ActorsNeRF: Animatable Few-shot Human Rendering with Generalizable NeRFs

Jiteng Mu1, Shen Sang2, Nuno Vasconcelos1, Xiaolong Wang1
1UC San Diego, 2ByteDance

Category-level Prior
Few-shot Generalization to Novel Actors with Novel Poses

Figure 1: Animatable NeRF from a few images. We present ActorsNeRF, a category-level human actor NeRF model that generalizes to unseen actors in a few-shot setting. With only a few images, e.g., 30 frames, sampled from a monocular video, ActorsNeRF synthesizes high-quality novel views of novel actors in the AIST++ dataset with unseen poses (shown on the right).

Abstract

While NeRF-based human representations have shown impressive novel view synthesis results, most methods still rely on a large number of images / views for training. In this work, we propose a novel animatable NeRF called ActorsNeRF. It is first pre-trained on diverse human subjects, and then adapted with few-shot monocular video frames for a new actor with unseen poses. Building on previous generalizable NeRFs with parameter sharing using a ConvNet encoder, ActorsNeRF further adopts two human priors to capture the large human appearance, shape, and pose variations. Specifically, in the encoded feature space, we will first align different human subjects in a category-level canonical space, and then align the same human from different frames in an instance-level canonical space for rendering. We quantitatively and qualitatively demonstrate that ActorsNeRF significantly outperforms the existing state-of-the-art on few-shot generalization to new people and poses on multiple datasets. Project page: https://jitengmu.github.io/ActorsNeRF/.

1. Introduction

Recent advances in Neural Radiance Fields (NeRF) \cite{mildenhall2020nerf} have enabled significant progress in free-viewpoint rendering of humans performing complex movements. The possibility of achieving photo-realistic rendering is of major interest for various real-world applications in AR or VR. However, to achieve high-quality rendering, existing approaches \cite{park2019deformable, chen2021mvsnerf, jin2021neus, jiang2020dnerf, mildenhall2020nerf} require a combination of synchronized multi-view videos and an instance-level NeRF network, trained on a specific human video sequence. While results are encouraging, the multi-view requirement is a significant challenge to applications involving videos in the wild. Recently, progress has been made to eliminate this constraint, by enabling human rendering from a monocular video \cite{shi2019pifu, huang2021pifuhd}. However, these approaches still require a large number of frames, which covers a person densely from all viewpoints.

In this work, we consider the more practical setting and ask the question: Can an animatable human model be learned from just a few images? We hypothesize that this is possible by introducing a class-level encoder, trained over multiple people, as shown in Figure 1. This hypothesis has been demonstrated by recent works on generalizable NeRFs \cite{park2021ocnerf, al2021nerf}, where an encoder network is trained across multiple scenes or objects within the same category to construct NeRF. By parameter sharing through the encoder, the prior learned across different scenes can be re-used to perform synthesis even with a few views. However, most approaches can only model static scenes. We investigate how generalizable NeRF can be extended to the learning of a
good prior for the much more complex setting of videos of humans performing activities involving many degrees of freedom, large motions, and complex texture patterns.

For this, we introduce ActorsNeRF, a category-level human actor NeRF model that is transferable, to unseen humans in novel action poses, in a few-shot setup. This setup requires the animation of a previously unseen human actor into unseen views and poses, from a few frames of monocular video. Such generalization requires more than simple parameter sharing via an encoder network, and can benefit from the incorporation of explicit human priors. Our insight is that, while human actions and appearances are complex, all humans can be coarsely aligned in a category-level canonical space using a parametric model such as SMPL [24]. Fine-grained alignment can then benefit from an instance-level canonical space derived from both this prior and the few-shot data available for the target actor.

To implement this insight, we endow ActorsNeRF with a 2-level canonical space. Given a body pose and a rendering viewpoint, a sampled point in 3D space is first transformed into a canonical (T-pose) space by linear blend skinning (LBS) [24], where the skinning weights are generated by a skinning weight network that is shared across various subjects. Since LBS only models a coarse shape (similar to an SMPL mesh), we refer to this T-pose space as the category-level canonical space. Direct rendering from the latter fails to capture the shape and texture details that distinguish different people. To overcome this limitation, points in the category-level canonical space are further mapped into an instance-level canonical space by a deformation network. A rendering network finally maps the combination of pixel-aligned encoder features and points into corresponding colors and densities.

ActorsNeRF is designed such that the combination of feature encoder and skinning weight network forms a category-level shape and appearance prior, and the deformation network learns the mapping to the instance-level canonical space. To adapt to a novel human actor at test time, only the deformation network (instance-level) and rendering network are fine-tuned with the few-shot monocular images. The image encoder and skinning weight network are frozen.

