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Abstract

In this study, a novel self-supervised learning (SSL)
method is proposed, which considers SSL in terms of vari-
ational inference to learn not only representation but also
representation uncertainties. SSL is a method of learning
representations without labels by maximizing the similar-
ity between image representations of different augmented
views of an image. Meanwhile, variational autoencoder
(VAE) is an unsupervised representation learning method
that trains a probabilistic generative model with variational
inference. Both VAE and SSL can learn representations with-
out labels, but their relationship has not been investigated
in the past. Herein, the theoretical relationship between
SSL and variational inference has been clarified. Further-
more, a novel method, namely variational inference SimSiam
(VI-SimSiam), has been proposed. VI-SimSiam can predict
the representation uncertainty by interpreting SimSiam with
variational inference and defining the latent space distribu-
tion. The present experiments qualitatively show that VI-
SimSiam could learn uncertainty by comparing input images
and predicted uncertainties. Additionally, we described a re-
lationship between estimated uncertainty and classification
accuracy.

1. Introduction

Self-supervised learning (SSL) is a framework for learn-

ing representations of data [6, 14, 20, 7, 5, 61, 50, 37, 28, 39].

This method enables training of high-performance models

in downstream tasks (e.g., image classification and object

detection) without substantial manually labeled data through

pre-training the network to generate features. It can mitigate

the annotation bottleneck, one of the crucial barriers to the

practical application of deep learning. Some state-of-the-
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Figure 1: Input images and the predicted uncertainty parame-
ter κ. Our method learns not only representations of images but

also uncertainties in them without supervision. The lower the κ,

the higher the uncertainty. The images with a low κ appear to have

less salient features than those with a high κ.

art SSL methods, such as SimSiam [6], SimCLR [5], and

DINO [4], train image encoders by maximizing the similar-

ity between representations of different augmented views of

an image.

The probabilistic generative models with variational in-

ference provide another approach for representation learn-

ing [27]. This approach learns latent representations in an

unsupervised fashion by training inference and generative

models (i.e., autoencoders) together. It can naturally incor-

porate representation uncertainty by formulating them as

probabilistic distribution models (e.g., Gaussian). However,

the pixel-wise objective for reconstruction is sensitive to

rare samples [32] in such methods. Furthermore, this repre-

sentation learning is recently found to be less competitive

than the SSL methods on the benchmarking classification

tasks [32, 37]. Although SSL and variational inference seem
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highly related learning representations without supervision,

their theoretical connection has not been fully explored.

In this study, we incorporate the variational inference

concept to make the SSL uncertainty-aware and conduct a

detailed representation uncertainty analysis. The contribu-

tions of this study are summarized as follows.

• We clarify the relationship between SSL (i.e., SimSiam,

SimCLR, and DINO) and variational inference, gener-

alizing the SSL methods as the variational inference of

spherical or categorical latent variables (§4).

• We derive a novel SSL method called variational in-

ference SimSiam (VI-SimSiam) by incorporating the

above relationship. It learns to predict not only repre-

sentations but also their uncertainty (§ 5).

• We demonstrate that VI-SimSiam successfully esti-

mates uncertainty without labels while achieving com-

petitive classification performance with SimSiam. We

qualitatively evaluate the uncertainty estimation capa-

bility by comparing input images and the estimated

uncertainty parameter κ, as shown in Fig. 1. In addi-

tion, we also describe that the predicted representation

uncertainty κ is related to the accuracy of the classifica-

tion task (§ 6).

A comparison of SimSiam and VI-SimSiam is illustrated

in Fig. 2, where VI-SimSiam estimates the uncertainty by

predicting latent distributions.

2. Related work
2.1. Self-supervised learning

SSL [5, 20, 6, 14, 4] has been demonstrated to have no-

table performance in many downstream tasks, such as clas-

sification and object detection. Contrastive SSL methods,

including SimCLR[5] and MoCo [20], learn to increase the

similarity of representation pairs augmented from an image

(positive pairs) and to decrease the similarity of representa-

tion pairs augmented from different images (negative pairs).

