
Mining bias-target Alignment from Voronoi Cells
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Abstract

Despite significant research efforts, deep neural net-
works remain vulnerable to biases: this raises concerns
about their fairness and limits their generalization. In this
paper, we propose a bias-agnostic approach to mitigate the
impact of biases in deep neural networks. Unlike traditional
debiasing approaches, we rely on a metric to quantify “bias
alignment/misalignment” on target classes and use this
information to discourage the propagation of bias-target
alignment information through the network. We conduct ex-
periments on several commonly used datasets for debiasing
and compare our method with supervised and bias-specific
approaches. Our results indicate that the proposed method
achieves comparable performance to state-of-the-art super-
vised approaches, despite being bias-agnostic, even in the
presence of multiple biases in the same sample.

1. Introduction
Today, deep Neural Networks (DNNs) are renowned for

their high performance and resilience in many areas of com-
puter vision, such as image classification, semantic segmen-
tation, and object detection, used in fields ranging from self-
driving vehicles to face recognition or surgical guidance.
However, it is well known that their tendency to rely heav-
ily on any type of correlation present in the training data
exposes them to potential pitfalls [3, 16, 40]: some “spuri-
ous correlations” may be erroneously learned by the DNN.
These can act as biases [35].
Learned biases can reduce the generalization of the DNN [3,
5, 8, 16, 24, 30]. For example, if a DNN has learned to
distinguish airplanes flying in the sky from boats sailing in
the ocean, the model will probably use the background as a
base for its classification: detecting it instead of learning the
vehicle shape is a much simpler task. However, the model
does not generalize to scenarios such as a landing seaplane.
Differently from domain adaptation [9, 29, 36], where the
objective is to learn general features that compensate for
the domain shift or to adapt extracted features to different
domains, the goal of debiasing is to discourage the learning
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Figure 1. Our proposed approach to agnostically remove the bias.

of spurious correlations.
Many current debiasing approaches rely on prior informa-
tion about the bias, such as the existence of an auxiliary
label indicating some side information, the presence of
bias(es) or their quality [5, 6, 8, 11, 34, 37]. However,
obtaining these labels or information on the nature of the
bias can be either very costly (due to annotation costs) or
very noisy: this is what motivates the development of bias-
agnostic approaches. Recent works have shown that bias
features are learned “early” [26, 30]; there are bias-target
aligned samples, for which the bias is learned, and the per-
formance on the train set increases, and some misaligned
ones, for which the prediction is wrong. Since bias-agnostic
approaches delve into the biased information from the train-
ing set, it is common to amplify the first features learned
using Generalized Cross-Entropy [41] and then discourage
their learning in an “unbiased” model. However, there is no
guarantee that the very first features learned are the biased
ones: detecting them agnostically and effectively remains
an open question.
In this work, we propose a method that identifies the best
time to extract bias-target alignment information by ob-
serving the relative distance of misclassified samples to the
Voronoi boundary of the correct target class. We use this in-
formation to train an unbiased model, where we give higher
weight to bias-misaligned samples, and remove the bias-
alignment information from the bottleneck layer (Fig. 1).
At a glance, our contributions are the following:

• we propose a bias-agnostic approach that indicates,
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during the training of a vanilla model, when to extract
bias-target alignment information. More precisely, we
extract it when the distance of misclassified samples
to the Voronoi boundary of the target class is maximal
(Sec. 3.3);

• we use the bias alignment information to weight the
loss contribution of every single sample: this will favor
the learning of misaligned samples (Sec. 3.4.1);

• we propose an approach to eliminate bias information:
specifically, we minimize the extractability of bias
alignment information at the bottleneck of the DNN,
conditioned to bias-target misalignment (Sec. 3.4.2);

• we study the behavior on several datasets typically
used for debiasing and compare both supervised and
bias-agnostic approaches: although our proposed tech-
nique is bias-agnostic, its performance is comparable
to that of supervised approaches (Sec. 4.3).

2. Related works

We will review debiasing approaches below, which can
be divided into supervised methods (where we have access
to a “bias label”), and unsupervised methods.