We quantitatively and qualitatively demonstrate that ActorsNeRF outperforms the existing approaches by a large margin on various few-shot settings for both ZJU-MoCap Dataset [33] and AIST++ Dataset [21]. To the best of our knowledge, we are the first to explore few-shot generalization from few-shot monocular videos in the context of NeRF-based human representations.

2. Related Work

Dynamic NeRF. While NeRF [27] was originally proposed for modeling static scenes, recent efforts have successfully extended it to dynamic scenes [49, 22, 9, 30, 31] and deformable objects [46, 34, 17, 36, 51, 5, 8, 12]. One strategy to model dynamic objects and scenes is to align observations from various time steps in a canonical space, decoupling 4D as 3D and time reduces the complexity. For example, Pumarola et al. [34] propose a warping field to map sampled points to template space and then directly render from the canonical space. Our work shares the principle of aligning different observations for efficient modeling. Going beyond an instance canonical space, ActorsNeRF also incorporates the category-level human prior in the modeling of unseen actors with few images.

NeRF-based Human Rendering. Human-specific rendering is a longstanding challenge [16, 26, 52, 4, 7, 39, 11, 25, 1, 38] due to the large modeling space of shape, pose, and appearance. Recently, NeRF-based human representations have shown promise for high-quality view synthesis [33, 32, 50, 29, 19, 23, 42, 48, 55, 15, 10, 20, 45, 40, 41]. For example, Peng et al. [33] propose to attach a set of latent codes to SMPL [24] and render novel views of a performer from sparse multi-view videos. To better animate the human actor, subsequent works [23, 32] introduce a canonical space to align different body poses. These methods require multi-view videos, which limits their application. To address this challenge, Peng et al. [48] further decompose shape and pose into skeletal motion and non-rigid shape deformation, and synthesize photorealistic details from just a monocular video. Jiang et al. [15] jointly learns a human NeRF and a scene NeRF from a monocular video. However, these methods are limited to instance-level and do not generalize to novel human actors. To achieve better generalization, category-level NeRFs [19, 55, 10] are introduced but these models require multi-view images for both training and inference. Different from all previous approaches, ActorsNeRF learns a category-level generalizable NeRF that allows for novel pose animation on unseen humans, only requiring few-shot images from a monocular video during inference.

Few-shot NeRF. NeRF generally suffers from sub-optimal solutions when trained from a few views. To address this problem, various regularizations [14, 37, 6, 28, 3] have been proposed for the few-shot setting. For example, Jain et al. [14] leveraged the pre-trained CLIP [35] model and enforced semantic consistency in the feature space. Other works proposed to avoid the degenerate solutions by introducing a stronger geometry prior, using either supervised [37, 6] or unsupervised [28, 3] depth information. Instead of designing priors, a data-driven way to achieve few-shot transfer, is to train generalizable NeRFs on a large-scale dataset [44, 2, 53, 43]. Specifically, an encoder is trained to learn the data prior, and the model will be adapted on an unseen example by fine-tuning. We see ActorsNeRF as an integration of the data-driven approach with large-scale data and the regularization manner using
Figure 2: Overview of ActorsNeRF. First, K images are passed through an encoder to extract feature tensors U^k. Given a target pixel location along with a view direction v^t, a point x^t_o is sampled along the ray. The point is then mapped to the category-level canonical space x^t_c through a backward warping. Then, x^t_c is transformed to K other observation spaces through corresponding forward warpings and projected to images to query corresponding local features (pixel-aligned features U^k_p and SMPL local features U^k_s). Next, a deformation network takes both x^t_c and its pixel-aligned features to produce a location x^t_i in the instance-level canonical space. x^t_i along with its pixel-aligned features are then mapped to color and density for volume rendering.

human-specific priors.

3. Method

We introduce ActorsNeRF, a category-level generalizable NeRF model capable of synthesizing unseen humans with novel body poses in a few-shot setup. In order to achieve generalization across different individuals, a category-level NeRF model is first trained on a diverse set of subjects. During the inference phase, we fine-tune the pre-trained category-level NeRF model using only a few images of the target actor, enabling the model to adapt to the specific characteristics of the actor.