Conversely, non-contrastive SSL, including SimSiam [6],

BYOL [14], and DINO [4], learn a model using only the

positive pairs. Zbontar et al. [61] proposed another non-

contrastive method using the redundancy-reduction principle

of neuroscience. Furthermore, several studies have theoret-

ically analyzed the SSL methods, such as Tian et al. [50]

investigated the reasons behind the superior performance of

the non-contrastive methods. Tao et al. [49] claimed that

the (non-)contrastive SSL methods can be unified into one

form using gradient analysis. Zhang [62] demonstrated a

theoretical connection between masked autoencoder [19]

and contrastive learning. However, these studies assumed a

deterministic formulation without considering uncertainty in

the representations.
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Figure 2: Schematics of VI-SimSiam and SimSiam [6]. These

methods use the augmented images x1 and x2 as input images.

In VI-SimSiam, we define the distribution of latent space that

follows the Power Spherical distribution [10]. Unlike SimSiam,

VI-SimSiam can predict the representation uncertainty of the image

κ.

2.2. Variational inference

In deep learning, variational inference is generally formu-

lated using auto-encoding variational Bayes [27]. The varia-

tional inference estimates latent distributions, such as Gaus-

sian [27], Gaussian mixture [51], and von Mises-Fischer

(vMF) distribution for hyperspherical latent space [9]. Al-

though Wang et al. [53] pointed out that SSL methods learn

representations on the hypersphere, their relevance to the

spherical variational inference [9] has yet to be investigated

extensively.

A multimodal variational autoencoder [31, 55, 47, 48]

is trained to infer latent variables from multiple observa-
tions1 from different modalities. The latent variable distri-

bution of multimodal variational inference is often assumed

to be the product of experts or the mixture of experts of uni-

modal distributions [31, 55, 47]. Sutter et al. [48] also clari-

fied the connection between them and generalized them as

mixture-of-products-of-experts (MoPoE) VAE. Multimodal

variational inference seems highly related to the SSL utiliz-

1We treat multiple observations as multiview and multimodal.
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ing the multiview inputs. However, their relationship has

been unclear.

2.3. Uncertainty-aware methods

Uncertainty-aware methods [12, 25, 26, 36, 54] have been

proposed to solve the problem of learning hindered by data

with high uncertainty. Kendall and Gal [25] proposed a

method that estimated data uncertainty in regression and

classification tasks by assuming that outputs follow a normal

distribution. Scott et al. [46] proposed a stochastic spherical

loss for classification tasks based on the von Mises–Fisher

distributions. Additionally, Mohseni et al. [36] and Winkens

et al. [54] presented methods for estimating uncertainty

by combining SSL with a supervised classification task.

Uncertainty-aware methods have been proposed for other

tasks as well, such as human pose estimation [44, 41, 15],

optical flow estimation [23], object detection [22, 17], and

reinforcement learning [33, 40, 16].

Several studies have suggested methods to incorporate un-

certainty in self-supervised learning of specific tasks [45, 42,

59, 52]. Poggi et al. [45] proposed an uncertainty-aware and

self-supervised depth estimation. They considered the vari-

ance in depth estimated from multiple models as uncertainty.

Wang et al. [52] demonstrated an uncertainty-aware SSL for

three-dimensional object tracking, wherein the ratio of the

distances between positive and negative pairs was treated

as uncertainty. However, these methods hardly discussed

representation uncertainty.

3. Preliminary

The formulations of the SSL methods and variational

inference are briefly reviewed in this section.

3.1. Self-supervised learning methods

SimSiam SimSiam is a non-contrastive SSL method with

an objective function that is defined as follows;

JSimSiam := gθ(x1)
Tfφ(x2) + gθ(x2)

Tfφ(x1), (1)

where x1 and x2 are two augmented views of a single image.

The term gθ and fφ are encoders parameterized with θ and

φ, respectively, and they map the image x to a spherical

latent z ∈ S
d−1. In the literature on non-contrastive SSL,

the two encoders gθ and fφ are referred to as online and

target networks, respectively. SimSiam defines the online

network gθ as gθ = hθ ◦ fθ, where hθ and fθ are referred

to as a predictor network and projector network [14, 6],

respectively.