2.1. Fairness methods

While bias can have ethical implications and some debi-
asing methods can be useful for Fairness, the goals of the
two areas of research remain distinct. Fairness aims at min-
imizing the treatment inequalities between certain groups
(according to some ethical principles [12, 14, 22, 39]) gen-
erated by classifiers that base their predictions on specific
predetermined sets of features or classes (labeled as “sen-
sitive”). Some fairness metrics measure these types of in-
equalities: Demographic Parity, Equalized Odds, or Equal
Opportunity are some representative examples [12, 15, 17]
and trying to lead the classifier to optimize them in its learn-
ing process can help mitigate unfair discriminations. Debi-
asing does not necessarily target the protection of specific
sample groups or set the “sensitive” features in advance: it
aims at promoting the learning of features that will gener-
alize to a real-life distribution. In this work, we tackle de-
biasing approaches and we will therefore focus on it in the
remainder of the article.

2.2. Supervised methods

Supervised debiasing methods are divided into three cat-
egories: pre-processing methods, which modify the dataset
before classification; in-processing methods, which mod-
ify the learning process of the model; and post-processing
methods, which directly modify the output of the DNN.
Preprocessing methods. Among the most used prepro-
cessing methods in the literature, driven data augmentation
plays a prominent role. Generative Adversarial Networks

(GANs) are widely used to generate realistic images: Style-
GANs [10] is indeed one of the mostly used GANs in this
context. For example, Kang et al. [23] used it to gener-
ate handwritten text in specific styles. In image classifi-
cation, Geirhos et al. [16] used style transfer to augment
ImageNet with texture-bias-conflicting elements to create a
more texture-balanced dataset.
Postprocessing methods. These methods have the ad-
vantage of neither re-training models nor requiring addi-
tional data for the training. With their Reject Option Clas-
sification, for example, Kamiran et al. [21] proposed to
take the samples classified with the most uncertainty (out-
side a predefined confidence margin) and to change their
class to decrease the Disparate Impact metric. In this
same context, Equalized Odds Postprocessing proposed by
Hardt et al. [17] maximizes the Equalized Odds metric. De-
spite the potential advantages of these approaches, a major
drawback lies in the low degrees of freedom for the correc-
tions (since they can only access post-classification infor-
mation), which limits their practical effectiveness.
In-processing: debiasing within training. Most of the de-
biasing methods in the literature work directly on the model,
learning from a biased dataset. In general, unbiased ele-
ments are weighted more than biased elements. This sim-
ple yet effective approach is nowadays very popular in su-
pervised setups [20]. Other methods tackle supervised de-
biasing by adding regularization terms during the training
of the deep model, which is the case of methods such as
EnD [34] and FairKL [6]. Another intuitive approach re-
lies upon simply removing the biased features from each
sample in the dataset and performing the so-called fairness
by blindness. However, the phenomenon known as encod-
ing redundancy [17] states that information is very rarely
encoded only once in the data [31], so removing a single
value or label is probably not sufficient to remove the effect
of the bias on classification.

2.3. Unsupervised methods

Some recent methods do not rely on bias labels because
they can be difficult to obtain on real-life datasets and we
will refer to them as “unsupervised” or “bias-agnostic”. All
of these approaches follow a general scheme, which is typ-
ically divided into two phases: bias inference, where a first
model, often called “bias capturing”, aims to capture bi-
ases in the data; and bias mitigation, where a second model
is trained to avoid the biases captured by the first model.
These approaches rely on prior knowledge, which may be
more or less specific to the target task.
Bias is in the texture. Some work focuses on the bias
specifically present in texture, as it is prominent in image
classification [16]. Rebias [5], for example, promoted learn-
ing with representations that are maximally different from
using small receptive fields in convolutional layers. These
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Figure 2. Overview of the proposed debiasing approach: the bias is first extracted (left) and then the unbiased model is trained (right). Blue
arrows represent forward propagation while red arrows represent backpropagation.