Mathematically, the goal is to, given the small set of M frames $I = \{I^m\}$ capturing a human actor with random poses, learn the parameters θ of a network Q that maps a sampled 3D point $x \in \mathbb{R}^3$ into a color vector $c = (r, g, b)$ and a density σ, for any randomly sampled rendering viewpoint $v \in \mathbb{R}^3$ and target pose $S \in \mathbb{R}^{24 \times 3}$ (specified by 24 joints in this paper),

$$(\sigma, c) = Q(x, v, S; I; \theta).$$

Prior works [48, 15] learns the model by overfitting to the observations. Though it works well when M is sufficiently large to densely cover a person from various viewpoints, in real world, there are many cases where only a few images are provided, e.g., $M = 5$. To address this problem, instead of relying on overfitting to the observed frames, we argue that a generalizable NeRF model that can quickly adapt with a few-shot setup is required. To implement the insight, we propose two key ideas: 1) leveraging a large-scale dataset of monocular videos to learn a category-level prior for the mapping such that the model can quickly adapt to the new person in a few-shot setting, while 2) incorporating human-specific knowledge to align people of diverse shapes and body poses, using a two-level canonical space.

3.1. ActorsNeRF

To learn the mapping of Eq.(1), at a high-level, we assume having access to a training set of multiple monocular videos capturing different people to learn a category-level prior. Then the model is finetuned on M frames to adapt to the new person.

For both category-level pre-training and finetuning, our idea is to first map a sampled point to a category-level
canonical space and then an instance-level canonical space sequentially, where the human body is represented in the canonical pose of Figure 2, and then rendered to color and density conditioned on the encoder features. Mathematically, we define the 3D space associated with a frame of the actor as observation space \(\mathcal{O} \subset \mathbb{R}^3 \), the corresponding category-level canonical space \(\mathcal{C} \subset \mathbb{R}^3 \), the corresponding instance-level canonical space \(\mathcal{I} \subset \mathbb{R}^3 \). We then define, a forward warping \(\mathcal{T} : \mathcal{C} \rightarrow \mathcal{O} \) and a backward warping \(\mathcal{T}^{-1} : \mathcal{O} \rightarrow \mathcal{C} \). In addition, \(K \) out of \(M \) images are randomly sampled, and an encoder \(\mathcal{E} \) is used to obtain the corresponding feature tensor \(\mathbf{U}^k \) (for extracting local features).

As shown in Figure 2, to render a target image, a pixel and target rendering viewpoint \(\mathbf{v}^t \) define a ray of points \(\mathbf{x}_o^t \in \mathcal{O}^t \). Each point is first mapped to a point \(\mathbf{x}_k \) in the instance-level canonical space. The transformation is through a backward warping \(\mathcal{T}^{-1} \), guided by skinning weight network \(\mathcal{W} \).

To adapt the canonical, category-level, shape to the shape details of different human actors, a deformation network \(\mathcal{D} \) is implemented to transform \(\mathbf{x}_k \) to a location \(\mathbf{x}_k \) in the instance-level canonical space \(\mathcal{I} \), where the warping is guided by image local features extracted from a set of feature tensors \(\mathbf{U}_k \). To extract the pixel-aligned features, the category-level canonical space point \(\mathbf{x}_k \) is first mapped by corresponding forward warpings \(\mathcal{T} \), into observation spaces \(\mathcal{O}^k \) \((k \neq t) \) corresponding to image \(I^k \), and then projected to corresponding feature maps.

Finally, using \(\mathbf{x}_k \) and the image local features, a NeRF-based rendering network \(\mathcal{R} \) outputs its color and density. We next detail each component of ActorsNeRF, consisting of image encoder \(\mathcal{E} \), skinning weight network \(\mathcal{W} \), deformation network \(\mathcal{D} \), and rendering network \(\mathcal{R} \).

Feature Encoder \(\mathcal{E} \). Prior works [53, 2, 19, 55] have shown that encoder features learned at a category-level greatly improve NeRF generalization. Inspired by the observation, we use an encoder \(\mathcal{E} \), e.g., ResNet-18 [13], to extract a feature tensor \(\mathbf{U}^k = \mathcal{E}(I^k) \) per image \(I^k \). Let \(\Pi^k \) be the camera mapping associated with \(I^k \) and \(\mathbf{U}^k(\cdot) \) denote a value query operation from feature tensor \(\mathbf{U}^k \) via interpolation. Given \(\mathbf{U}_k \), pixel-aligned local features \(\mathbf{U}_p^k \) and SMPL local features \(\mathbf{U}_s^k \) are produced as follows.

