfully capture viewpoint patterns underly-

ing in training data and generalize to unseen environments.

Specifically, we assume a dataset is created by an observer

who samples viewpoints T ∈ SE(3) from an underlying

distribution D(T |Π), where Π is the scene 3D model. Af-

ter learning from training data, we are interested in discrim-

inating whether an arbitrary viewpoint T′ in an novel envi-

ronment Π′ is sampled from D(T′ |Π′) or an uniform pose

distribution U(T′).

3.1. Viewpoint Representation

The conditional probability D(T |Π) implies our inter-

est in modelling viewpoints as the relationship between a

camera pose and its environment. Accordingly, we repre-

sent viewpoints using their pencils of viewing rays emanat-

ing to the scene. Towards this end, we introduce our optic-

ray and hyper-ray parameterizations.

Optic-Rays. Optic-rays [4] are 5DoF half-lines in 3D

space, which can be parameterized as

L ∈ L
5 =

{

o ∈ R
3, d ∈ S

2
}

(1)

where o is the 3-vector ray origin and d is ray direction

on the 2-sphere S
2. Compared with 6DoF camera poses

in SE(3), the optic rays only have 5DoF, which means a

single optic ray is an ambiguous representation for camera

pose. Mathematically, let L be a viewing ray from a view-

point with pose T=(R, t) and passing through [u, v, 1] in

camera coordinates. From each optic-ray we can only de-

termine a variety of camera poses satisfying the following

α : L5 × P
2 →

{

T
∣

∣ t = o,
R[u, v, 1]⊤

||R[u, v, 1]⊤||
= d

}

(2)

where P
2 denotes camera coordinates in the projective

plane. Eq.(2) implies a viewpoint’s location is determined

by a ray’s origin, but the rotation is conditioned on the ray’s

image projection coordinates and under-determined as one

DoF is unspecified. Co-located viewpoints with different

orientation will share common optic-rays, requiring multi-

ple (≥2) optic-rays with known image projections for their

disambiguation. As a result, depending on the companion

rays, a same optic ray could both belong to a good view-

point or bad viewpoint. This lays heavy burden on the post

analyzer/classifier to inspect the interplay of the ray bun-

dle to recover the full SE(3) camera pose of the viewpoint,

resulting in inefficient and inaccurate viewpoint modelling.

However, as the ambiguity only exists in orientation, optic-

rays are still good representations for viewpoint location.

Hyper-Rays. To unambiguously represent a viewpoint

pose using a single viewing ray, we introduce a 6DoF hyper-

ray representation parameterized as

L̂ ∈ L
6 =

{

ô ∈ R
3, q ∈ S

3
}

(3)

The hyper-ray lifts the ray direction onto a 3-sphere as a unit

quaternion q=(qw, qx, qy, qz), ∥q∥=1. Geometrically, the

extra DoF implicitly represents the roll-axis orientation of

the optic-rays, which will be detailed in §3.3.2. Let R(q)
be the rotation matrix form [17] of quaternion q as

R(q) = 2 ·





q2w+q
2
x−0.5 qxqy−qwqz qwqy+qxqz

qwqz+qxqy q2w+q
2
y−0.5 qyqz−qwqx

qxqz−qwqy qwqx+qyqz q2w+q
2
z−0.5





(4)

The mapping between the hyper-ray and camera pose is

then straight-forward

β : L6 → SE(3), β(L̂) =
{

T
∣

∣ t = ô,R = R(q)
}

(5)

Since the mapping from q to R is a double-cover (i.e.

R(±q)=R)[17], we fix the real part of quaternion qw to be

non-negative to make this mapping bijective. Hence, hyper-

rays define an unambiguous ray representation that bijec-

tively corresponds to the full SE(3). With the extra DoF on

ray direction, we avoid overlapping viewing rays between

different viewpoints and the requirement of knowing ray

image projections. In exchange for a mild computational
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burden during rendering (described in §3.3.2), hyper-rays

provide a distinguishable representation that eliminates the

need to analyze the ray interplay, which reliefs burden on

the downstream classifier.

3.2. Harmonics Ray Encoder (HRE)

We introduce the harmonics ray encoder (HRE) scheme

to encode a viewpoint’s pencil of viewing rays for down-

stream classification tasks. Applied harmonic analysis [3]

expresses signals through the composition of individual os-

cillatory components such as sinusoidal functions. Based

on this, HREs stack multiple individual sets of harmonics to

form feature fields F(·)→R
D to encode the range-bearing

attributes of the rays.