are biased-by-design, toward learning specific textures. For
the same texture debiasing task, HEX [37] proposed to use
the gray-level co-occurrence matrix and to promote repre-
sentation independent of colors.
Bias generates imbalances between groups. Some un-
supervised approaches involve finding the bias groups that
optimize some fairness metric and train the model to have
representations orthogonal to those inferred by the biases.
With DebiAN [27], Li et al. for example proposes a method
that alternates between the training of bias-capturing and
unbiased models, minimizing the Equal Opportunity fair-
ness metric. In EIIL [13], Creager et al. identified biases by
finding the groups that maximize violation of an invariance
principle measured by the objective function IRMv1 [4].
Similarly, PGI [1] built upon EIIL by minimizing the KL-
Divergence of the prediction over these groups.
Bias is learned early. Some recent methods are based on
the assumption that bias features are easy to learn. These
features can be extracted at a given point, at the begin-
ning of the training. With LfF [30], Nam et al. proposed
a loss reweighing method based on this assumption: they
train a biased neural network and amplify its early stages
prediction. In parallel, they train a debiased model in-
creasing the weights of “difficult samples”. Based on this,
with DFA [26], Lee et al. performed data augmentation at-
tempting to disentangle bias features from intrinsic features
through latent representations of the bias-capturing and un-
biased models. Similarly, with LWBC [25], Kim et al. fo-
cus the training of their main classifier on the most “dif-
ficult samples” for their classifier committee. With PGD,
Ahn et al. [2] use the magnitude of the sample gradient as a
metric to increase their importance.
The closest competing strategy to the one we propose is
LfF [30]. Differently from theirs, our main assumption is
not that the first features learned by the model are biased:

we assume that the model, at some point, will adapt to the
bias and that it is possible to identify this moment by exam-
ining the latent representation of the dataset. This particu-
lar point can occur at any time during the training, and so
emphasizing the earlier choices of the model can prevent it
from efficiently adapting to the bias. Moreover, unlike [30],
we do not seek to extract the information from the bias, but
its alignment with target classes, which allows our approach
to easily scale to multi-biased setups.

3. Proposed Method

3.1. Overview of the proposed method

Let us consider a supervised learning setup, where
we have a dataset D containing N input samples
(x1,...,xN ) ∈ X , each associated to a ground truth target
label (ŷ1,...,ŷN ) ∈ Y and an index n ∈ ND. A given
deep neural network M, trained for e epochs, produces
∀n ∈ ND an output ye,n given some xn, and is typically
trained to match ŷn through the minimization of a loss func-
tion L(ye,n, ŷn). Unfortunately, this learning process does
not impose any prior on the specific subset of features that
are extracted, which leads to a biased prediction over un-
seen data. We want to fight this effect.
Fig. 2 provides an overview of the proposed debiasing ap-
proach. First, the bias is inferred by the learning of a vanilla
model: at the end of each epoch (or after a few iterations),
the target class centroids and the Voronoi boundaries be-
tween them are computed from the well-classified samples
at the bottleneck layer (Sec. 3.2). The distance of the mis-
classified samples to the Voronoi boundary is computed to
find the epoch e∗ when the bias-target alignment is maxi-
mally learned (Sec. 3.3). Then, a debiasing process follows
(Sec. 3.4): from the distances gathered from the previous
step, we assign each sample a weight, which will be used
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in the weighted loss (Sec. 3.4.1). In addition, at the bot-
tleneck layer, we minimize the information about bias mis-
alignment: this favors the unbiasedness of the classification
head (Sec. 3.4.2). In the rest of this section, we will detail
all the steps of our proposed technique.

3.2. Bottleneck latent representation

The debiasing method we propose stems from the con-
cept of latent representation: the output of each layer of a
DNN consists of a representation of the input xn. Thus, the
classification phase, which takes place just before the output
of the model, consists in partitioning the feature space into
each of the different classes. Therefore, the output of the
bottleneck layer (the output of the backbone) is the com-
pressed representation of the input sample, which is often
referred to as latent representation. Therefore, each xn has
a vector of latent attributes ae,n ∈ RK (where K is the
number of neurons in the bottleneck layer) associated to a
specific epoch (or iteration) e for the model M: this forms
its latent bottleneck representation.
We define D∥

e the set of samples well classified by the model
M at epoch e, and D⊥

e the misclassified samples. For each
t-th target class (of T classes), it is possible to define a class
centroid Ce,t as the average of the bottleneck representa-
tions of each well-classified samples of the t-th target class:

Ce,t =
1

|D∥
e,t|

∑
n∈N

D∥
e,t

ae,n, (1)

where D∥
e,t is the subset of correctly classified samples for

the t-th class, and | · | denotes the cardinality of a set. Such
centroids are proxies for the representations of the correctly
classified elements of the class by the model. Let us de-
fine Voronoi boundary He,i,j as the hyperplane equidistant
from Ce,i and Ce,j in the bottleneck representation space
of M: He,i,j divides the latent space into two Voronoi cells
of generators Ce,i and Ce,j .
In Fig. 3, we have two target classes (the triangles and the
squares) and the bias is pictured as the color (blue and red).
The first image (“Initialization”) shows the latent represen-
tation of the dataset by the model at its initialization: the
samples are scattered randomly in the feature space, a first
classification occurs, materialized by the Voronoi boundary
H0,△,◦. Ideally, as shown in the picture the furthest to the
right (“Ideal classification”), a deep learning model should
minimize the intra-class distance and maximize the inter-
class one. However, in the presence of bias, another kind
of attractor can emerge: the bias-conflicting elements will
be attracted by the wrong class. The more the model is bi-
ased, the more the sample clusters that form will represent
the bias classes more than the target class. For instance, in
the second picture, the samples are clustered by color and
not by shape: the red triangles have been attracted by the

circle class that is correlated with the color red. The sam-
ples misclassified at that specific moment are bias-target
misaligned. If the model is, then, over-parametrized, the
biased elements will be attracted as well towards the target
centroid (third figure “Epoch e > e∗”): although a set of
bias-misaligned features are learned, the model still holds
biased ones, which leads to a subpar generalization perfor-
mance: our first goal will be, hence, to detect the e∗ moment
of the learning where it is possible to extract the bias-target
misalignment information.

3.3. Bias alignment capture

To distinguish between bias-misaligned samples and
bias-aligned ones, we assume that, after a few learning
steps, the farther a misclassified sample is distant from its
target Voronoi cell, the more it has been strongly pulled by
an attractor. Such an attractor, since it is not its target class
centroid, can be considered as resulting from some bias.
Hence, when the average distance between the misclassified
samples and their target Voronoi cell reaches its maximum,
the model has learned bias features. This scenario is visu-
alized in Fig. 3 (second figure “Epoch e∗”). To select the
exact moment when to extract the bias-target alignment, we
are looking for the epoch e∗ defined by:

e∗ = argmax
e

∑
i d

∗(ae,n)

|D⊥
e | , (2)

where

d∗(ae,n) = d(ae,n,He,argmax(ye,n),ŷn
)

· (1− δargmax(ye,n),ŷn
),

(3)

and d(a,H) indicates the ℓ2 distance between a and the
closest point of H and δ·,· is the Kronecker delta. At this
point, we can collect the bias-target alignment information
B∗ = (b∗n)n∈ND , where ∀b ∈ ND, b∗n = argmax(ye∗,n).
We can hereby identify the subset of bias-target misaligned
samples D⊥ = D⊥

e∗ , and the set of bias-target aligned ones
D∥ = D∥

e∗ . Given that vanilla learning strategies employ
weight-decay, where the distances tend to diminish when
reaching the loss minimum, we propose to modify (3) as

d∗(ae,n) =d(ae,n,He,argmax(ye,n),ŷn
)

·
2 · (1− δargmax(ye,n),ŷn

)

∥Ce,argmax(ye,n)
∥2 + ∥Ce,ŷn

∥2
,

(4)

where we scale the distance by the averaged ℓ2 norm (de-
noted by ∥ · ∥2) of the two considered centroids.
We highlight that our hypothesis is similar but substantially
different, from the one formulated in LfF [30]: here, we
are free from the assumption bias features are learned ear-
lier than all the more robust ones by the models, and even
more from the assumption that they are the very first fea-
tures learned by the models.
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3.4. Debiasing the model

Once having extracted the bias alignment labels for each
sample, we can start training and debiasing our actual
model. In this work, we propose unbiased models having
the same architecture and learning parameters as the bias-
extracting one, although no explicit constraint forbids us to
use different models. Our approach here consists of mod-
ifying the objective function optimized during the training
of the model with two goals: increasing the weight of the
bias-misaligned samples (as they contain relevant informa-
tion for generalization compared to other representatives of
the same class) and moving these samples away from the
bias centroid that tends to attract them.