Pixel-aligned local features \(\mathbf{U}_p^k \) are obtained by extracting local features from \(\mathbf{U}_k \) aligned with each pixel. A 3D point \(\mathbf{x} \in \mathcal{O}^k \) has pixel-aligned local features \(\mathbf{U}_p^k(\mathbf{x}) = \mathbf{U}^k(\Pi^k(\mathbf{x})) \).

SMPL local features \(\mathbf{U}_s^k \) are pixel-aligned local features localized by the SMPL model, a parametric mesh model with 6890 vertices. Let \(\mathbf{s}_j^k \in \mathbb{R}^3, j = \{1, \cdots, 6890\} \), be the vertices of SMPL fitted to \(I^k \). Each vertex is assigned a local feature \(\mathbf{U}_s^k(\mathbf{s}_j^k) = \mathbf{U}^k(\Pi^k(\mathbf{s}_j^k)) \).

Skinning Weight Network \(\mathcal{W} \). The skinning weight network generates the linear blend skinning weights for different individuals in the category-level canonical space, which enables the transformations between the category-level canonical space and observation spaces. The design of the network follows [48], given \(B \) \((B = 24 \text{ in this paper}) \) joints defined on the human body, the linear blend skinning weights defined in the category-level canonical space \(\mathcal{C} \) are represented by a 3D volume \(\mathbf{W} \). The difference is that, in ActorsNeRF, network parameters are shared across all actors in the training set to capture the category-level shape prior. An operator \(\mathbf{W}(\cdot) \) is defined for a value query operation of the feature volume \(\mathbf{W} \) via tri-linear interpolation.

Forward and Backward Transformation. Aggregating image features from the same actor under various body poses requires identifying correspondences between the matching body points \(\mathbf{x}_o^k \) of different observation spaces \(\mathcal{O}^k \). The alignment through the point in category-level canonical space \(\mathcal{C} \) enables this, by introduction of forward \(\mathcal{T} : \mathcal{C} \rightarrow \mathcal{O} \) and backward \(\mathcal{T}^{-1} : \mathcal{O} \rightarrow \mathcal{C} \) warpings.

Given body pose \(\mathbf{S} \), a transformation set \(\mathbf{T}(\mathbf{S}) = \{\mathbf{T}_1, \cdots, \mathbf{T}_B\} \) is computed for each of the \(B \) joints, where each transformation matrix \(\mathbf{T}_b \in \mathbb{SE}(3) \) is defined with respect to the root joint. Location \(\mathbf{x}_c \in \mathcal{C} \) is then mapped into point \(\mathbf{x}_o \in \mathcal{O} \) by linear blend skinning (LBS) [24],

\[
\mathbf{x}_o = \mathcal{T}(\mathbf{x}_c) = \left(\sum_{b=1}^{B} \mathbf{W}_b(\mathbf{x}_c) \mathbf{T}_b \right) \mathbf{x}_c
\]

(2)

where \(\mathbf{W}_b(\mathbf{x}_c) \) denotes the \(b \)th channel of the sampled blending weights at location \(\mathbf{x}_c \).

Similarly, the backward mapping \(\mathcal{T}^{-1} \) is defined as,

\[
\mathbf{x}_c = \mathcal{T}^{-1}(\mathbf{x}_o) = \left(\sum_{b=1}^{B} \mathbf{W}_b(\mathbf{x}_o) \mathbf{T}_b^{-1} \right) \mathbf{x}_o
\]

(3)

where \(\mathbf{W}_b(\mathbf{x}_o) \) denotes the \(b \)th channel of the sampled observation-space blending weights for point \(\mathbf{x}_o \), given by \([48, 47]\]

\[
\mathbf{W}_b(\mathbf{x}_o) = \frac{\mathbf{W}_b(\mathbf{T}_b^{-1} \mathbf{x}_o)}{\sum_{b=1}^{B} \mathbf{W}_b(\mathbf{T}_b^{-1} \mathbf{x}_o)}
\]

(4)

As shown in Figure 2, given a point \(\mathbf{x}_d^t \) in observation space \(\mathcal{O}^t \), corresponding points \(\mathbf{x}_o^k \) in support set observation spaces \(\mathcal{O}^k \) can be established by first backward mapping \(\mathbf{x}_o^k \) to the category-level canonical space point \(\mathbf{x}_d^t \) and then forward mapping this point to the points \(\mathbf{x}_o^k \) using corresponding body poses. These mappings are key to allow the query of pixel-aligned features from the sampled \(K \) images capturing different body poses, without requiring a multi-view imaging setup.

