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Abstract

Formula-driven supervised learning (FDSL) is a pre-
training method that relies on synthetic images generated
from mathematical formulae such as fractals. Prior work
on FDSL has shown that pre-training vision transformers
on such synthetic datasets can yield competitive accuracy
on a wide range of downstream tasks. These synthetic im-
ages are categorized according to the parameters in the
mathematical formula that generate them. In the present
work, we hypothesize that the process for generating dif-
ferent instances for the same category in FDSL, can be
viewed as a form of data augmentation. We validate this
hypothesis by replacing the instances with data augmenta-
tion, which means we only need a single image per cate-
gory. Our experiments shows that this one-instance fractal
database (OFDB) performs better than the original dataset
where instances were explicitly generated. We further scale
up OFDB to 21,000 categories and show that it matches, or
even surpasses, the model pre-trained on ImageNet-21k in
ImageNet-1k fine-tuning. The number of images in OFDB
is 21k, whereas ImageNet-21k has 14M. This opens new
possibilities for pre-training vision transformers with much
smaller datasets.

1. Introduction
Pre-training has become a standard procedure when

training deep neural networks in computer vision [5, 45].
Pre-trained models are known to exhibit superior conver-
gence and generalization for downstream tasks as compared
to models that are trained from scratch. However, pre-
training large vision models requires enormous data, which
makes pre-training state-of-the-art vision models very ex-
pensive regarding the required amount of data and compu-
tation.

During the past decade, ImageNet has served as a com-
mon dataset for pre-training vision models [13]. Models
pre-trained on the classification task of 1.28M images in
∗equal contribution
GitHub code : https://github.com/ryoo-nakamura/OFDB/

(a)

OFDB
One-instance FractalDBFractalDB

Only one Instance!!

1,000 instances per category

(b) Inside Fractal Category

Figure 1: (a) Fine-tuning accuracy on CIFAR-100 for
the number of images for pre-training. The line plot for
ImageNet-1k indicates the results when using random sam-
pling to reduce the data for pre-training. (b) One-instance
fractal database (OFDB) consists of only 1,000 images in
total. The figure shows the category representation. OFDB
contains a single instance per category.

ImageNet were transferred to Object Detection [15, 38, 45],
Semantic Segmentation [40, 34], and Video Recognition [8,
2]. In the 2020s, the pre-training of Vision Transform-
ers (ViT) [14] has become increasingly popular. However
large vision transformers are said to require datasets that are
much larger than ImageNet, such as JFT-300M/3B [36], in
order to achieve their true potential.

Pre-training increasingly larger models on increasingly
larger datasets has shown a monotonic improvement in the
accuracy of downstream tasks. However, creating datasets
with billions of labeled images is not the ultimate solution
to all our problems. First, the cost of manually labeling such
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huge datasets is prohibitive. Self-supervised learning (SSL)
has received great attention due to its competitive perfor-
mance when used to pre-train large models without requir-
ing labeled images. DINO [7], MoCoV3 [11], and BEiT [4]
have shown promising results in this regard. However, SSL
still relies on a vast amount of unlabeled data.

Therefore, we should pause and ask the question, “Are
we using all this data efficiently?” There have been efforts
in this direction to reduce the amount of pre-training data
while retaining accuracy on downstream tasks. For ViTs,
DeiT [37] has demonstrated that distillation and data aug-
mentation can enhance the pre-training effect of ImageNet-
1k to match that of larger datasets. MAE [16] also show
a high performance, even when trained on ImageNet-1k.
More recent studies, such as “Training Vision Transform-
ers with Only 2,040 Images” [44], show how ViTs can be
pre-trained on relatively small datasets.

Another approach to those above is pre-training a ViT
using formula-driven supervised learning (FDSL) [28, 21,
19, 32, 14], in which not even a real image is required. In
a follow-up study, Kataoka et al. [19] created an alternative
synthetic dataset with emphasis on the contours in the im-
age and showed that it is possible to surpass the accuracy
of a ViT pre-trained on ImageNet-21k by using a synthetic
dataset of the same size. FDSL method can generate the
labels automatically from the parameters used to generate
the images, so there is no labeling cost. Furthermore, un-
like SSL, FDSL does not even require real images. The fact
that a ViT pre-trained on synthetic datasets can outperform
a ViT pre-trained on a fairly large human-labeled dataset
ImageNet-21k is significant. However, synthesizing more
than a million images is costly. It is possible that many
of the images in these synthetic datasets are redundant or
are simply not contributing to the pre-training since these
synthetic images are expanded with basic procedures from
a single image. In case of FractalDB [21], a single image
inside of category was augmented to 1,000 instances with
image rotation, parameter fluctuation, and patch patterns.
It is natural to rely on the combination of data augmenta-
tion methods in pre-training phase. In this context, it may
be possible to reach the same fine-tuning accuracy for both
one instance with the same data augmentations and prepro-
cessed 1,000 instances.

