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Figure 1: We present LiveHand, the first neural implicit approach for rendering articulated hands in real-time. (a) Our
method captures pose-dependent effects such as hand shadows, popping veins, and skin wrinkles. (b) We can use the hand-
pose obtained from an input sequence to re-enact different identities. (c) Our method is designed to optimize rendering speed
and quality – we show a live demo where we track the 3D hand-pose and render a photo-realistic hand avatar, all in real-time.

Abstract

The human hand is the main medium through which we
interact with our surroundings, making its digitization an
important problem. While there are several works model-
ing the geometry of hands, little attention has been paid to
capturing photo-realistic appearance. Moreover, for appli-
cations in extended reality and gaming, real-time rendering
is critical. We present the first neural-implicit approach to
photo-realistically render hands in real-time. This is a chal-
lenging problem as hands are textured and undergo strong
articulations with pose-dependent effects. However, we
show that this aim is achievable through our carefully de-
signed method. This includes training on a low-resolution
rendering of a neural radiance field, together with a 3D-
consistent super-resolution module and mesh-guided sam-
pling and space canonicalization. We demonstrate a novel
application of perceptual loss on the image space, which is
critical for learning details accurately. We also show a live
demo where we photo-realistically render the human hand
in real-time for the first time, while also modeling pose-
and view-dependent appearance effects. We ablate all our
design choices and show that they optimize for rendering
speed and quality. Video results and our code can be ac-
cessed from https://vcai.mpi-inf.mpg.de/projects/LiveHand/

1. Introduction
As the popularity of VR/AR technology rises, provid-

ing a natural interface with these digital contents becomes
vital. Undoubtedly, hands are the most intuitive mode of in-
teraction for users in a 3D environment. Therefore, it is
quintessential to digitize the users’ hands to render their
personalized, controllable, and photorealistic counterparts
in the virtual world. Achieving this is a challenging task
since hand appearance is a complex function varying with
both pose and viewing direction. Moreover, ensuring real-
time performance of such a system is key to enabling appli-
cations such as telepresence, teleoperation, and computer-
aided design.

While the creation of photorealistic hand models is pos-
sible to some extent using traditional computer graphics
techniques, it typically requires extensive manual efforts
from experienced artists. Therefore, recent research has
started to investigate whether hand models can be directly
derived from 2D imagery. Here, most existing meth-
ods use some data-driven explicit model to constrain the
hand geometry and appearance to a low dimensional space
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for the sake of tractability and robustness to occlusions
[35, 32, 24, 16, 17]. Reconstruction is then formulated as a
search in this space for the best fitting parameters. Although
these approaches can rapidly provide plausible results, the
reconstruction is constrained to the space spanned by the
registered hand mesh data used to create the model, thus
limiting the visual quality and level of personalization.

More recently, neural implicit representations [23] have
shown impressive results on static scenes for novel-view
synthesis. Some works have extended these formulations
beyond static scenes to enable photorealistic renderings of
articulated objects such as the human body [38, 30, 26, 18,
28, 42, 10, 9]. Despite their successes, very little work has
been done applying these ideas to hands. In contrast to bod-
ies, hand motions exhibit more severe self-occlusions and
more self-contact, which hinders the learning of scene rep-
resentation that is consistent across different articulations.
One particular work of interest is LISA [6], which proposed
a method to create neural hand avatars. Although their ap-
proach shows promising results, it does not support real-
time rendering during inference and the results lack high-
frequency details.