Point Cloud Map. We first consider an input 3D scene

model Π in point cloud format with P points as

Π =
{

xp, cp,np ∈ R
3 ; p = 1 . . . P

}

(6)

where xp is the 3D coordinate, np is a unit-length normal

vector, cp is the color of point p. We use a PointNet[37]

to process the point cloud map into per-point coefficients

defining our harmonics feature fields as shown in Fig.3(a).

Viewing rays emanating to the point p will be encoded with

a feature from the its feature field in accordance to ray at-

tributes at rendering time.

Direction Feature Field on S
2 and S

3. The ray direction

of optic-rays d and hyper-rays q live on S
2 and S

3 respec-

tively. Hence, we use spherical harmonics on S
2 and S

3 [3]

to represent a feature field encoded by ray directions. We

denote the directional feature fields of viewing rays incom-

ing to point p respectively as Fp
d and Fp

q as

Fp
d(d) =

H2
∑

l=0

l
∑

m=−l

a
[d]
lmYlm(d) (7)

Fp
q(q) =

H3
∑

k=0

k
∑

l=0

l
∑

m=−l

a
[q]
klmYklm(q) (8)

where Y·(·) are harmonic polynomials, whose explicit for-

mulas are included in the appendix. H2 and H3 are

hyper-parameters of maximum harmonics degrees, and

a
[d]
lm,a

[q]
klm ∈ R

D are PointNet predicted per-point coeffi-

cients that define the feature field.

Length Feature Field on R
1. The remaining ray attribute

is its origin o. Given that HREs are conditioned on specific

points and ray direction is explicitly encoded, we only need

to encode a 1D ray length to uniquely imply the ray ori-

gin. Consider a given ray length γ, as a 1D parameter, it is

natural to consider a Fourier series (i.e. a flattened circular

harmonics) as

Fp
γ (γ) = a

[γ]
0 +

∑H1

n=1

(

a
[γ]
2n+1 cos

(

2πγ
γmax

n
)

+ a
[γ]
2n+2 sin

(

2πγ
γmax

n
)

)

(9)

Optic-Rays

𝕃𝟔
Hyper-Rays

𝑺𝑬(𝟑)
𝕃𝟓 × ℙ𝟐 Camera Poses

𝛼 𝛽

Figure 2: Mappings from rays to camera poses. The

optic-rays map to a curve (1-DoF) in SE(3) given an image

coordinate. While our proposed hyper-rays can uniquely

determine any camera poses in SE(3) without the knowl-

edge for image projection.

where γmax is a pre-defined maximum length, H1 the num-

ber of harmonics, and a
[γ]
n ∈ R

D are PointNet predicted

per-point coefficients defining the feature field. We set a

slightly larger maximum distance γmax to prevent the pe-

riodicity from mapping zero and max distance to the same

feature.

3.3. Viewpoint Modelling

Leveraging our ray representation and HREs, we de-

sign an efficient two-stage workflow by decoupling location

and orientation as shown in Fig.3(b,c). Our first stage uses

optic-rays to efficiently analyze the location of a viewpoint,

while the second stage takes into account the viewpoint ori-

entation at selected locations through hyper-rays.

3.3.1 Location Branch.

We first determine a score for a given location t by exam-

ining its panoramic environment. Given our interest only

on location, the simple optic-rays are enough to determine

a unique 3DoF location without knowing image projection

according to Eq.(2). Hence, we aggregate all optic-rays cor-

responding to t w.r.t. the point cloud as

{

Lt→p

∣

∣ ot→p = t, dt→p =
xp − t

∥xp − t∥
; p = 1 . . . P

}

(10)

where we denote Lt→p as the optic-ray from location t to

point p. We also denote the ray length as γt→p = ∥xp −
t∥. We encode ray distance and directional attributes using

Eq.(9) and (7), and we will have the final ray features from

the sum of two features as

ft→p = Fp
γ (γt→p) + Fp

d(dt→p) (11)

Spherical Voronoi pooling with optic-rays. Naively ag-

gregating all rays in Eq.(10) as the location representation

leads to bias on viewing directions having denser points.

Hence, we propose spherical Voronoi pooling to equalize

ray density along each viewing direction. As shown in

Fig.3(b), we create a 2-sphere Voronoi diagram at location

t, where we use spherical Fibonacci sampling [16] to evenly

sample points
{

dc | c = 1 . . . V2
}

on S
2 as the center
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PointNet

(a) Map Processing Branch

(b) Location Branch

Voronoi 2-Sphere

Feature
𝑍(𝑡)Voronoi 2-Sphere

Avg.