3.4.1 Loss function reweighting

As shown by LfF [30] and other works like [20], reweight-
ing the loss function to up-weigh the bias-conflicting ele-
ments is an efficient method to orient the training in a less
biased direction as the correlation bias-target will be less
emphasized in the loss. In this work, we assign the weight
rn to the n-th sample according to

rn =
1

ρb∗n
· δb∗n,ŷn

+
1

1− ρb∗n
· (1− δb∗n,ŷn

), (5)

where we define

ρt =

∣∣∣D∥
e∗,t

∣∣∣∣∣∣D∥
e∗,t ∪ D⊥

e∗,t

∣∣∣ . (6)

In a nutshell, misaligned samples receive a weight that is
proportionally inverse to their cardinality in the t-th class.
This has the effect of strongly encouraging the learning of
bias-misaligned samples, over bias-aligned ones. In the fea-
ture space, we can interpret the resulting reweighted loss
L(rn,ye,n, ŷn) as an attractive force on the bias-misaligned
samples, that are being pulled toward their class centroids.

3.4.2 Bias alignment information removal

Besides having a loss reweighting to favor misaligned sam-
ple learning, we can also discourage the model from learn-
ing any information related to bias alignment to the target.
To estimate how much of this information is learned by the
model, at the bottleneck we plug an auxiliary classification
head that we call information removal head (IRH). This
head is trained to minimize a cross-entropy loss L(be,n, b∗n).
Its performance is an important indicator for us, as it reveals
how much the latent space is similar (or different) from the
vanilla bias-capturing model, when it was the most fitted
to the bias (at epoch e∗), from the bias-target misalignment
perspective. To estimate this similarity more precisely, we
compute the mutual information between B = (be,n)n∈ND

and B∗ under the bias misalignment condition as

I⊥ =
∑
j,k

p⊥B,B∗(j, k) logT

[
p⊥B,B∗(j, k)

p⊥B (j)p
⊥
B∗(k)

]
, (7)

where

p⊥B,B∗(j, k) =
1

|D⊥|
∑

n∈ND

δj,b∗nσ(be,n)k(1− δb∗n,ŷn
) (8)

is the joint probability between B and B∗ calculated on the
bias-target misaligned samples, σ is the softmax function
and p⊥B , p⊥B∗ are the two marginals. (7) is differentiable, as
we work with σ(be,n), the softmax-ed output of the IRH.
Hence, we are allowed to minimize this term, eventually
scaled by a hyper-parameter λI⊥ .
As displayed in Fig. 2, the mutual information does not con-
tribute to the IRH’s update but is propagated directly back
to the backbone. Minimizing information over misaligned
samples can be seen as a repulsive force, pushing them away
from their attractor class. We focus on minimizing condi-
tional mutual information to avoid pushing aligned samples
away from their target class, preserving information needed
for classification. In the next section, we will test and com-
pare our approach with other state-of-the-art methods.
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4. Experiments

Every result here presented is averaged over three seeds
as done in most of the literature, and every algorithm is im-
plemented in Python, using PyTorch 1.13, and trained on
GPUs Nvidia GeForce RTX3090 Ti equipped with 24GB
RAM.1 As we compare our method to the other unsuper-
vised state-of-the-art methods, the best-unsupervised accu-
racies are systematically in bold and the second best are un-
derlined. Besides, we highlight in red the best-overall to see
how our method compares even to the supervised ones.

4.1. Datasets

Here below we describe at a glance the datasets em-
ployed for the quantitative evaluation. They were chosen
to reflect different problematics bound to biases, from the
very simple control case of Biased MNIST to multiple and
different biases, synthetic and real-world images.
Biased MNIST. The first dataset we are using is Biased
MNIST, which was first introduced by Bahng et al. [5].
The 60k samples of this dataset consist of a colored version
of the famous handwritten digits dataset MNIST with some
correlation ρ between the color and the digits. To build
it, first one specific color gets assigned to each of the ten
digits; then each of the samples gets its background color.
We will test on four levels of color-digit correlation ρ: 0.99,
0.995, 0.997, and 0.999. The effect of the bias (namely, the
background color) is evaluated by testing the model on a
completely unbiased dataset, with ρ = 0.1.
Multi-Color MNIST. Building on top of Biased MNIST,
Li et al. proposed in [27] a bi-colored version to better
benchmark the performance of current models on multiple
biases at once. Here, the left and the right side of the
background have two different colors, with a correlation to
the target ρL for the left background color of the image and
ρR for the right one. We follow their proposed setup, with
ρL = 0.99 and ρR = 0.95.
CelebA. CelebA [28] is a real-world dataset commonly
used to test debiasing performance. It is a face classification
dataset provided with 40 attributes for each of the 203k
image samples. The task we solve here is to classify
“blond” or “not blond” hair, with the main bias lying on the
gender, as in the dataset there is a natural bias for “females”
to have the “blond” attribute.
9-class ImageNet. The 9-class ImageNet dataset was
proposed by [5], consisting of the extraction of a subset of
9 super-classes from ImageNet-1k, balanced to have each
class correlated to a specific texture bias.
ImageNet-A. ImageNet-A was proposed by
Hendrycks et al. in [18] as a subset of cropped im-
ages from ImageNet, purposely selected to be very hard to