In this paper, we propose the first method for creating a
photorealistic neural hand avatar, which achieves real-time
performance while being solely learned from segmented
multi-view videos of an articulated hand and respective
hand pose annotations (see Fig. 1). To this end, we intro-
duce a hybrid hand model representation using the MANO
hand model as a coarse proxy, which is surrounded by a
neural radiance field. The idea is to simplify the learn-
ing problem by bounding the learnable volume through the
canonicalization of global coordinates into a texture cube.
These normalized coordinates can then be fed into a shal-
low coordinate-based MLP to regress the scene color and
density. This formulation can also leverage the coarse mesh
proxy for more efficient sampling of a low-resolution NeRF
representation of the scene; we show that this, when com-
bined with a CNN-based super-resolution module carefully
designed for efficient upsampling, can achieve real-time
performance. Moreover, we found that our highly efficient
representation allows training not only on a few ray sam-
ples per iteration but on full images. Therefore, we can for
the first time supervise an implicit scene representation us-
ing a perceptual loss on full images during training. Again
our experiments show that this greatly improves our results
over the baseline, which runs perceptual supervision on a
patch basis. Together, these design choices allow us to ren-
der and re-enact photo-realistic hands in real-time detailed
enough to capture even pose- and view-dependent appear-
ance changes.

In summary, our contributions are:

• We propose LiveHand, the first method for real-time
photorealistic neural hand rendering.

Methods Real- Photo- Pose-dep. View-dep.
time real app. app.

HTML [32] ✓ ✗ ✗ ✗
NIMBLE [17] ✓ ✓ ✗ ✗

LISA [6] ✗ ✗ ✓ ✗
Ours ✓ ✓ ✓ ✓

Table 1: Conceptual comparison of our method with other
hand-modeling approaches.

• The real-time performance is achieved with our careful
combination of design choices, namely, a mesh-guided
3D sampling strategy, a low-resolution neural radiance
field, and a 3D-consistent super-resolution module.

• With these computationally-efficient design choices,
we for the first time demonstrate that a perceptual loss
on the full image can be effectively used for super-
vising implicit representations and that it out-performs
the commonly used patch-based loss.

Our results demonstrate that we clearly outperform the state
of the art in terms of visual quality and runtime perfor-
mance. Moreover, we show a live demo of our approach,
which convincingly shows the straightforward use of our
method in daily life scenarios.

2. Related Works
Geometry Modeling. Parametric 3D morphable mod-

els map low-dimensional control variables to deforming
meshes enabling easy and efficient control of the generated
geometry [15, 27, 35, 1]. Relevant to our work, MANO [35]
learns a parametric hand model using high-resolution 3D
scans, parametrizing the mesh as a function of the hand
shape and pose. Implicit geometry modeling uses a neu-
ral network to encode the geometry as an isosurface. Since
the learned representation is resolution-independent, it can
– in theory – be used to retrieve meshes at arbitrarily-
high resolution at inference time. imGHUM [1] builds a
parametric full-body model comprising of detailed body,
face, and hand geometry. GraspingField [14] learns a
signed distance function (SDF) of hand-object interaction,
which fits the MANO model onto the SDF to recover
the final pose estimate. However, none of the existing
works [35, 16, 24, 14, 13] include a component for the hand
texture. In contrast, our goal is to model the photorealistic
hand appearance in real-time.

Geometry and Appearance Modeling. A few ap-
proaches extend parametric mesh by complementing it with
a texture map. HTML [32] builds a low-dimensional hand
appearance model by applying principal component analy-
sis (PCA) to texture maps of 51 subjects. NIMBLE [17]
uses MRI data to learn a parametric mesh model based on
the bones and muscles, and uses light-stage captures to ob-
tain the appearance maps (including albedo, normal maps,
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and specular maps). A PCA on the various components of
appearance maps gives them an appearance model. Since
both HTML and NIMBLE use a linear model to compress
the appearance variations to a low-dimensional space, their
expressivity is severely limited. For example, they lack
details such as veins and colored fingernails since these
are person-specific attributes. Closest to our approach is
LISA [6], which models the hand shape and appearance
using a neural implicit field. The underlying MLPs are
conditioned on pose and appearance parameters, allowing
pose and appearance changes at inference. However, the re-
constructions lack high-frequency details, and the approach
takes about one minute to render an image at 1024 × 667
pixels. On the other hand, we focus on creating a digital
hand avatar in a person-specific setup and show photoreal-
istic results in real-time. Please refer to Tab. 1 for a concep-
tual comparison of the existing hand modeling methods.