Pooling

Viewpoint

Score

Voronoi 3-Sphere

Feature

View Cropping

Weights

×
Voronoi 3-Sphere

Spherical Voronoi Pooling 

(w/ Hyper-Rays)

Rotation 𝑅 FoVs

መ𝑍(𝑅, 𝑡)

[ ⋯ ]
𝑅1 Harmonics

Encoder (ℱ𝛾𝑝)[ ⋯ ]
𝑆2 Harmonics

Encoder (ℱ𝒅𝑝)[ ⋯ ]
𝑆3 Harmonics  

Encoder (ℱ𝒒𝑝)
Per-Point

Coefficients

Environment

Point Cloud

Location 𝑡

Spherical Voronoi Pooling 

(w/ Optic-Rays)

Encoding

Hyper-Rays

Encoding

Optic-Rays

Avg.

Pooling

×

×

×

×
Location 𝑡

=
Thresholding

Grid Sampling

(c) Viewpoint Branch

FC

FC

Loc. Score

* The visualization of 3-spheres uses the Hopf fibration from [21].

Figure 3: Workflow. a) The scene point cloud is processed with PointNet to assign per-point HREs. b) The location branch

estimates a score for each location by analyzing its panoramic optic-rays. c) For selected locations, the viewpoint branch

caches panoramic hyper-rays in a Voronoi 3-sphere feature, and the viewpoint features are cropped from the 3-sphere for

determining the viewpoint score.

of each Voronoi cell. We aggregate weighted ray features

and store them in each cell, hence we denote the sphere as

a Voronoi sphere feature. We average all cell features to-

gether to form the feature descriptor of location t as

Z(t) =
1

V2

V2
∑

c=1

P
∑

p=1

wc←p
∑P
p=1 wc←p

ft→p (12)

where wc←p is a visibility weight of ray Lt→p to cell c. To

determine its value, we conduct a simple efficient visibility

test for each cell as

wc←p =







1 if p=argmin
p∗∈Ωc

γt→p∗

0 otherwise

where Ωc =
{

p
∣

∣ c = argmax
c∗

dc∗ · dt→p

}

(13)

Ωc is a set of all points whose ray intersects the cell c. The

formula implies that only the ray with shortest length within

the cell is considered visible. Finally, we map the location

t’s feature descriptor Z(t) to a score value range [0, 1] as

Sloc(t) = Φloc
(

Z(t)
)

(14)

where Φ(·) is a linear classifier with sigmoid activation.

3.3.2 Viewpoint Branch.

Next, we score a viewpoint pose T=(R, t) by aggregating

hyper-rays corresponding to the viewpoint. As hyper-rays

are not yet associated with geometry entities in 3D space,

we define an auxiliary mapping that “collapses” one of its

dimension to yield an optic-rays used for rendering as

aux : L6 → L
5, aux(L̂) =

{

L
∣

∣ o = ô, d = R3(q)
}

(15)

where aux(·) gives the auxiliary optic-ray of a hyper-ray

and R3(q) denotes the third column of R(q) as in Eq.(4).

We also denote the inverse of Eq.(15) as lifting the optic-ray

to a variety of hyper-ray as

lift : L5 → L
6, lift(L) =

{

L̂
∣

∣ aux(L̂) = Lt→p

}

(16)

The aux(·) and lift(·) build the geometric relationship be-

tween optic-rays and hyper-rays, where the auxiliary optic-

ray gives the direction of the optical axis of the hyper-ray’s

corresponding viewpoint. This choice guarantees the hyper-

ray gathers the “wanted” scene content (i.e. observable

from its corresponding viewpoint) from its auxiliary optic-

ray geometry. On the other hand, lifting an optic-ray can be

seen as implicitly assigning an extra dimension to represent

the roll-axis orientation of the optic rays. Since the lift(L)
corresponds to all viewpoints having L as their optical axis,

whose roll angles comes from the extra lifted dimension.