Deformation Network \(\mathcal{D} \). To compensate for the missing details in the category-level canonical space, a deformation network \(\mathcal{D} \), parameterized by \(\theta_D \), is implemented to
transform a point x_i to a point x_i' in a fine-grained instance-level canonical space $\mathcal{I} \subset \mathbb{R}^3$. This deformation is conditioned on the target body pose S and K pixel-aligned local features U^k_p,

$$x_i = D(x_i; \{U^k_k\}_{k=1}^{K}, S; \theta_D).$$

Equation (5)

Rendering Network \mathcal{R}. A rendering network parameterized by θ_R then predicts the color and density for an instance-level 3D location x_i,

$$(\sigma, c) = \mathcal{R}(x_i; \{U^k_k\}_{k=1}^{K}; \{U^k_s\}_{k=1}^{K}; \theta_R),$$

conditioned on the sets of pixel-aligned local features $\{U^k_p\}_{k=1}^{K}$ and SMPL local features $\{U^k_s\}_{k=1}^{K}$. Note that, since features U^k_s are only defined on SMPL vertices, features can not be directly queried for sampled points in a continuous space. Therefore, we expand SMPL features to continuous space as follows: K SMPL local features U^k_s are first concatenated and then passed through a sparse 3D convolution network to generate a 3D volume, such that features at any sampled location (e.g., x_i) can be obtained through tri-linear interpolation. Similar ideas were used by [33, 19]. Different from the prior works where the spare convolution is implemented in the observation space, the SMPL feature diffusion process is implemented in the canonical space and serves as a category-level prior.

Volume Rendering. As in NeRF [27], the expected rendering color $C(r)$ along camera ray r is obtained by aggregating the predicted color c and density σ generated by (1) using standard volume rendering.

3.2. Category-level Training

During training, given N monocular videos sequences, in each iteration, ActorsNeRF randomly samples K frames from a monocular video and renders another sampled target image I^t in the same video sequence. In practice, we use $K = 3$ to achieve a good balance between computation complexity and feature quality. The image encoder E is used to extract corresponding features $U = \{U^1, U^2, \cdots, U^K\}$ for the K images. With these extracted image features, shown in Figure 2, a ray of sampled points for a target rendering viewpoint v^t is aggregated to producing the corresponding color $C(r)$. To ensure high-quality rendering, both the mean square error L_{mse} and the perceptual loss [54] L_{LPIPS} are used as objective functions. Additionally, another skinning weight regularizer L_w, which is an L_1 loss, is employed to encourage the output skinning weights from the skinning network to be close to the prior obtained from the skeleton. All three objective functions are jointly optimized to update all network parameters,

$$L = \lambda_{mse}L_{mse} + \lambda_{LPIPS}L_{LPIPS} + \lambda_wL_w$$

where λ_{mse}, λ_{LPIPS}, and λ_w are corresponding coefficients to balance different loss functions.

3.3. Few-shot Optimization

To transfer the knowledge for ActorsNeRF learned at a category level to a novel human actor with M frames provided, we propose to fine-tune the model to match the observations. During fine-tuning, we select K out of M frames for the encoder to extract features, such that all M images are synthesized with these K image features. Note that M here can be much smaller compared to the category-level pretraining stage. In addition, different from the pretraining stage, where different K frames are used for each iteration, the K frames are fixed in the few-shot optimization stage for a stable performance in the few-shot setting. As the combination of the feature encoder and skinning weight network forms a category-level shape and appearance prior, only the deformation network and rendering network are fine-tuned, and the encoder and skinning weight network are frozen. Additionally, only the mean square error and perceptual loss are used in the few-shot optimization stage. After fine-tuning, ActorsNeRF is capable of rendering the novel actor with novel viewpoints and poses using the K frames.

4. Experiments

We test ActorsNeRF on multiple benchmark datasets, e.g., ZJU-MoCap dataset [33] and AIST++ dataset [21], and ActorsNeRF significantly outperforms multiple representative state-of-the-art baselines.

4.1. Datasets and Baselines

Dataset. We test ActorsNeRF on two datasets: ZJU-MoCap [33] dataset and AIST++ dataset [21]. The ZJU-MoCap dataset dataset contains 10 human subjects recorded from 21 / 23 multi-view cameras. We use the camera projections, body poses, and segmentations provided by the dataset. Follow [19], We leave 3 (387, 393, 394) subjects as held-out data and use the remaining 7 for training. The AIST++ dataset is a dancing motion dataset capturing 30 human subjects performing various dances from 9 multi-view cameras. We randomly select one action sequence for each subject and then split the dataset with 25 actors for training and the other 5 actors (16-20) for testing. For both datasets, ‘camera1’ is used for training and other views are only used for evaluation. More details are discussed in the supplementary materials.