Other Animatable Objects. The literature contains
works for modeling other animatable objects such as the
human face [20, 4, 44, 8, 7, 22], human body [10, 41, 3,
18, 42, 30, 38], and animals [21]. The face related meth-
ods can not handle large deformations [20, 4, 7, 22] and/or
are not real-time [8, 44, 7], while [21] does not model
pose-dependent appearance effects. To handle more artic-
ulated motions that occur in the human body, two classes
of body-specific methods have been proposed. The explicit
mesh-based methods [41, 10, 2] rely on a template mesh
obtained from a static scene and then learn appearance in
the mesh space either by retrieval [41] or by using a CNN
to directly regress the texture map [10, 2]. However, due to
the strong reliance on a template mesh, the learned appear-
ance becomes blurry if the deformed template mesh does
not match the real deformation of the surface. In contrast,
neural implicit models have the capacity to learn more fine-
grained deformations at much higher resolution. For exam-
ple, it has been used to model the geometry and appearance
of clothed humans [38, 30, 26, 18, 28, 42, 9, 11, 29, 12].
However, these can not operate in real-time. Some effi-
cient approaches [31, 33] formulate the rendering task as
an image-translation problem, but suffer from inaccuracies
in parametric model fitting. Yet another line of implicit
body-modeling approaches [34, 39, 36] require RGB im-
ages from multiple cameras at test time, and thus can not be
controlled with arbitrary poses. Extending the body model-
ing methods to human hands is not trivial, as hands exhibit
even stronger articulation, which in turn results in severe
self-occlusion and other pose-dependent effects. Our pro-
posed method tackles this setting by utilizing elements from
both mesh-based and neural implicit modeling to create a
detailed model that runs in real-time.

3. Methodology
Given multi-view images {Gp

j |j = 1 . . . N, p = 1 . . . P}
for P frames captured from N viewpoints and the cor-
responding coarse parametric hand meshes {M(ψp)|p =
1 . . . P}, our method creates a photo-realistic hand avatar
that can accurately model hand-pose and view-dependent
appearance effects, and can be rendered in real-time. An
overview of our method is shown in Fig. 2. Given the hand
parameters ψ, we can canonicalize every point in the scene
based on the point’s projection onto the posed mesh M(ψ).
The 3D coordinates are then re-parameterized in terms of
the corresponding texture coordinates after projection. A
multi-layer perception (MLP) Hα is then trained to map
the re-parameterized coordinates to a radiance field, con-
ditioned on articulation parameters. For the given camera
extrinsics and intrinsics, we render low-resolution images
and image-aligned feature maps using volumetric render-
ing, which is then up-sampled using a super-resolution net-
work Sϕ to obtain the final rendering. In this section, we
initially describe the hand model required to build the neu-
ral hand representation in Sec. 3.1, the scene representation
in Sec. 3.2, and its efficient 2D rendering in Sec. 3.3. Fi-
nally, in Sec. 3.4, we describe how our neural hand model
can be effectively trained.

3.1. MANO Model

We leverage the MANO [35] model to parameterize the
approximate hand geometry. MANO maps the model pa-
rameter ψ to a posed mesh M using its Linear Blend Skin-
ning (LBS) weights W and a canonical hand mesh M.

M(ψ) =MANO(M, ψ,W ) (1)

ψ : {θ, β, t, R} ∈ R61 consists of the articulation pa-
rameters θ ∈ R45, shape parameters β ∈ R10, and the
global translation t ∈ R3 and rotation in axis-angle format
R ∈ R3. We refer the readers to [35] for more details. For
convenience, we also define hand pose as ξ : {θ,R} ∈ R48

here. ξ encodes only the articulation and orientation of the
hand, and is, thus, independent of identity and position in
global 3D space.