1The source code for our method is available at
https://github.com/renahon/mining bias target alignment from voronoi cells/.

Table 1. Results on Balanced Biased MNIST when training with
different correlations color-digit ρ.

Method Bias Test accuracy [%] (↑)
agnostic ρ=0.999 ρ=0.997 ρ=0.995 ρ=0.99

Vanilla ✓ 11.2 40.5 72.4 88.4
Rubi [8] ✗ 13.7 90.4 43.0 93.6
EnD [34] ✗ 52.3 83.7 93.9 96.0

BCon+BBal [19] ✗ 94.0 97.3 97.7 98.1
HEX [37] BT 10.8 16.6 19.7 24.7
ReBias [5] BT 26.5 65.8 75.4 88.4

LearnedMixin [11] ✓ 12.1 50.2 78.2 88.3
LfF [30] ✓ 15.3 63.7 90.3 95.1

SoftCon [19] ✓ 65.0 88.6 93.1 95.2
Ours ✓ 58.7±21.8 92.7±1.2 95.5±0.8 97.7±0.3

be classified by state-of-the-art CNNs. They were precisely
selected among the subset misclassified by a cluster of
ResNet-50 models. Following [5, 6, 19], we use it to test
our performance when training on 9-class ImageNet.

4.2. Model architecture and training details

In our experiments, we consistently employed the same
architecture for both the vanilla model and the model used
for measuring distances to Voronoi boundaries and debias-
ing. The architecture details for each dataset are provided
below. For the Information Removal Head (IRH), we used
SGD optimization with a learning rate of 0.1 for each model
and dataset. The cross-entropy loss was used for all our
losses, and λI⊥ was set to 2 for all experiments.
Regarding the experiments on Biased MNIST, we used the
same fully convolutional network used for Rebias [5] and
Irene [33], of four convolutional layers with 7×7 kernels,
with a batch normalization after each of these layers. For
training, we followed the implementation used in [33] of 80
epochs, with an initial learning rate of 0.1 decayed by 0.1 at
epochs 40 and 60, and a weight decay of 10−4. For Multi-
Color MNIST, we employ as architecture the same 3-layer
MLP used in [27], trained for 500 epochs (until the model
starts overfitting on the training set), using the same opti-
mization strategy as in [27]. For the experiments on CelebA
and 9-class ImageNet, we used a pre-trained ResNet-18 and
the same optimization strategy as in [19, 30].

4.3. Discussion

Here we compare our method to the current state-of-
the-art, both supervised and unsupervised, on the multiple
datasets presented in Sec. 4.1. In what follows, we divide
the supervision level of the method into three categories:
bias-agnostic, bias-aware (using an extra ground-truth bias
label), and ”bias tailored” (BT) where the method does not
rely on bias labels, but by construction, it captures specific
biases (like the texture [5, 37]).
Results on Biased MNIST. Our results on Biased MNIST,
presented in Table 1, show that our method achieves state-
of-the-art performance, even when compared with super-
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Table 2. Results on CelebA, targeting the attribute “blond”, with a
bias towards gender.

Method Bias agnostic Test accuracy [%] (↑)
Unbiased Bias-Conflicting

Vanilla ✓ 79.0 59.0
EnD [34] ✗ 86.9 76.4
LNL [24] ✗ 80.1 61.2
DI [38] ✗ 90.9 86.3