Baseline and Metric. We compare our method with the most representative state-of-the-art view synthesis methods. HumanNeRF [48] (HN) aligns various poses in a canonical space and achieves state-of-the-art rendering performance from a monocular video. NeuralBody [33] is a representative method for rendering from observation space. Neural Human Performer [19] and MPS-NeRF [10] require multi-view images for both training and inference so they are
Figure 3: Qualitative comparison for few-shot novel view synthesis of novel actors with unseen poses on the ZJU-MoCap dataset. Ground-truth (GT), HumanNeRF, and our results are shown from left to right. Top and bottom rows are rendered from different viewpoints. Our method renders high-quality images with sharp boundaries and details.

Table 1: Few-shot generalization comparison for novel view synthesis of novel actors with unseen poses on the ZJU-MoCap dataset.

<table>
<thead>
<tr>
<th></th>
<th>Person 387</th>
<th></th>
<th>Person 393</th>
<th></th>
<th>Person 394</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PSNR ↑</td>
<td>SSIM ↑</td>
<td>LPIPS ↓</td>
<td>PSNR ↑</td>
<td>SSIM ↑</td>
<td>LPIPS ↓</td>
</tr>
<tr>
<td>NeuralBody</td>
<td>26.19</td>
<td>0.9404</td>
<td>85.91</td>
<td>27.54</td>
<td>0.9476</td>
<td>84.15</td>
</tr>
<tr>
<td>HumanNeRF</td>
<td>26.28</td>
<td>0.9465</td>
<td>65.64</td>
<td>26.84</td>
<td>0.9466</td>
<td>63.53</td>
</tr>
<tr>
<td>Ours</td>
<td>27.26</td>
<td>0.9568</td>
<td>46.06</td>
<td>27.20</td>
<td>0.9553</td>
<td>46.29</td>
</tr>
<tr>
<td>10-shot NeuralBody</td>
<td>27.18</td>
<td>0.9494</td>
<td>76.32</td>
<td>27.17</td>
<td>0.9469</td>
<td>78.73</td>
</tr>
<tr>
<td>HumanNeRF</td>
<td>26.66</td>
<td>0.9501</td>
<td>59.38</td>
<td>26.96</td>
<td>0.9516</td>
<td>56.29</td>
</tr>
<tr>
<td>Ours</td>
<td>27.15</td>
<td>0.9592</td>
<td>40.89</td>
<td>27.26</td>
<td>0.9565</td>
<td>42.56</td>
</tr>
<tr>
<td>30-shot NeuralBody</td>
<td>26.32</td>
<td>0.9457</td>
<td>65.43</td>
<td>27.08</td>
<td>0.9482</td>
<td>72.85</td>
</tr>
<tr>
<td>HumanNeRF</td>
<td>27.25</td>
<td>0.9555</td>
<td>47.59</td>
<td>27.37</td>
<td>0.9558</td>
<td>46.04</td>
</tr>
<tr>
<td>Ours</td>
<td>27.67</td>
<td>0.9610</td>
<td>36.76</td>
<td>27.59</td>
<td>0.9577</td>
<td>39.51</td>
</tr>
<tr>
<td>100-shot NeuralBody</td>
<td>26.91</td>
<td>0.9513</td>
<td>60.60</td>
<td>27.13</td>
<td>0.9515</td>
<td>67.11</td>
</tr>
<tr>
<td>HumanNeRF</td>
<td>27.13</td>
<td>0.9589</td>
<td>40.00</td>
<td>27.20</td>
<td>0.9550</td>
<td>42.91</td>
</tr>
<tr>
<td>Ours</td>
<td>27.66</td>
<td>0.9614</td>
<td>36.39</td>
<td>27.57</td>
<td>0.9580</td>
<td>39.33</td>
</tr>
<tr>
<td>300-shot NeuralBody</td>
<td>26.95</td>
<td>0.9518</td>
<td>59.89</td>
<td>27.22</td>
<td>0.9535</td>
<td>64.60</td>
</tr>
<tr>
<td>HumanNeRF</td>
<td>27.30</td>
<td>0.9584</td>
<td>40.72</td>
<td>27.24</td>
<td>0.9557</td>
<td>43.59</td>
</tr>
<tr>
<td>Ours</td>
<td>27.61</td>
<td>0.9612</td>
<td>36.18</td>
<td>27.59</td>
<td>0.9574</td>
<td>39.36</td>
</tr>
</tbody>
</table>

Table 1: Few-shot generalization comparison for novel view synthesis of novel actors with unseen poses on the ZJU-MoCap dataset.

not directly comparable to our monocular setting. Following [48], we use three metrics for quantitative evaluation: peak signal-to-noise ratio (PSNR), structural similarity index (SSIM), and perceptual quality (LPIPS) [54] (reported by $\times 10^3$). More comparisons and details are included in the supplementary materials.