3.2. Implicit Hand Representation

Inspired by the state-of-the-art implicit novel view syn-
thesis method, NeRF [23], we model our hand avatar with
a view-dependent implicit representation. Since NeRF can
only capture static scenes, we must extend the radiance field
to account for deformations. In this section, we systemati-
cally motivate and describe our chosen representation.

Naive Conditioning. One way to formulate the hand
radiance field Hα is by naively conditioning it as follows:

Hα : (x, d, ξ) → (c, σ) (2)
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Figure 2: Overview of our approach. Given a hand pose and camera view, our method renders a photorealistic image of
the hand in real-time. To this end, we employ an efficient MANO mesh-guided sampling and canonicalization strategy. The
hand appearance is captured by an MLP that maps points from the canonicalized texture space to radiance values. We then
leverage volume rendering to obtain a low-resolution image-aligned feature tensor where the first three channels contain the
RGB image of the hand. Finally, a super-resolution module up-samples the tensor to obtain the final full-resolution image.
Since our method achieves a fast inference speed, we can supervise it with a perceptual loss on the full image resolution.

where x is 3D point, d is the viewing direction, ξ is the hand
pose, c is the color and σ is the density. The trainable radi-
ance field Hα is parameterized by an MLP with parameters
α. However, this leads to poor generalization to novel test
hand poses as will be shown in Sec. 4. This is because any
point on the hand surface gets mapped to completely differ-
ent world coordinates based on the hand pose.

Per-bone Canonicalization. One way to overcome this
problem in the literature [6] is to canonicalize the scene with
respect to the hand pose. Specifically, a point in world space
is transformed into each bone’s local coordinate systems
obtained from a skeleton pose estimate. Separate implicit
fields are learnt in the local coordinate systems, which are
combined as follows:

σ =

nb∑
k=1

wkσk , c =

nb∑
k=1

wkck (3)

where w is analogous to LBS weights. We evaluate such
a canonicalization approach in Sec. 4. Such a per-bone
canonicalization requires inferring multiple MLPs for each
3D point, making it slower for both training and inference.

Mesh-based Canoncialization. For a more efficient
representation, we take inspiration from mesh-based textur-
ing which associates each point on the mesh surface with
a 2D texture coordinate (u, v) ∈ [0, 1] × [0, 1] from which
a color value can be obtained using a texture image. We
extend this surface representation to 3D volumes by intro-
ducing a signed distance h to support volume rendering and
to account for the coarseness of the MANO-based geometry
approximation. More concretely, for a given point x in 3D,
we first find its projection on the given MANO surface. The
(u, v) co-ordinate of this projected point can be estimated
by performing barycentric interpolation on the (u, v) coor-

dinates of the corresponding mesh-triangle vertices. The
signed distance h of the sampling point to its projection on
the mesh is used to disambiguate points orthogonal to the
mesh surface [18]. With this canonicalization, we can for-
mulate the radiance field mapping as,

Hα : (u, v, h, d) → (c, σ) (4)

This allows us to canonicalize the world coordinates to a
representation that stays consistent with respect to hand sur-
face irrespective of hand pose ξ, thus preventing the disper-
sion of learned features in the input space. In practice, we
apply positional encoding [23] to all inputs in Eq. 4.

This canonicalized uvh space does not contain any pose
information. Since a point on the hand surface could have a
different appearance based on the hand pose, we also explic-
itly condition our model with the hand pose ξ after canoni-
calization. This leads to the modified representation:

Hα : (u, v, h, d, ξ) → (c, σ) (5)

Note that although we rely on the coarse hand mesh for
canonicalization, the implicit representation Hα can learn
fine-scale details that are hard to model using MANO mesh
alone. We show this later in Sec. 4 where our method sig-
nificantly outperforms a baseline that naively textures the
coarse MANO mesh using ground truth images.