Spherical Voronoi pooling with hyper-rays. Consider the

set of hyper-rays associated with location t emanating to

every point cloud element p as

{

lift(Lt→p) ; p = 1 . . . P
}

(17)

where each optic-ray is lifted to a continuous variety of

hyper-rays corresponding to all possible viewpoints look-

ing at point p. Our goal is to evenly sample hyper-rays

from this continuous variety along each viewing orienta-

tion in SO(3). Since evenly sampling on a 3-sphere is

equivalent to evenly sampling rotations in SO(3) [17, 1],

we propose a spherical Voronoi pooling on the hyper-rays

analogous to the one on optic-rays in §3.3.1. This mecha-

nisms will enable us to deal with a continuous variety in-

stead a discrete set of rays. As shown in Fig.3(c), we first

create a Voronoi 3-sphere feature at location t using super-

Fibonacci spiral [1] which samples V3 evenly distributed
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points
{

qc | c = 1 . . . V3
}

on S
3 as the center of each

Voronoi cell. We define the feature of cell c as

Ẑc(t) =

P
∑

p=1

wc←p
∑P
p=1 wc←p

(

Fp
γ (γt→p)+Fp

q(q
c
t→p)

)

(18)

where qct→p is a hyper-ray direction that satisfies

qct→p = argmin
q∗

(

∠(q∗)
)

◦ qc

s.t. R3(q
∗ ◦ qc) = dt→p

(19)

where ◦ denotes the quaternion product and ∠(·) gives the

rotation degree of the quaternion. The formula implies q∗

to be the smallest quaternion rotation that aligns R3(qc)
to dt→p, which guarantees qct→p belongs to the variety in

Eq.(17). The q∗ can be found in a closed form as

q∗ =
[

q∗w, q
∗
x, q
∗
y , q
∗
z

]

=
[

cos
( |v|

2

)

, sin
( |v|

2

) v

|v|

]

where v =
R3(qc)× dt→p
∣

∣R3(qc)× dt→p

∣

∣

· cos−1
(

R3(qc) · dt→p

)

(20)

where × denotes the cross product. The point-to-cell visi-

bility wc←p in Eq.(18) is then estimated using Eq.(13) with

a modified Ω̂c as

Ω̂c =
{

p
∣

∣ c = argmax
c∗

R3(qc∗) · dt→p

}

(21)

View Cropping. With the Voronoi 3-sphere feature for lo-

cation t, we define a view cropping operation to extract

a feature descriptor for a given camera rotation R. The

view cropping on a Voronoi 3-sphere feature is an efficient

weighted averaging of cell features, written as

Ẑ(R, t) =

∑V3

c=1 wc(R)Ẑc(t)
∑V3

c=1 wc(R)
(22)

where wc(R)∈ [0, 1] is the weight of cell c. It is determined

by the difference between cell direction qc and query rota-

tion R in a Gaussian kernel manner on Euler angles as

wc(R) = exp(−uT diag(σ2
φ, σ

2
θ , σ

2
ψ)
−1 u)

where u =
[

∠(φ, φc),∠(θ, θc),∠(ψ, ψc)
]T

(23)

where (φ, θ, ψ) and (φc, θc, ψc) are yaw, pitch and roll an-

gles of R and R(qc), and u defines a vector angular dis-

tance between the query rotation and cell orientation. We

let the view cropping sigmas (σφ, σθ) linearly depend on

viewpoint camera horizontal/vertical FoVs (ηh, ηv) with a

hyper-parameter λ controlling the receptive field as

[σφ, σθ, σψ] = λ · [ηh, ηv, ηr] (24)

where ηr is a pre-defined virtual roll-axis FoV. This weight-

ing mechanism rates the visibility between the cells and the

viewpoint considering the actual camera FoVs, where the

cells-of-interest are assigned with high weight to contribute

more in the viewpoint feature. Next, we map the viewpoint

(R, t)’s feature descriptor Ẑ(R, t) to a score value range

[0, 1] using as a linear classifier

Sview(R, t) = Φ
(

Ẑ(R, t)
)

(25)

We finally rate a viewpoint based on a composition of loca-

tion and view score

Sfinal(R, t) = Sloc(t) · Sview(R, t) (26)

3.4. Implementation

Training. Our framework’s learnable parts are i) the Point-

Net used to learn an HRE for each point cloud element, ii)

a pair of linear classifiers for mapping location and view-

point features to a scalar score. We use binary cross entropy

(BCE) losses on in-sample (i.e positive) and out-of-sample

(i.e. negative) viewpoints from the training data. We first

consider the location loss

Lloc = −
∑

i log
(

Sloc(t
+
i )

)

−
∑

j log
(

1− Sloc(t
−

j )
)

(27)

where t+ denotes a location from the training viewpoints

and t− denotes a location randomly sampled within the

scene boundary. Similarly, we consider the viewpoint loss

Lview = −
∑

i log
(

Sview(R
+
i , t

+
i )

)

−
∑

j log
(

1− Sview(R
−

i , t
+
j )

)

(28)

where R+
i denotes the rotation of training viewpoint w.r.t.

location t+i , and R− is a randomly sampled rotation. Due

to our decoupled inference, we only sample negative view-

points with positive locations. This also leads to a faster

training since randomly sampled 6DoF viewpoints contain

a large number of uninformative poor samples.