In this paper, we present an FDSL approach to pre-train
a ViT with a single instance per category. Therefore, we
require only 1,000 images when the dataset contains 1,000
categories. The proposed dataset, i.e., the one-instance frac-
tal database (OFDB), significantly improves data efficiency
under the assumption that data augmentation is used dur-
ing pre-training. In previous FDSL datasets, the different
instances for each category are created through some form
of manipulation of the original image that defines that cat-
egory. Therefore, it is quite natural to wonder whether

these instances can be created through data augmentation
techniques. Although a detailed description is provided in
Section 4, we disclose that the fractal instances can be re-
placed by data augmentation, e.g., image rotation. Based
on the above considerations, we use a novel FDSL dataset
that only requires a single image per category and training
with data augmentation including random pattern augmen-
tation and random texture augmentation as proposed data
augmentation methods for FDSL pre-training. We validate
this hypothesis by creating small, yet effective, pre-training
datasets, 2D-OFDB and 3D-OFDB, respectively.

Our main contributions can be summarized as follows:
Conceptual contribution. We propose two datasets, 2D-
OFDB and 3D-OFDB, which consist of only one represen-
tative fractal per category. For example, 2D-OFDB-1k con-
sists of only 1,000 images but enables ViT to effectively
learn visual representations for image classification. Along
this line, we also implement random pattern augmentation
and random texture augmentation for fractal pre-training.
Experimental contribution. We show that OFDBs achieve
comparable performance to well-defined million-scale
datasets (Figure 1 and Table 1). Furthermore, we show
that the computational time of pre-training is reduced
by 78.7%. In ImageNet-1k fine-tuning, 2D/3D-OFDB-21k
performed at equal or better rates than baseline pre-training
datasets with only 21k images. (see Table 2). We also show
that OFDBs perform better than state-of-the-art methods for
training ViTs on small datasets [44] (Table 3).

2. Related Work
2.1. Formula-driven supervised learning (FDSL)

FDSL is a form of learning strategy in which images and
their corresponding labels are generated from a mathemat-
ical formula [21, 20, 28, 19, 32, 1, 42, 41]. Training on
such synthetic datasets frees us from various ethical issues,
e.g., societal biases and handling of copyrights and personal
information [43, 3]. One of the representative datasets for
FDSL is FractalDB, which generates fractal images from an
iterated function system (IFS) [21].

Nakashima et al. [28] demonstrated that a ViT can
be successfully pre-trained on FractalDB, which results
in competitive accuracy on downstream tasks to a ViT
pre-trained on ImageNet. More recently, Kataoka et
al. [19] extended the FractalDB to two other datasets
(ExFractalDB and RCDB), which comprise images with
more emphasis on contours rather than textures. When
fine-tuned on ImageNet-1k, the accuracy of the synthetic
datasets (ExFractalDB-21k and RCDB-21k) exceeds that of
ImageNet-21k. This is a significant result that raises fun-
damental questions regarding the role of real images when
pre-training ViTs. Furthermore, there is ample room for im-
provement regarding the quality of these synthetic datasets.
The ExFractalDB-21k and RCDB-21k dataset each have
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21k categories and 1k instances per category. The instances
are created by manipulating the original image, using a pro-
cess similar to data augmentation. In the present study, we
consider the possibility of replacing these instances with
standard or our proposed data augmentation techniques in
image classification.

2.2. Pre-training ViT on Limited Data
Since Dosovitskiy et al. published the ViT [14] paper

in 2020, they have been replacing convolutional neural net-
works (CNN) [25, 24] for various computer vision tasks.
However, large ViT models require large datasets, such as
ImageNet-21k (14M images) and JFT-300M (300M im-
ages), to reach their full potential. The DeiT [37] uses data
augmentation and distillation from CNNs to achieve the
same pre-training effect using only ImageNet-1k (1.28M
images). SSL, such as that by DINO [7], MoCoV3 [11],
BeiT [4], and MAE [16], is also able to achieve similar per-
formance using ImageNet-1k for pre-training. Other studies
have attempted to reduce the size of the pre-training dataset
even further. Cao et al. [44] modified the structure of ViT in
order to enhance the information extracted from images and
were able to pre-train ViT using only 2,040 – 8,144 images.
This is three orders of magnitude smaller than ImageNet-1k,
which opens new possibilities for pre-training vision trans-
formers on small datasets.

We propose a one-instance fractal database (OFDB),
where each category has only one instance. The hypothe-
sis here is that the 1,000 instances of the original FractalDB
can be replaced with standard or proposed data augmenta-
tion techniques. In this case, we only need a single instance
per category, whereas the other instances are created during
training through data augmentation.