3.3. Efficient Rendering

Since Hα is parameterized with an MLP, it can be
queried to regress the density σ and color c for each point
in 3D space. For a ray with origin o and direction d, volu-
metric integration - as proposed in NeRF [23] - can be used
to obtain the integrated color C for the ray r(t) = o + td:
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C(r) =

∫ tf

tn

T (t)σ(r(t))c(r(t))dt

where T (t) = exp(−
∫ t

tn

σ(r(s))ds), (6)

and tn and tf are near and far bounds. This integral
can be approximated through stratified sampling within the
bounds. However, such a strategy will waste samples on
regions that do not contain useful features. Hierarchical
sampling was introduced in NeRF [23] to address this in-
efficiency. However, this involves the use of two MLPs to
encode both the coarse and detailed scene, and sampling the
scene twice.

Mesh-Guided Sampling. To make the rendering faster,
we utilize the coarse MANO geometry to efficiently sample
points around the approximate hand surface. Specifically,
to define the bounds of each ray, we use the depth rendering
of the coarse mesh to constrain the samples to lie close to
the approximate surface [9]. This eliminates the two-pass
approach needed for hierarchical sampling.

Super-resolution. Although this efficient sampling
strategy improves the run-time, it still can not achieve real-
time rendering speeds. We introduce a super-resolution net-
work [5] Sϕ that can super-resolve the rendered output in a
3D consistent manner. To do so, we first modify the Hα to
additionally predict a 29-channel f , which encodes scene
features alongside the color to capture additional details.
We accomplish this by extending Eq. 4 with:

Hα : (u, v, h, d, ξ) → (c, f , σ) (7)

We then apply volumetric integration as done in Eq. 6 to
obtain low-resolution renderings of color Lp

j and features
F p
j for each viewpoint j and hand pose p.

These low-resolution encodings are used in a super-
resolution module

Sϕ : (L,F ) → I (8)

to recover a high-resolution image Ipj that preserves the
details. To ensure efficiency, we parameterize Sϕ using a
CNN-based network with the trainable parameters ϕ.

3.4. Training

As described in the previous section, we need to learn the
parameters of the MLPHα and super-resolution module Sϕ

using the multi-view image sequence.
Color Calibration. As multi-view images, in general,

are not color corrected to be consistent across views, we
compensate for this, as done in Neural Volumes [19], by
learning separate per-camera gain and bias parameters gj
and bj .

Objective Function. We train the parameters of our
modules Hα and Sϕ in a supervised manner using the fol-
lowing loss functions

L = Lrec + Lperc (9)

between ground truth target image Gp
j and rendering image

Ipj using gradient descent. Here Lrec is the L2 reconstruc-
tion loss given by:

Lrec = ||Gp
j − Ipj (α, ϕ)||2 (10)

To capture the perceptual difference in the image, we apply
Lperc as suggested in [43]

Lperc = ||f(Gp
j )− f(Ipj (α, ϕ))||2 (11)

Where f(·) is the activation of the conv1-conv5 layers in
pre-trained VGG network [37]. Thanks to our efficient de-
sign choices, we can apply the perceptual loss on the full
image, as opposed to the traditional approach of applying it
on smaller patches [40]. We show later that the perceptual
loss plays a vital role in recovering high-frequency details,
and our image-based approach improves photorealism over
using the patch-based strategy (see Tab. 4, Fig. 7 and the
supplementary video). We employ the above loss functions
to both low-resolution volumetrically rendered images and
high-resolution super-resolved images.

4. Experiments
We use the publicly released version of the Inter-

Hand2.6M benchmark for our experiments. The dataset
contains multi-view sequences of different users performing
a wide range of actions at 5 FPS and 512×334 pixels resolu-
tion. To test our method, we select the right-hand sequences
from four users in the “train/capture0”, “train/capture5”,
“test/capture0”, and “test/capture1” subsets. We reserve the
last 50 frames of each capture for evaluation and use the rest
for training.