Training Details. We implement patch-based rendering with 128 samples per ray. The category-level model is trained with 200K iterations and the fine-tuning takes 50k iterations. During category-level training, $\lambda_{mse} = 0.2$, $\lambda_{LPIPS} = 1$, $\lambda_{W} = 0.01$. The deformation network is not optimized until 10000 iterations. The Adam optimizer is implemented with $\beta_1 = 0.9$ and $\beta_2 = 0.99$. The initial learning rate is set to 5×10^{-5} for the skinning weight network and the deformation network, and 5×10^{-4} for other modules. Positional embedding is applied to sampled points before input to each module.

4.2. Generalization

In this section, we analyze how ActorsNeRF generalizes in a few-shot setup. We demonstrate the generalization of the learned category-level prior in two settings: few-shot generalization in Section 4.2.1 and short-video generalization in Section 4.2.2. The few-shot generalization setting samples images where the human actor is mostly observed (e.g., both front and back). In contrast, in the short-video
Figure 4: Qualitative comparison for few-shot novel view synthesis of novel actors with unseen poses on the AIST++ dataset. Our method achieves high-quality animation with sharp boundary and details. In contrast, HumanNeRF outputs blurry images with broken body parts.

![Comparison of novel view synthesis for few-shot training](image)

Table 2: Few-shot generalization comparison for novel view synthesis of novel actors with unseen poses on the AIST++ dataset.

<table>
<thead>
<tr>
<th></th>
<th>Person 16</th>
<th>Person 17</th>
<th>Person 18</th>
<th>Person 19</th>
<th>Person 20</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-shot</td>
<td>HN</td>
<td>24.37</td>
<td>0.9752</td>
<td>29.59</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ours</td>
<td>25.22</td>
<td>0.9796</td>
<td>22.03</td>
<td>24.55</td>
</tr>
<tr>
<td>10-shot</td>
<td>HN</td>
<td>24.22</td>
<td>0.9737</td>
<td>31.20</td>
<td>24.94</td>
</tr>
<tr>
<td></td>
<td>ours</td>
<td>25.25</td>
<td>0.9794</td>
<td>22.22</td>
<td>25.53</td>
</tr>
<tr>
<td>30-shot</td>
<td>HN</td>
<td>25.08</td>
<td>0.9773</td>
<td>25.46</td>
<td>25.41</td>
</tr>
<tr>
<td></td>
<td>ours</td>
<td>25.67</td>
<td>0.9806</td>
<td>20.18</td>
<td>25.58</td>
</tr>
<tr>
<td>100-shot</td>
<td>HN</td>
<td>25.31</td>
<td>0.9783</td>
<td>21.87</td>
<td>25.58</td>
</tr>
<tr>
<td></td>
<td>ours</td>
<td>25.78</td>
<td>0.9812</td>
<td>19.05</td>
<td>25.86</td>
</tr>
<tr>
<td>300-shot</td>
<td>HN</td>
<td>25.65</td>
<td>0.9795</td>
<td>21.54</td>
<td>26.00</td>
</tr>
<tr>
<td></td>
<td>ours</td>
<td>25.73</td>
<td>0.9812</td>
<td>18.93</td>
<td>25.78</td>
</tr>
</tbody>
</table>

Figure 5: Comparison for few-shot novel view synthesis of novel actors with unseen poses on ZJU-MoCap dataset (right) and AIST++ dataset (left). LPIPS scores are obtained by averaging across all test subjects in a dataset.

4.2.1 Few-shot Generalization

In this section, we vary the number of input images to test the novel view synthesis of novel actors with unseen poses. The support set consists of m frames, where $m = \{5, 10, 30, 100, 300\}$, sampled uniformly from 300 consecutive frames of a monocular video of an unseen subject. The objective is to synthesize the actor from novel viewpoints with novel poses.
As shown in Table 1, on the ZJU-MoCap dataset, ActorsNeRF outperforms all baseline methods by a large margin across all shots, especially on the LPIPS metric. Figure 3 presents the 30-shot rendering with unseen poses of test actors in the ZJU-MoCap dataset from 2 different viewpoints. The rendering produced by ActorsNeRF is smoother and preserves high-quality details, while maintaining a valid shape with less body distortion. In comparison, HumanNeRF produces unsmooth, blurry textures with distorted boundaries in the rendered images.