Traversal. Our inference performs a traversal on the SE(3)
space to score every viewpoint. For efficiency, we per-

form hierarchical scheme which decouples the location and

orientation. We first grid sample 3D locations and esti-

mate their location scores. For those score above a thresh-

old, we estimate their Voronoi 3-sphere feature and crop

viewpoint features for uniformly sampled rotations from

super-fibonacci spiral [1]. Finally, we apply non-maximum-

suppression and threshold the viewpoint scores to extract lo-

cally optimal viewpoints. Our implementation has an infer-

ence speed at ∼8KHz for rendering a 2-sphere feature and

90Hz for rendering a 3-sphere feature on a GTX1080Ti with

a customized pytorch acceleration kernel. The remaining

computation (e.g. linear classifier, view cropping, NMS)

is negligible compare to the rendering. It takes ∼10 sec-

onds to sample a scene from ScanNet with a sampling grid
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Location (<0.5m) View (<0.5m & <30◦) View + GT Loc. (<0.5m & <30◦)

Method Prec. Recall AP Prec. Recall AP FID Prec. Recall AP FID

GT H.R.P. - - 27.15 - - 10.70 - - - 56.73 -

Adrian et al. [43] 48.87 68.10 53.87 3.81 22.79 3.36 230.88 14.44 62.43 15.24 199.49

+ fix gravity - - - 17.76 54.53 19.52 169.31 63.91 67.24 68.10 134.86

Kyle et al. [12] 64.54 73.62 71.89 19.24 46.33 20.93 187.63 64.62 65.28 62.60 158.52

+ fix gravity - - - 20.91 48.11 22.99 180.92 67.26 74.82 70.41 148.41

Ours 82.53 95.07 84.67 52.79 79.92 55.08 142.14 70.93 92.63 72.41 123.78

Table 1: Viewpoint selection accuracy on ScanNet. We respectively study the selection accuracy of the locations, view-

points and viewpoints under GT locations. The accuracy metrics were estimated with a tolerance threshold shown in the first

line. The precision, recall and FID are reported at a threshold of highest F1 score.

R
1 Length Enc. - ✓ - - ✓ ✓ - ✓

S
2 Direction Enc. - - ✓ - ✓ - ✓ ✓

S
3 Direction Enc. - - - ✓ - ✓ ✓ ✓

Loc. AP 50.16 76.93 79.26 50.30 80.88 79.79 64.06 82.53

View AP 3.65 15.22 7.95 29.58 15.78 53.96 45.44 52.79

Table 2: Ablation Study on ScanNet. We study the effect

of each ray encoding components in the HREs.

of 0.2m and 4096 orientations for every location above the

threshold of 0.8.

Detailed Configurations. For training, we use a batch size

of 4 and train for 100K steps using Adam optimizer. We

sample 4 inlier locations with 32 randomly sampled loca-

tions per batch for training location loss in Eq.(27), and 4

inlier viewpoints with each inlier viewpoint replaced with 8

randomly sampled rotation for training view loss in Eq.(28).

We augment the point cloud with random rotations. Train-

ing only takes 6 hours on a single GTX1080Ti. We attached

a table for hyper-parameter in appendix.

4. Experiments

4.1. ScanNet Dataset.

Setups. We use ScanNet[7] to test our method on indoor en-

vironments. ScanNet contains 1513 scans of 707 different

scenes reconstructed using RGB-D SLAM [8]. Viewpoints

are captured by humans guided by a software indicating im-

age featurefulness[7]. We sample locations within the scene

boundary into a 0.2 meter 3D grid and only filter those un-

der a small threshold (0.01) to retain as many samples as

possible for evaluation. For selected locations, we sample

4096 evenly distributed rotations using [1].

Baselines. We implement the viewpoint metrics used in

[12] and [43], which statistically model the semantic la-

bels and depth distribution of rendered images from Scan-

Net. We also include a random baseline (GT H.R.P.) as a

reference for environment scale, where we randomly select

viewpoints with average GT height, roll and pitch of each

scene. We detail their implementations in the appendix.