BiasCon + BiasBal [19] ✗ 91.4 87.2
Group DRO [32] ✓ 85.4 83.4

LfF [30] ✓ 84.2 81.2
Ours ✓ 90.2±1.1 84.5±2.0

vised ones, for not extreme values of ρ: the only method that
yields better results on the three lower correlations levels is
the use of the associated BiasContrastive and BiasBalanced
losses [19]. On the unsupervised field, we get better accura-
cies than our competitors except for the highest correlation
level. We can observe in this case a very high standard de-
viation because of the high stochastic noise of the gradient:
the very few bias-target misaligned (60 in total, constitut-
ing 0.1% of the train set) searches for the perfect moment
to mark. We hypothesize these difficulties are caused by
the large gradients, which make the bias-target alignment
information extraction noisy: we tried to perform the bias
extraction for this specific setup having a smaller learning
rate (0.01), and the performance improved to 72.6% ± 11.6.
Tuning properly the learning rate in extreme scenarios is a
key element towards a successful bias-target alignment in-
formation extraction.
Results on Multi-Color MNIST. The Multi-Color MNIST
dataset [27] helps us to test the performance of our method
on multiple biases at the same time. To differentiate perfor-
mance in different bias-alignment configurations, we will
refer to two distinct partitions of the dataset D:

D = R∥ ∪R⊥ = L∥ ∪ L⊥, (9)

where R∥ (L∥) is the subset of samples whose right (left)
background is aligned with its digit, and R⊥ (L⊥) when
it’s not. As previously done in the state-of-the-art [27], we
compute separately the accuracies for the four subsets in-
tersections. The average of these four metrics constitutes
“unbiased accuracy”. The most difficult subset is R⊥∩L⊥:
the performance of the vanilla model is below that of ran-
dom guessing, and the same is true for three out of five
tested debiasing methods. In contrast, every method reaches
100% accuracy or close for samples in R∥ ∩ L∥. Even in
this case, our method achieves state-of-the-art results for
this dataset. More specifically, we record the best-unbiased
accuracy, and we improve the best score on the double-
conflicting setup by +8%. For instance, LfF [30], whose
main assumption is close to ours, while emphasizing the
early choices of its bias-extracting model seems to perform
very unevenly regarding the two biases (around 5% accu-
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Figure 4. Evolution of the relative distance to the target Voronoi
boundary for the misclassified elements (red curve) and the match
between the misclassified samples {n| argmax(ye,n) ̸= ŷn} and
the misaligned samples {n|b̂n ̸= ŷn} (blue dashed line).

racy when for R⊥). This further strengthens our choice of
not extracting a bias label, but the bias-target alignment in-
formation, and waiting for the best time to extract it.
Results on CelebA. On the CelebA dataset, two test se-
tups are employed: the ”unbiased”, where the average of
the scores obtained on each of the target-bias combinations
(here blond-male, blond-female, not blond-male and not
blond-female) is considered, and the ”bias-conflicting” one,
where the two bias-aligned combinations are not consid-
ered. On both metrics, our approach ranks the best unsuper-
vised (+4.8% on the “unbiased” metric), and third overall.
Results on 9-class ImageNet. When working at debias-
ing 9-class ImageNet, all other state-of-the-art methods be-
come bias-tailored (BT): indeed, they use BagNet-18 [7] as
a bias-extracting model for its known tendency to fit tex-
ture (as these datasets are known to be very biased towards
texture [16]). If we want to perform bias-agnostic debias-
ing, we shouldn’t rely on that kind of bias-extracting model
chosen to fit the bias type of the dataset. However, to com-
pare our method to theirs on an equal footing we tested two
configurations:

• ours (+BagNet), where we extract the bias-conflicting
samples from training BagNet-18 and then proceeded
to debiasing ResNet-18;

• ours, where we extract the bias-conflicting samples di-
rectly from the ResNet-18, which makes us the only
bias-agnostic method tested on this dataset.

We obtain comparable results to the state-of-the-art on
ImageNet-A (respectively 1.2% and 1.5% below the best-
performing method in FairKL [6]) and the two best results
overall on 9-class ImageNet. Interestingly, we get state-of-
the-art results with our method, when extracting informa-
tion directly from ResNet-18.
Ablation study. We tested the effect of the different
modules of our method on Biased MNIST, training with
ρ = 0.99. The results in Table 5 show that the use of
the reweighted loss function L yields an average increase
in accuracy of +7.1% and that the use of the IRH further
increases it by +1.7%. Finally, employing a conditional
mutual information term (on the bias-target misaligned ele-

4952



Table 3. Test accuracy on four subsets of Multi-Color MNIST. The “Unbiased” accuracy is the average of the four subsets.