3. Method
This section presents small and powerful datasets for

FDSL. In contrast to previous million-scale datasets, such
as ImageNet-1k, one of the proposed datasets, namely 2D-
OFDB-1k, contains only 1,000 images for pre-training, but
2D-OFDB-1k enables ViT to effectively learn visual repre-
sentations for image classification.

On the other hand, at the beginning of this section, we
describe ‘why fractal pre-training with one-instance per
category can train visual representation’ as a curious
scenario in FDSL datasets, especially on FractalDB. First,
we consider instance augmentation of FractalDB. In Frac-
talDB, the number of images is increased by (i) image ro-
tation (x4), (ii) IFS parameters fluctuation (x25), and (iii)
patch patterns (x10) from a representative image of the cat-
egory found with category search. FractalDB [21] is pre-
trained as a dataset of 1,000 instances of pre-processed im-
ages, but in a simple view, these could be replaced by data
augmentation. Details will be discussed later, and Table 6
shows that the accuracy is almost the same with and without

Rotation (2D-OFDB w/o rotation 84.0 vs. w/ rotation 84.1
on CIFAR-100). On the other hand, the performance rates
with IFS fluctuation are significantly lower (2D-OFDB w/o
IFS 84.0 vs. w/ IFS 81.6 on CIFAR-100). From these ob-
servations, we believe that a pre-training dataset with fewer
instances like a dataset consists of one-instance per category
and using basic data augmentation are the key technolo-
gies to reduce training time to an equivalent or better accu-
racy level. As the result, an image augmentation with patch
patterns were newly implemented as random patch/texture
augmentation so that they could be implemented within data
augmentation, and it became clear that accuracy could be
improved while reducing the data size to 0.1% amount.
3.1. Problem Settings
FDSL. The goal of FDSL is to pre-train neural networks
without real images. One of the most successful approaches
to achieve this goal is to synthesize a labeled dataset D =
{(xi,yi)}Ni=1 based on some mathematical formulas, such
as fractals [21], where xi is a synthesized image, yi is a
one-hot label vector, and N is the number of images. For
FDSL, the cross-entropy loss is used, which is given by

Lce(θ;D) = − 1

N

N∑
i=1

C∑
c=1

yi,c log pi,c, (1)

where pi = fθ(xi) ∈ RC is the output vector of a learn-
able network fθ, such as a ViT, θ is a set of parameters, and
C is the number of categories. Typically, the number of im-
ages N should be equal to or more than one million in order
to achieve good pre-training performance.
One-instance FDSL. The present paper proposes a chal-
lenging learning framework, namely one-instance FDSL, in
an attempt at efficient and effective pre-training. The goal
of one-instance FDSL is to pre-train neural networks with
a dataset of representative images D = {xc}Cc=1, where xc

is a single image that represents category c, i.e., dataset D
involves only one image instance per category. With this
setting, the cross-entropy loss reduces to the following neg-
ative log-likelihood loss:

Lnl(θ;D) = − 1

C

C∑
c=1

log pc,c. (2)

This setting dramatically improves data-efficiency of pre-
training because the setting omits N in Eq. (1).
3.2. One-instance Fractal Databases (OFDBs)

We propose OFDBs involving representative images of
fractals. There are two variants, 2D-OFDB and 3D-OFDB,
which consist of representative images of 2D and 3D frac-
tals, respectively.
2D-OFDB. The first variant is a dataset that consists of
representative 2D-fractal images. In order to create frac-
tals, the iterated function system (IFS) [21] is used:IFS =
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{X ;w1, w2, · · · , wM ; p1, p2, · · · , pM} where X = R2 is a
2D Euclidean space, wj : X → X is an affine transfor-
mation function, and pj is a probability. Given an IFS and
an initial point v1 ∈ X , a fractal S is obtained as a set of
points S = {vt}∞t=1 ⊂ X by vt+1 = w∗(vt), where w∗

is a transformation sampled at each t under the probability
distribution p(w∗ = wj) = pj .

The 2D-OFDB D2D = {xc}Cc=1 consists of C repre-
sentative images that are synthesized in the following three
steps: First, a set of iterated function systems {IFSc}Cc=1

is randomly sampled. We use the sampling algorithm pro-
posed in [21]. Second, with each IFSc, a fractal Sc is ran-
domly sampled. Finally, Sc is rendered into xc. Note that
the original FractalDB [21] samples 1,000 fractals from
each IFSc. However, we found that most fractals are re-
dundant, especially with image rotation (see Table 6 for
details), if a data augmentation function is used when pre-
training ViT. For comparison with ImageNet, we create two
datasets, 2D-OFDB-1k/21k, by setting C = 1, 000/21, 000,
respectively.
3D-OFDB. The second variant is a dataset consisting of 3D
fractals. This dataset uses the 3D Euclidean space X = R3

and 3D affine transformations with IFSs. The representa-
tive fractals are chosen by considering variance δ of point
scattering in 3D space. We follow the previous study [19] to
conduct the procedure. We create two datasets, 3D-OFDB-
1k/21k, by setting C = 1, 000/21, 000, respectively.