To further demonstrate the effectiveness of the proposed method, we test our algorithm on the more challenging AIST++ dataset [21], which contains diverse subjects with complex dancing poses and loose clothes. We employ PointRend [18] to obtain foreground masks automatically. This introduces additional challenges as the mask boundaries tend to be noisy. The quantitative results are shown in Table 2, where our method achieves a much better performance. Figure 4 visualizes how, on this dataset, HumanNeRF frequently fails to produce a valid shape (distorted bodies and broken body parts), whereas ActorsNeRF achieves a much better synthesis of the overall shapes and textures. This again demonstrates the effectiveness of the learned category-level prior.

We additionally plot the LPIPS metric, averaged on all test subjects, for different shots in Figure 5. Our insight is that ActorsNeRF gains more from the learned category-level prior when inputting fewer images. However, noting that even when 300 frames are provided, ActorsNeRF still yields significant margin over the baseline. The results suggest that the category-level prior of ActorsNeRF improves the rendering quality over a large few-shot spectrum. More results and visualizations for all different shots are shown in the supplementary materials.

4.2.2 Short-video Generalization

In this section, we study whether our algorithm is capable of imagining missing portions of the body given only a handful of images of a new person, with the goal of rendering novel poses and viewpoints. Specifically, we consider a scenario where only a portion of the person is observed in all frames, which is a natural task for humans who can imagine the missing parts of the body. We examine whether our algorithm can perform similarly under these conditions, by sampling $m = 10$ frames from 100 consecutive frames.

Table 3 shows that, on the ZJU-MoCap dataset, ActorsNeRF again outperforms HumanNeRF (HN) approach significantly. Figure 6 provides a clear visual comparison.
between different methods. HumanNeRF produces some details for the observed body portions, but fails to maintain a valid shape for the less unobserved body parts. In comparison, ActorsNeRF still generates sharp boundaries and keeps the overall shape, suggesting that the ActorsNeRF is capable of leveraging the category level prior to smoothly synthesize unobserved portions of the body.

4.3. Ablation

In this section, we investigate the efficacy of the two-level canonical space and local encoder features of ActorsNeRF in the context of the 10-shot case of the few-shot generalization setting on the ZJU-MoCap dataset as described in Section 4.2.1. Specifically, we perform ablation experiments by excluding a component in both category-level training and instance-level fine-tuning. Our quantitative results are presented in Table 4, and the qualitative results are provided in Figure 7.

As discussed in Section 3.1, the deformation network is responsible for refining category-level shape into a fine-grained instance-level shape. We ablate the deformation network by directly rendering from the category-level canonical space, i.e., the rendering network directly takes as input the point in the category-level canonical space as input. The figure demonstrates that the absence of instance-level canonical space in the model leads to distorted facial details in the rendered images. This finding highlights the importance of the proposed two-level canonical space design for producing photorealistic details.

ActorsNeRF queries pixel-aligned local features from multiple observed images using category-level points that are transformed via corresponding forward mappings. When rendering without these pixel-aligned local features, the output images appear more distorted, with less smooth boundaries. Similarly, omitting the SMPL surface aggregated features results in worse rendering quality, including distorted facial details and noisy boundaries. These observations emphasize the importance of the SMPL aggregated local features as a strong category-level prior for smooth rendering. Quantitatively, we observe that removing either pixel-aligned local features or smpl local features results in lower LPIPS scores, indicating that all components are essential for achieving the best overall performance.

5. Conclusion

We introduce ActorsNeRF, a generalizable NeRF-based human representation, that is trained from monocular videos and adapted to novel human subjects with a few monocular images. ActorsNeRF encodes the category-level prior through parameter sharing on multiple human subjects, and is implemented with a 2-level canonical space to capture the large human appearance, shape, and pose variations. ActorsNeRF is tested on multiple benchmark datasets, e.g., ZJU-MoCap dataset and AIST++ dataset. Compared to existing state-of-the-art methods, ActorsNeRF demonstrates superior novel view synthesis performance for novel human actors with unseen poses across multiple few-shot settings.

Acknowledgements. This work was supported, in part, by grants from NSF IIS-2041009 and gifts from Amazon. Prof. Wang’s lab was supported, in part, by Amazon Research Award, Sony Research Award, Adobe Data Science Research Award, and gifts from Qualcomm.
References