Method Bias agnostic Test accuracy [%] (↑)
L∥ ∩R∥ L∥ ∩R⊥ L⊥ ∩R∥ L⊥ ∩R⊥ Unbiased

Vanilla ✓ 100.0 97.1 27.5 5.2 57.4
LfF [30] ✓ 99.6 4.7 98.6 5.1 52.0
EIIL [13] ✓ 100.0 97.2 70.8 10.9 69.7
PGI [1] ✓ 98.6 82.6 26.6 9.5 54.3

DebiAN [27] ✓ 100.0 95.6 76.5 16.0 72.0
Ours ✓ 100 ±0.0 90.9 ±3.5 77.5 ±2.8 24.1 ±1.8 73.1 ±0.9

Table 4. Test accuracy on 9-class ImageNet and ImageNet-A.

Method Bias Test accuracy [%] (↑)
agnostic 9-class ImageNet ImageNet-A

Vanilla ✓ 94.0 30.5
ReBias [5] ✗ 94.0 30.5

StylImageNet [16] BT 88.4 24.6
LearnedMixin [11] BT 79.2 19.0

RUBi [8] BT 93.9 31.0
LfF [30] BT 91.2 29.4

SoftCon [19] BT 95.3 34.1
FairKL [6] BT 95.1 35.7

Ours (BagNet [7]) BT 96.4 ±0.0 34.5 ±3.4
Ours ✓ 95.5 ±0.2 34.2 ±0.9

Table 5. Ablation study on Biased MNIST with ρ = 0.99.
Weighted L IRH Misaligned only Test accuracy [%](↑)

88.4 ±0.5
✓ 95.5 ±0.5
✓ ✓ 97.2 ±0.4
✓ ✓ ✓ 97.7 ±0.4

ments only) in place of total information removal provides
an extra gain in performance.
We also measured the average relative distances from the
misclassified samples at each epoch, comparing it to the
match of the extracted bias alignment information B to the
ideal ground truth B̂ = (b̂n)n∈ND (which is provided in
Biased MNIST), expressed by

ζ =
1

|D⊥|
∑

n∈ND⊥

δargmax(ye,n),b̂n
. (10)

In Fig. 4, we can see a peak in the average distances (marked
with ⋆) after the first few iterations: the model fits the color
bias in less than one epoch of training. As the training con-
tinues, the average relative distance decreases as expected:
the misclassified samples stay closer to the Voronoi bound-
ary. We observe that the relative average distance is a good
proxy for knowing when to learn the optimal bias alignment
B̂, as the two curves show a similar trend.
General discussion and limitations. Through the con-
ducted experiments, we have observed that our method es-
tablishes, in most of the considered setups, a new state-of-
the-art for bias-agnostic approaches, and in some cases even

outperforms supervised methods, such as in 9-class Ima-
geNet and the double-biased Multi-Color MNIST. A limi-
tation of the proposed approach appears when the correla-
tion between bias and target is extremely high (ρ = 0.999
in Biased MNIST). Since it heavily relies on the extrac-
tion of these bias-conflicting samples, when the stochastic
noise overwhelms the extraction of the bias misalignment
information, the proposed method will be sub-optimal. A
possible solution to this problem relies upon using a “suf-
ficiently small” learning rate. Finally, our method strongly
depends on the existence of these bias-conflicting elements:
in a fully-biased dataset, where the alignment bias-target
ρ = 1, since we have no information to extract from the
training set, our approach is expected to fail.

5. Conclusion

In this paper, we have presented an unsupervised, bias-
agnostic debiasing approach, whose performance is gener-
ally of the same order as that of state-of-the-art supervised
methods. We proposed a new bias-target alignment extrac-
tion method based on the distance between the misclas-
sified samples and the Voronoi boundary separating them
from their target class. Based on this distilled information,
we proposed a debiasing method composed of two syner-
getic elements. The first is a reweighted loss, where sample
weights reflect the bias-target (mis)alignment. The second
is a bias-target alignment information removal term, acting
as a regularizer for the latent space. We tested our method
on several debiasing benchmarks, recording a new state-of-
the-art for unsupervised debiasing in most of the considered
scenarios, although no specific hyperparameters tuning was
performed. In extreme cases, where the bias-target align-
ment is extremely high, we observed that the appropriate
choice of the vanilla model’s learning setup is crucial to the
success of the proposed approach, and its exploration is left
as future work.
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