3.3. Data augmentation for fractal images
In one-instance FDSL, we empirically found that the

augmentation configuration proposed for the DeiT [37]
is effective. However, given representative fractal images,
there is still room for improvement because the configura-
tion of the DeiT is empirically optimized for pre-training
with real images. Here, we present two additional augmen-
tation functions that boost pre-training with OFDBs. Also,
note that our proposed data augmentation is OFDB-specific
and cannot be applied to natural images.
Random pattern augmentation (Figure 2a). The image
xc of the representative fractal Sc is a binary (black-and-
white) image of dots, each of which corresponds to a point
vt of the fractal. Given an image, xc, the random pat-
tern augmentation augments each dot to a 3 × 3 pattern.
The patch patterns are randomly sampled from the uniform
distribution over the set of all binary patterns (there are
23×3 = 512 patterns). Figure 2a shows an example of
two augmented images and the difference between the im-
ages. We see that the overall fractal shape is the same for
the two images, but the local patterns are different. Interest-
ingly, the difference image obtained by this augmentation
method makes the same fractal.
Random texture augmentation (Figure 2b). The random
texture augmentation augments each dot to a 3 × 3 gray-
scale texture, where each pixel value is randomly sampled

...

(a) Random patch augmentation.

...

(b) Random texture augmentation.

Figure 2: Proposed data augmentation methods.

from the uniform distribution over {0, 1, · · · , 255}. Un-
like random pattern augmentation, this augmentation makes
dense images, where most of the nine pixels in each texture
have non-zero values.

4. Experiments
4.1. Comparison with State-of-the-art Datasets
Fine-tuning results (Table 1). We conducted fine-
tuning experiments on the CIFAR-10 (C10) [23], CIFAR-
100 (C100) [23], Cars [22], Flowers [29], ImageNet-100
(IN100) [21], Places30 (P30) [21], and Pascal VOC 2012
(VOC12) [15] datasets. The proposed OFDBs are compared
with six pre-training datasets: ImageNet-1k , Places-365
, PASS , FractalDB-1k , RCDB-1k , and ExFractalDB-1k
. The results using a subset of ImageNet, which consists
of 1,000 images obtained by randomly sampling one im-
age per category, are also reported. Note that ♢indicates
the subset. This subset is the same size as OFDBs. Here,
we assign the ViT-Tiny (ViT-T) model with standard DeiT
training configurations, including hyper-parameters.

From the experimental results in Table 1, we see that
OFDBs achieved a higher accuracy with million-scale
FDSL datasets, such as ExFractalDB-1k. Although they
did not always surpass SL and SSL methods, note that they
often achieved similar performance rates with only 1,000
images for pre-training, which is approximately 0.078% of
images as compared to ImageNet-1k (1.28M images). We
also see a significant difference between OFDBs and the
ImageNet-1k♢ subset in terms of average accuracy. In the
proposed methods, the configuration of 2D-OFDB-1k with
random pattern augmentation has a better average rate in the
table. Thereafter, in the experiments, we assigned random
pattern augmentation for 2D-OFDB.
Scaling experiments on ImageNet-1k (Table 2). In or-
der to investigate the scalability of OFDBs, we increased
the number of categories from 1,000 to 21,000 and ap-
plied these categories to ViT-T and ViT-Base (ViT-B) in
Table 2. For comparison, the results of ImageNet-21k,
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Table 1: Comparison of pre-training methods. Best values at each dataset scale are in bold. ♢ indicates a subset that consists
of one randomly sampled image per class. ViT-T is used for all experiments. SL: supervised learning using cross-entropy
loss, SSL: self-supervised learning using DINO [7]. Fine-tuning accuracies are reported.

Pre-training #Img Type C10 C100 Cars Flowers VOC12 P30 IN100 Average

Scratch – – 78.3 57.7 11.6 77.1 64.8 75.7 73.2 62.6

Places-365 [45] 1.80M SL 97.6 83.9 89.2 99.3 84.6 – 89.4 –
ImageNet-1k [13] 1.28M SL 98.0 85.5 89.9 99.4 88.7 80.0 – –
ImageNet-1k [13] 1.28M SSL 97.7 82.4 88.0 98.5 74.7 78.4 89.0 86.9
PASS [3] 1.43M SSL 97.5 84.0 86.4 98.6 82.9 79.0 82.9 87.8
FractalDB-1k [21] 1.00M FDSL 96.8 81.6 86.0 98.3 80.6 78.4 88.3 87.1
RCDB-1k [19] 1.00M FDSL 97.0 82.2 86.5 98.9 80.9 79.7 88.5 87.6