Quantitative Study. In Table.1, we evaluate location and
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Figure 4: Analysis over hyper-parameters. The error bar

indicates the first and third quartile AP on ScanNet scenes.

viewpoint selection precision per each scan separately and

report mean precision, recall, AP and FID [19]. Preci-

sion denotes the percentage of selected viewpoints local-

ized within a distance threshold from any GT viewpoint.

Conversely, recall denotes the percentage of GT viewpoint

being retrieved by any selected viewpoints. The FID score

[19] indicates the appearance similarity and distribution be-

tween the rendered image (from mesh) of GT and selected

viewpoints. For baseline methods, to compensate their ori-

entation agnostic modeling, we align the roll-axis to the

gravity direction and denote as “+fix gravity”. The preci-

sion, recall and FID are all reported at a global threshold

across scenes that gives the highest F1 score. Our method

shows large advantage for all metrics, especially for the

most challenging SE(3) (i.e. 6DoF) viewpoint selection.

Qualitative Study. Fig.5 compares viewpoint selection re-

sults to baselines. Our method captures more fine-grained

location distribution as depicted in the heatmap. Histogram

plots shows our selection captures realistic viewpoint orien-

tations, whereas baseline methods all exhibit large drift in

height, pitch and roll. More results in appendix.

Ablation Study. Table.2 shows the ablation study over the

viewing-ray encoding components. We disable an encod-

ing component by setting its HRE degree to zero, yielding
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Figure 5: Results on ScanNet. The visualized heat-maps are 3D heat-volumes clipped to the height of maximal accumulated

score. The right plots are histograms comparing the camera pose distribution of selected viewpoints v.s. GT viewpoints in

the scene of first row.
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Figure 6: Results with semantically divergent training splits. The left shows inferred location score with models trained

using all/bed/toilet splits respectively. The right shows selected viewpoints, rendered with RGB and GT semantic labels.

a constant feature field. Missing either length and direction

encoding for optic-rays slightly drops the location AP, while

missing both them corrupts performance. By disabling

the S
3 direction encoding, we degenerate the hyper-rays to

optic-rays, which gives significantly lower viewpoint AP

(15.78% vs 52.79%), while location AP was not affected.

Fig.4 shows a performance study over hyper-parameters.

Our method is robust to the choice of harmonics degrees

and Voronoi sphere resolution. View cropping visibility λ

needs to be chosen carefully, since too large values will ho-

mogenize features of different viewpoints while too small

values have too narrow receptive field.

Learning the explicit semantic purpose. While the orig-

inal capture patterns from the ScanNet dataset explore the

entire scene for reconstruction, we further test our model’s

ability to capture more explicit semantic purpose underlying

viewpoint patterns. We create semantic splits of the Scan-

Net dataset by only keeping the captures observing a man-

ually selected object class (e.g. bed). In this case, we attach

GT semantic labels to the point cloud as inputs, where its

performance gain is studied in the appendix.

We show qualitative results in Fig.6, where we test on two

semantic object classes (i.e. bed and toilet). The left figure

compares the location score (visualized as a heatmap) of

our model trained on all data, on the “bed” split and “toilet”

split, respectively. Our method correctly assigns high score

to the locations that are reasonable to observe the objects

of selected class. The figures on the right are randomly se-

lected viewpoints of both models trained on semantic splits.

The resulting images correctly contain the object of interest.

The result shows the effectiveness of our data-driven view-

point learning at capturing the observer semantic purposes.

5. Conclusions, Limitations and Prospects

In this work, we propose a fundamental set of tools for

viewpoint learning, which includes a powerful viewpoint

geometric abstraction, an encoding scheme that extends ex-

isting point cloud networks into viewpoint learning net-
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works, and an efficient decoupled SE(3) traversal scheme

enabling high-density viewpoint analysis. As a result, our

method can efficiently capture viewpoint patterns of appro-

priate semantic purposes, realistic camera poses and sensi-

ble geometric context for novel environments. This paves

the way for cross-modal integration with language mod-

els such as CLIP to learn a semantically meaningful met-

ric space, which further enables exciting future research di-

rections include cross-modal learning of text-and-view (i.e.

find/describe views with texts), and diverse applications

spanning from robotics (e.g. text-based robot navigation)

to AR/VR (e.g. behavior recognition from camera move-

ments). Per limitations, our method models the geometric

properties of viewpoint preferences, not focusing on aes-

thetic appearance properties, which may require the use of

a high-fidelity mesh processing front-end and can be con-

sidered as future work.
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