We show that the advantages of our proposed model
work synergistically together to enable the first demo for
real-time photorealistic neural hand reenactment. The de-
tails of this demo and its results are presented in Section 4.1.
We additionally provide quantitative and qualitative eval-
uations of our method on the established benchmark in
Section 4.2 and Section 4.3. For this, we used PSNR,
LPIPS, and FID metrics for numerical evaluation. Follow-
ing the conventions of [43], LPIPS score is calculated using
AlexNet backbone. For rendering speed, we report the time
it takes to render an image on an NVIDIA GeForce RTX
3090 at the training resolution (i.e. 512 × 334 pixels) in
frames per second (FPS). For super-resolution experiments,
volumetric integration produces a rendering at 256 × 167
pixels which are then super-resolved to 512 × 334 pixels.
More implementation details and results can be found in
the supplementary material.
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4.1. Application: Real-time Hand Reenactment

We carefully design our method specifically for real-time
hand reenactment applications. After training our neural
implicit representation Hα and the super-resolution module
Sϕ to create a user’s hand avatar, we can drive the artic-
ulation of that hand using new motion. Fig. 3 show this
transfer of hand performance from a reference user (‘Refer-
ence’) to 4 learned identities. Note that our approach is able
to generalize well across identities even when the driving
poses were not seen during training. Note how the avatar of
each identity captures high-frequency skin texture as well
as hand-pose dependent illumination, which contributes to
the photo-realism of our renderings.

To show that this method can work in real applications,
we also implement a live demo. This application consists of
two parts: a hand tracker which estimates a posed MANO
mesh, and a hand avatar trained using our methods on In-
terHand2.6M. We estimate the pose using [45] and pass it
to our method for rendering. The pose estimator takes 10
milliseconds while rendering our hand avatar takes 20 mil-
liseconds on average, giving our system an effective speed
of 33 FPS. We show the qualitative results of this demo in
Fig. 4. Note the plausible high-frequency details of the ren-
dered hand avatar driven by new poses captured live in the
monocular RGB stream. We encourage the readers to check
the supplementary video for the demo, as well as 3D con-
sistent rendering sequences with view-dependent effects.

4.2. Comparison to State of the Art

The only other neural implicit hand model that exists in
the literature is LISA [6]. As their method is trained and
evaluated on an unreleased high-resolution version of the
Interhand2.6M dataset and the code is not publicly avail-
able, we re-implemented their approach for a fair compari-
son. As an additional baseline, we use the body modeling
method A-NeRF [38] and adapt it for hand modeling. We
also compare against SMPLpix [31] because of its real-time
performance. We adapt it to hands by changing the condi-
tioning input from SMPL to MANO renderings. Because
our method requires a coarse hand mesh for canonicaliza-
tion, we also compare against a baseline explicit method
that re-textures this mesh using a pre-estimated texture map
(‘Mesh wrapping’). For this, we extract the texture from a
flat-hand pose and wrap it to the target poses.

As shown in Table 2, our method outperforms other neu-
ral implicit baselines while also being real-time. These im-
provements in the metrics also translate to significant im-
provements in perceptual quality on the test set, which can
be seen in Fig. 5. We hypothesize that this is owing to our
improved canonicalization strategy and our use of percep-
tual loss. Both A-NeRF and LISA use per-part canonical-
ization similar to the one described in Eq.3. However, learn-
ing to combine per-part output is not trivial, and could lead

PSNR ↑ LPIPS(x1000) ↓ FID ↓ FPS ↑
Mesh wrapping 28.28 49.44 298.28 82.33
SMPLpix [31] 32.37 26.57 202.99 58.82
A-NeRF* [38] 28.07 94.41 318.61 0.83
LISA* [6] 29.36 78.46 255.43 3.70
Ours 32.04 25.73 197.39 45.45

Table 2: Comparison on InterHand2.6M [25]. * indi-
cates we use our implementation of the approach.