ImageNet-1k♢ 1,000 SL 94.3 76.9 57.3 94.8 73.8 78.2 84.3 79.9
ImageNet-1k♢ 1,000 SSL 94.9 78.0 71.2 94.6 75.5 78.6 84.9 82.5
2D-OFDB-1k (ours) 1,000 FDSL 96.9 84.0 84.5 97.1 79.9 79.9 88.0 87.2
2D-OFDB-1k w/ Aug. (ours) 1,000 FDSL 97.2 85.3 87.6 98.3 81.4 80.4 89.5 88.5
3D-OFDB-1k (ours) 1,000 FDSL 97.1 83.8 85.5 98.4 80.8 80.0 89.1 87.8
3D-OFDB-1k w/ Aug. (ours) 1,000 FDSL 97.0 84.7 85.6 98.3 81.2 79.8 88.9 87.9

Table 2: Scaled models/datasets with combinations of 21k categories and ViT-T/B models are used in ImageNet-1k fine-
tuning. We also list GPU hours, batch size (‘Batch’), and number of iterations (‘#Iterations’) in ViT-B pre-training.

Pre-training #Img Type ViT-T ViT-B GPU hours Batch #Iterations

Scratch – – 72.6 79.8 – – –

ImageNet-21k 14M SL 74.1 81.8 3,657 8,192 300k
FractalDB-21k 21M FDSL 73.0 81.8 5,120 8,192 300k
ExFractalDB-21k 21M FDSL 73.6 82.7 5,120 8,192 300k
RCDB-21k 21M FDSL 73.1 82.4 5,120 8,192 300k

ImageNet-21k♢ 21k SL 71.0 81.1 1,132 1,024 300k
2D-OFDB-21k 21k FDSL 73.8 82.2 1,088 1,024 300k
3D-OFDB-21k 21k FDSL 73.7 82.7 1,088 1,024 300k

FractalDB-21k, ExFractalDB-21k, and RCDB-21k are re-
ported. ImageNet-21k consists of 14M images, and the
other three FDSL datasets consist of 21M images. The
results for the ImageNet-21k♢ subset involving one image
per category are also reported.

With ViT-T, 2D-OFDB-21k outperforms FractalDB-21k
(73.8 vs. 73.0) and is comparable with ExFractalDB-
21k (73.7 vs. 73.6). However, we see the performance
gap between 2D-OFDB-21k and ImageNet-21k (73.8 vs.
74.1). This is because the images of ImageNet-21k for
pre-training and the images of ImageNet-1k for fine-tuning
overlap. This gap is reversed in ViT-B, where 2D-OFDB-
21k is recorded 0.4 points higher than ImageNet-21k on
ImageNet-1k fine-tuning. Moreover, the 3D-OFDB-21k
pre-trained model was recorded 0.9 point higher than the
model pre-trained on ImageNet-21k. Note that the com-
putational time for pre-training in terms of GPU hours is
reduced by 78.7% (1,088 vs. 5,120 in terms of GPU hours).
We clarified that ViT pre-training can be more efficient in
terms of both data amount and computational time.
Training on small datasets (Table 3). Instance Discrim-
ination with Multi-crop and CutMix (IDMM), proposed
by Cao et al. [44], which requires only 2,040 images for

pre-training, is one of the most successful approaches for
training ViTs on small datasets. In Table 3, we compare
OFDBs with IDMM. Here, we used the fine-tuning con-
figuration of IDMM for a fair comparison, i.e., 800-epoch
pre-training and 200-epoch fine-tuning on seven datasets
of Flowers [29], Pets [31], DTD [12], Indoor-67 [33],
CUB [9], Aircraft [27], and Cars [22]. Note that IDMM has
two settings: internal pre-training and external pre-training.
We used PVT v2[39] for the ViT model, as in Cao et al.
The former uses the same dataset for pre-training and fine-
tuning. This performs well, as reported in [44]. For the
latter, we used an ImageNet subset, which consists of 2,040
randomly sampled images (with two or three images per
category). We refer to this as IDMM-ImageNet.

The results are shown in Table 3. Although we used
a limited number of images to pre-train a ViT, the re-
sult is much higher than the accuracy of training from
scratch using the same procedure of 200-epoch fine-tuning.
The proposed method is also better than the other well-
organized pre-training methods, including IDMM [44] and
SimCLR [10], with fewer pre-training images. In compari-
son with IDMM-ImageNet, 2D-OFDB-1k pre-training still
performs at a higher accuracy, indicating that 2D-OFDB-1k
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Table 3: Pre-training with small datasets. The pre-training and fine-tuning setting in [44] is used for evaluation. Note that the
values ‘2,040 – 8,144’ correspond to the number of pre-training images at each dataset. Best and second-best scores are in
underlined bold and bold, respectively.

Pre-training #Img Flowers Pets DTD Indoor-67 CUB Aircraft Cars Average

Scratch – 76.4 67.2 44.2 58.7 54.4 23.0 78.6 57.5
SimCLR [10] 2,040 – 8,144 90.1 82.8 62.3 66.6 68.5 74.4 89.3 76.3
IDMM [44] 2,040 – 8,144 92.4 83.2 66.9 68.5 69.8 73.4 87.8 77.4
IDMM-ImageNet [44] 2,040 90.5 82.4 66.8 68.8 66.8 91.8 87.6 79.2
2D-OFDB-1k (ours) 1,000 93.7 84.6 67.5 66.1 67.7 95.0 91.0 80.8
3D-OFDB-1k (ours) 1,000 92.8 84.6 67.5 68.6 67.9 94.6 90.4 80.9

Table 4: Comparison of object detection and instance seg-
mentation. Several pre-trained models were validated on
the COCO dataset. The best values for each learning type
are shown in bold.

Pre-training COCO Det COCO Inst Seg
AP50 / AP / AP75 AP50 / AP / AP75

Scratch 63.7 / 42.2 / 46.1 60.7 / 38.5 / 41.3

ImageNet-1k 69.2 / 48.2 / 53.0 66.6 / 43.1 / 46.5
ImageNet-21k 70.7 / 48.8 / 53.2 67.7 / 43.6 / 47.0
ExFractalDB-1k 69.1 / 48.0 / 52.8 66.3 / 42.8 / 45.9
ExFractalDB-21k 69.2 / 48.0 / 52.6 66.4 / 42.8 / 46.1
RCDB-1k 68.3 / 47.4 / 51.9 65.7 / 42.2 / 45.5
RCDB-21k 67.7 / 46.6 / 51.2 64.8 / 41.6 / 44.7

ImageNet-21k♢ 63.8 / 42.0 / 45.5 60.7 / 38.3 / 41.0
2D-OFDB-21k 67.6 / 46.4 / 51.0 64.6 / 41.6 / 44.7
3D-OFDB-21k 67.1 / 46.3 / 51.0 64.4 / 41.4 / 44.4

pre-training is highly beneficial, even when using a limited
number of synthesized images.
COCO detection/instance segmentation (Table 4). We
validate object detection and instance segmentation on the
COCO [38] dataset. Here, we switch the backbone model
from a ViT to a Swin Transformer [26] with Mask R-
CNN [17] head. We perform training for 60 epochs on the
COCO dataset. The proposed 2D-OFDB-21k pre-trained
model scores are higher than in the case of training from
scratch and are similar to those for the model pre-trained
with ImageNet-1k. 2D/3D-OFDB-21k recorded similar
rates of 67.1 and 64.4 (64.3 in 3D-OFDB-21k) at AP50 in
detection and segmentation tasks.

4.2. Exploratory Study
In this subsection, we basically apply the data augmen-

tation methods and hyper-parameters used in the paper on
the DeiT, unless we mention the changed parameters from
those of the DeiT. We use fine-tuning accuracy on CIFAR-
100 (C100) as an evaluation measure.
Virtual camera for 3D-OFDB (Table 5). In ExFractalDB
implementation, three axes (roll, pitch, yaw angle) are con-
trolled to set the random viewpoint, which is then projected
from the 3D model onto the 2D image. Here, we project the
3D model onto 2D images with random viewpoints using
{1, 2, 3} axes {roll, pitch, yaw}. Table 5 show the experi-

Table 5: Analysis on 3D-OFDB. Although ExFractalDB-1k
previously adjusted one-axis with yaw angle, we adjusted
three axes with {roll, pitch, yaw} angles.

Pre-Training Axis Acc.

3D-OFDB 1 (yaw) 83.8
2 (pitch, yaw) 82.8
3 (roll, pitch, yaw) 82.7

ExFractalDB 3 (roll, pitch, yaw) 83.1

mental results. We use 12 fixed viewpoints at every 30 de-
grees in two or three axes. Eventually, an improvement can
no longer be expected by creating additional camera angles
with roll, pitch, and yaw. Rather, a limited viewpoint from
fixed 30-degree angles with only a yaw angle proves better.
Data augmentation (Table 6). Table 6 shows the effects of
data augmentation for fractal images. We see that the pro-
posed augmentation methods boost accuracy. In particular,
random pattern augmentation is the most effective. With
IFS augmentation, we see the pre-training performance de-
crease significantly. This is because the better performance
of 2D-OFDB-1k vs. FractalDB-1k in Table 1 is due to the
removal of IFS augmentation. Figure 3 shows examples
of image augmented with IFS. In the augmented images,
there are images with significantly altered shapes, particu-
larly images with almost meaningless shapes, which may
hurt pre-training during DeiT augmentation. Also, with ro-
tation augmentation, which randomly rotates fractal images
by 0, 90, 180, or 270 degrees, we see that the performance
improvement is not significant. This is because rotation
augmentation resembles flipping augmentation in the DeiT
setting.
One-instance setting on real-image dataset (Table 7). We
conduct some additional experiments on the ImageNet-1k♢

subset. Here, we convert RGB images to gray-scale [18],
binary [30], and Canny edge [6] images. Table 7 shows the
results of pre-training with these converted images. This
table also shows the results for 2D/3D-OFDB-1k.