PSNR ↑ LPIPS(x1000) ↓ FID ↓ #parameters ↓ FPS ↑
xyz 29.31 42.50 247.77 0.95M 43.03
per-bone xyz 32.51 23.82 198.95 1.14M 27.04
uvh w.o. pose cond. 30.33 32.36 204.24 0.40M 45.73
Ours (uvh w. pose cond.) 32.04 25.73 197.39 0.41M 45.45

Table 3: Ablation on various canonicalization strategies.
Our approach optimizes for both quality and speed.

the ambiguities in case of severe articulations. Moreover, as
we will show in Sec. 4.3, our addition of a perceptual loss
drastically improves the level of detail the model can cap-
ture over those obtained from simple per-pixel loss used in
A-NeRF and LISA.

SMPLpix comes close to our method quantitatively, but
fails to capture the details, as shown in Fig. 5. This is be-
cause, unlike our method, SMPLpix can not account for
person-specific geometric changes as it strictly relies on
coarse MANO geometry.

Our method also significantly outperforms the mesh
wrapping baseline, quantitatively and qualitatively. Note
that modern graphics pipelines can achieve much higher
frame rates for mesh rendering based on their implemen-
tation, and we only benchmark ours. But by no means can
such a simple rendering achieve the complex appearance
effects and photorealism as our method can. This demon-
strates that our model can learn improvements upon what is
possible using only the coarse geometric initialization.

We show additional comparisons using a synthetic
dataset in the supplementary document.

4.3. Ablation

Our design choices are crucial for optimizing both the
rendering quality and processing speed. To evaluate their
significance, we perform ablation studies of various compo-
nents. First, we report the impact of different canonicaliza-
tion strategies on the metrics in Tab. 3 and on visual quality
in Fig. 6. We see that naive pose conditioning (‘xyz’) per-
forms the worse in all metrics, and the results are blurry
and indistinct. While per-bone canonicalization (‘per-bone
xyz’) produces high-quality renderings, our formulation is
1.7 times faster as it does not rely on the evaluation of multi-
ple MLPs. Finally, our experiments show that without pose
conditioning (‘uvh w.o. pose cond.’), the performance of
our method drops as it is vital for capturing pose-dependent
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Figure 3: Hand Reenactment. Our method can transfer the pose of a reference actor (Reference) to new identities (Identity
1-4). Note that our model captures pose-dependent changes, which is especially apparent for veins and in the knuckle region.
It also captures view-dependent shading and self-shadowing effects.

(a) Driving input (b) Estimated pose (c) Our rendering

Figure 4: Demo Visualization. The real-time demo takes
in a monocular RGB input (left) to estimate the MANO pa-
rameters (center). The MANO pose is then transferred to
the target identity using our method (right).

PSNR ↑ LPIPS(x1000) ↓ FID ↓ FPS ↑
w.o. mesh-guided samp. 31.25 25.95 202.40 9.07

w.o. Lperc 32.69 38.45 226.78 19.64
w.o. SR patch Lperc 30.52 31.13 197.70 19.52

full Lperc 31.61 26.63 197.35 19.37
Ours (full Lperc) 32.04 25.73 197.39 45.45

Table 4: Ablation study on model components. All design
choices consistently improve the accuracy and runtime.

effects such as self-shadowing and skin wrinkles, and this
can be seen in Fig. 6.

We evaluated the impact of mesh-guided sampling by de-
faulting to hierarchical sampling instead (‘w.o mesh-guided
samp.’). While this produces similar rendering quality, it