We see that binary and Canny images performed better
than RGB images when we used these images in the pre-
training phase. However, none of the images outperformed
2D/3D-OFDBs. These results are consistent with the claim
that “object contours are what matter in FDSL datasets”,
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Table 6: Effects of data augmentation for fractal images.
Data-efficient image Transformer (DeiT) augmentation set-
ting is used as a default.

DeiT ✓ ✓ ✓ ✓ ✓ ✓
IFS ✓
Rotation ✓
Rand. Pat. ✓ ✓
Rand. Text. ✓ ✓

2D-OFDB 84.0 81.6 84.1 85.3 84.8 84.3
3D-OFDB 83.8 - - 84.7 85.1 85.1
Original IFS augmentation samples

All images in same category
Figure 3: Sample images augmented with IFS

as noted in a previous paper [19]. In fact, in order to pre-
train a ViT model with one instance per category, an RGB
representation is not enough on ImageNet-1k. A contour-
emphasized dataset with a Canny edge detector is more ef-
ficient for pre-training a ViT, which is good at learning ob-
ject contours. In the one-instance setting, we found that
the pre-training effect with contour-emphasized image rep-
resentations was also improved.
Number of instances (Figure 4). Figure 4 shows the
relationship between the number of image instances and
accuracy in pre-training with ImageNet-1k (SL) and 2D-
OFDB-1k (FDSL). In the figure, the transition in accuracy is
shown when #instances are set to {1, 10, 100, 500, 1,000}.
Formula-driven supervised learning has the highest accu-
racy when #instances is 1; there is a slight decrease in ac-
curacy up to 100 instances and almost no change thereafter.
On the other hand, the lowest accuracy was observed for one
instance when ImageNet-1k was used, and the accuracy im-
proved with each increase in the number of instances. Note
that since the total image dataset size is 1,000 images for the
one-instance setting, the batch size is set to 256 for all set-
tings. However, we assigned a better setting with a batch
size of 1,024 on ImagNet-1k pre-training, except for the
one-instance setting.

For ImageNet, the performance of pre-training is re-
duced because the number of data is reduced, but for Frac-
talDB, the performance is improved by reducing the number
of data. The performance reduction can be attributed to the
augmentation method of FractalDB’s data. FractalDB aug-
ments the data with Table 6 Rotation and IFS to create a
1M-scale dataset. The results in Table 6 show that Rotation
does not improve the pre-training performance when using
DeiT’s data augmentation, and for IFS, it rather reduces the
pre-training performance. Therefore, since reducing data
in FractalDB corresponds to removing data augmented by
IFS, we can consider that the accuracy of pre-training per-
formance improves as the data decreases.
Number of pre-training images on 2D-OFDB (Figure 5).

Table 7: Exploratory experiment on one-instance ImageNet
pre-training. Preprocessing ImageNet-1k♢ (1-instance)
dataset with RGB images, we convert {gray, binary, canny}
images for pre-training for each dataset. In this experi-
ment, ImageNet-1k♢ (Canny) achieved the best accuracy
in ImageNet-1k♢ sets {RGB, gray, binary, canny} .

Pre-training C10 C100 IN100 P30

ImageNet-1k♢ 94.3 76.9 84.3 78.2
– Gray scale [18] 96.1 81.2 87.8 79.9
– Binary [30] 96.7 82.7 88.8 79.9
– Canny [6] 96.5 82.8 87.7 80.3

2D-OFDB-1k 96.9 84.0 88.0 80.4
3D-OFDB-1k 97.1 83.8 89.1 80.0

We determined whether fewer pre-training images can work
in ViT pre-training. Here, we decrease the number at {100,
300, 500, 700, 900} in the pre-training phase. Note that the
number of parameter updates is aligned even if the num-
ber of images is decreased. And the results are then com-
puted by averaging five times the pre-training effects of dif-
ferent 2D-OFDBs.Figure 5 shows that the accuracy of pre-
ViT training with only 100 synthesized images was 82.7 on
C100, which is much higher than the accuracy for training
from scratch (57.7) and still better than that for pre-trained
on ImageNet with DINO supervision (82.4).
Category selection with data pruning (Figure 6). We
employed ‘accidentally’ found fractal categories in FDSL
pre-training. However, a one-instance setting in FDSL does
not require augmented image instances; that is, it makes it
easier to evaluate image categories on the FDSL dataset.
Therefore, we tested whether category selection can im-
prove the pre-training effects of OFDB with the data prun-
ing method [35].