can be seen in Tab. 4 that our method is 5 times faster. We
also evaluated the impact of the superresolution module by
training our method to directly render the full-resolution
image instead (‘w.o. SR’). For this experiment, we inves-
tigated 3 different settings: we remove Lperc entirely (‘w.o.
Lperc’); we implement the commonly-used patch percep-
tual loss [40] where random crops of 64 × 64 pixels are
used for the perceptual loss instead (‘patch Lperc’); finally,
we use the perceptual loss on the full images (‘full Lperc’).
Tab. 4 shows that the SR module makes our method 2.4
times faster for all variants. Although the method ‘w.o.
Lperc’ achieved the highest PSNR, adding any form of
Lperc greatly increases the level of details (see Fig. 7). This
increase in realism is captured quantitatively by the lower
LPIPS and FID in Tab. 4, which better reflects human pref-
erence. Furthermore, we show our novel application of the
perceptual loss on the full image enabled by our efficient
formulation (‘full Lperc’) greatly improves the rendering
quality quantitatively and qualitatively. Finally, our full
method (‘Ours’) achieves superior or comparable rendering
quality while being significantly faster.

Overall, it is clear that our design choices optimize both
rendering quality and speed, thus enabling us to photo-
realistically render human hands in real-time for the first
time in literature. Moreover, in the supplementary material,
we use synthetic data to show our method’s robustness to
MANO fitting inaccuracies. We also present an additional
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Figure 5: Comparison to SoTA on unseen hand poses. A-NeRF and Mesh wrapping produce artifacts while SMPLpix and
LISA do not capture high-frequency details. Our method outperforms these approaches and captures high-frequency details.

Figure 6: Canonicalization Ablation. Global xyz coordinates with naive conditioning fails to generalize to novel poses. Our
proposed uvh canonicalization achieves similar visual results to per-bone xyz canonicalization while being much faster. Note
that hand pose conditioning is vital for capturing pose-dependent effects such as self-shadowing (see red and green regions).
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Figure 7: Model Ablation. Left to right: without the mesh-guided sampling, the visual quality is good but the inference
is slow (see Tab. 4); without any perceptual loss, the reconstructions lack details; with patch-based perceptual loss, subtle
artifacts appear in the details (as highlighted in red); with full-image perceptual loss, these details are captured correctly
(as highlighted in yellow); finally, by using a super-resolution module, the rendering speed is further improved without
compromising the details (as highlighted in green).

application where the hand geometry can be edited at infer-
ence time, without any additional retraining of the model.

5. Discussion
5.1. Limitations and Future Work

While our work is an important milestone for the full
digitization of human hands, there are still several avenues
for future work. Since our approach depends on the MANO
mesh, future work could look into improving the quality
of such a mesh. This could include refining the geometry,
possibly in an end-to-end manner. Another more strategic
direction moving forward is to learn a generalizable implicit
3D morphable model of the human hands that is photoreal.
This will give full access to all hand semantics. While our
approach models hand-pose dependant illumination effects,
it can not model shadow as a function of any random illu-
mination condition other than the one the training set was
captured under. We leave this modeling for future works.
We hope our work encourages research into the important
problem of photorealistic rendering of the human hands.

5.2. Societal Impact

Alongside its immense applications, human modeling
also presents challenging societal problems. A digital avatar
of an individual has the potential of being misused by bad
actors. Though detecting real vs. fake images is a possibil-
ity, a more strategic approach would be watermarking the
generative models. This way, a generated image can always
be attributed back to the model it was generated from. This
is an active area of research, and we hope the community

adopts it in their body modeling works.

6. Conclusion

We presented the first neural implicit approach that can
render human hands in a photorealistic manner in real-time.
Our approach is carefully designed to optimize the render-
ing quality and speed. At the heart of our method is a low-
resolution NeRF rendering and a super-resolution module
that produces 3D-consistent results. We show that a novel
application of the perceptual loss on the full image space
is important for generating accurate details. We also utilize
the MANO hand mesh to guide the sampling of points in 3D
space to better improve the rendering speed. Results show
that our method generates a wide variety of hand articu-
lations, high-frequency texture details, and pose-dependent
effects. Comparison with related methods clearly shows
that our approach outperforms the baselines by a significant
margin. We also demonstrate editing the hand geometry
while keeping the texture fixed. Future work could investi-
gate learning a generalized implicit 3D morphable model of
the human hands that is photoreal.
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