We analyzed the tendency of selected categories from
the 21k to 1k category dataset. Figure 6 shows the rela-
tionship between easy sample usage with data pruning and
fine-tuning accuracy. As the figure confirms, the balanced
dataset (50:50 with easy:hard samples) recorded the best ac-
curacy among all the settings. On the other hand, a dataset
mainly consisting of hard samples (10:90 or 30:70 with
easy:hard samples) had lower fine-tuning accuracy than the
OFDB-1k pre-trained ViT-T. See supplementary material
for the samples of selected categories with data pruning.
Processing time on dataset rendering. Table 8 shows a
time comparison for dataset rendering in FDSL datasets.
The table indicates that the proposed one-instance FDSL
datasets, 2D/3D-OFDB-1k, are ×6.9/10.4 faster than the
rendering time with FractalDB-1k and ExFractalDB-1k, re-
spectively. By considering the rendering time, the speed
increases are ×41.1/135.7 faster. Note that the number of
3D points in an image is much smaller than that of 2D ren-
dering points. Therefore, the 3D-OFDB-1k is more efficient
than 2D-OFDB-1k for total time.
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5. Discussion and Conclusion
ViT pre-training on a one-instance dataset. We validated
ViT pre-training on an image dataset consisting of only
one synthesized image per category. First, we succeeded
in pre-training a ViT on the proposed OFDBs while still
not requiring real images and human supervision. More-
over, the OFDB-1k pre-trained model performed better than
the model pre-trained by FractalDB-1k (OFDB-1k 84.0 vs.
FractalDB-1k 81.6; see Table 1). In further exploration,
the proposed random patch augmentation with randomly se-
lected 3×3 pixels in the fractal image rendering proved to
be the most effective way to improve the OFDB pre-training
effect. Consequently, we added random patch augmenta-
tion to the OFDB (w/ aug 85.3 vs. w/o 84.0; see Table 6).
We also confirmed that a synthesized image dataset contain-
ing one-instance per category is sufficient to pre-train a ViT
model.
Experimental comparison discussion. The proposed
OFDB-1k surpassed ImageNet-1k in pre-training for all
tasks, including image classification, object detection, and
instance segmentation (refer to Tables 1 to 4). No-
tably, 2D/3D-OFDB-21k matched or exceeded ImageNet-
21k’s pre-training performance. With ViT-B model fine-
tuning, we achieved 82.2/82.7 accuracy on ImageNet-1k
(Table 2). Our pre-training utilized 21k images, compared
to ImageNet-21k’s 14M. The speedup between OFDB-21k
and ImageNet-21k pre-training was about ×3.3 (2D/3D-
OFDB-21k used 1,088 GPU hours vs. ImageNet-21k’s
3,657 GPU hours).

In ViT pre-training with fewer images, 2D/3D-OFDB
outperformed IDMM in average accuracy for benchmark
fine-tuning datasets and pre-training image count (Table 3).
Our method required no model modifications and fewer
images, using just 1,000 synthetics versus IDMM’s mini-
mum of 2,040 reals. As shown in Figure 5, 2D-OFDB pre-
training with 100 images yielded 82.7 accuracy on C100,
surpassing DINO self-supervised ImageNet. This method
substantially lowered image count in ViT pre-training com-
pared to prior work.

Table 8: Datasets rendering time by full-instance
(FractalDB/ExFractalDB-1k) and one-instance (2D/3D-
OFDB-1k). We separately show fractal category search
(Search), image rendering (Render), and total time (Total).
The values are given in hours.

Dataset Search Render Total

FractalDB-1k 2.37 16.86 19.23
2D-OFDB-1k 2.37 0.41 2.78

ExFractalDB-1k 0.53 5.43 5.96
3D-OFDB-1k 0.53 0.04 0.57

Limitations. By using the proposed 2D/3D-OFDB pre-
trained models, the pre-training methods still have lower ac-
curacies compared to ImageNet-1k pre-training with a full-
instance scale for relatively small datasets (see Table 1).
We believe that when improved image representation and
teacher labels are provided, even a 1,000-image dataset will
achieve a superior pre-training effect than a 1.28M-image
dataset. This would be advantageous for computing re-
sources, especially in terms of memory usage and compu-
tational time. On the other hand, the models pre-trained
on 2D/3D-OFDB-21k could not achieve the performance
of ExFractalDB-21k pre-trained Swin Transformer (see Ta-
ble 4). Though the detection/segmentation performance
rates did not decrease greatly, we intend to explore whether
this is a side-effect of reducing the number of instances and
whether we can overcome this problem with other better
image representations.
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