SimCLR The objective function of a contrastive SSL, such

as SimCLR is generally described as follows;

JSimCLR := J (1,2)
SimCLR + J (2,1)

SimCLR,

J (i,j)
SimCLR := log

exp(gθ(xi)
Tfφ(xj))∑

x′∈B exp(gθ(x′)Tfφ(xj))
. (2)

where gθ(x), fφ(x) ∈ S
d−1, and B denotes a minibatch.

DINO DINO is another non-contrastive SSL with an ob-

jective and a latent space (i.e., categorical latent) different

from those of SimSiam. It is described as;

JDINO := −H(P1,φ, P2,θ)−H(P2,φ, P1,θ), (3)

Pi,φ := softmax ((fφ(xi)− c)/τφ) , (4)

Pj,θ := softmax (gθ(xj)/τθ) , (5)

where H(P,Q)(=
∑

P logQ) denotes cross entropy be-

tween two probabilities, gθ(x), fφ(x) ∈ R
d, and (τ , c) are

the parameters for sharpening and centering operations

discussed later in § 4.3.

3.2. Multimodal generative model and inference

Figure 3: Graphical model.

Fig. 3 shows a graphical

model for multimodal gener-

ative models, where D indi-

cates a dataset, X = {xi}Mi=1

is a set of multimodal ob-

servations xi, z is a latent

variable of the observations,

θ is a deterministic parame-

ter of the generative model

p(X|z, θ), and M is the num-

ber of modalities corresponding to the data augmentation

types in this paper1. In the SSL context, X can be regarded

as augmented images from stochastic generative processes.

The objective is to find a parameter θ∗ that maximizes

marginal observation likelihood;

θ∗ = argmax
θ

J = argmax
θ

Ep(z)[log p(X|z, θ)]. (6)

Since the marginalization Ep(z)[·] is intractable, we can in-

stead maximize the evidence lower bound (ELBO);

Ep(z)[log p(X|z, θ)] ≥ JELBO :=

= Eq(z|X,φ) [log p(X|z, θ)]−DKL[q(z|X, φ)|p(z)], (7)

where q(z|X, φ) is a variational inference model parameter-

ized with φ. By optimizing JELBO with respect to both θ
and φ, q(z|X, φ) approaches the posterior p(z|X, θ) as the

following relation holds;

J − JELBO = DKL[q(z|X, φ)|p(z|X, θ)] ≥ 0, (8)
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where DKL[·] is the Kullback-Leibler divergence. Notably,

the posterior varies during the optimization process since

it depends on the parameterized generative model; i.e.,

p(z|X, θ) ∝ p(X|z, θ)p(z).

4. Self-supervised learning as inference
This section shows a connection between SSL and mul-

timodal variational inference. Usually, a generative model

p(X|z, θ) and variational inference model q(z|X, φ) are re-

alized with deep neural networks to solve the problem of

Eq. (6), and they are trained via ELBO optimization. Instead,

let us consider directly realizing the posterior p(z|X, θ) as

deep neural networks. For this purpose, we remove the gen-

erative model term in Eq. (7) by applying Bayes’ theorem;

p(X|z, θ) = p(z|X, θ)p(X|θ)/Ep(X|θ)[p(z|X, θ)]. (9)

Since p(X|θ) is intractable, we approximate it with the empir-

ical data distribution pD(X). Substituting Eq. (9) into Eq. (7)

and applying the approximation yields a new objective;

JSSL := Jalign + Juniform + JKL + pD(X),
+
= Jalign + Juniform + JKL, (10)

where,

Jalign := Eq(z|X,φ) [log p(z|X, θ)] , (11)

Juniform := Eq(z|X,φ) [− log pD(z|θ)] , (12)

JKL := −DKL[q(z|X, φ)|p(z)], (13)

pD(z|θ) := EpD(X)[p(z|X, θ)]. (14)

Furthermore, let p(z|X, θ) and q(z|X, φ) respectively be

Product-of-Experts (PoE) and Mixture-of-Experts (MoE)

of the single modal inference models;

p(z|X, θ) = ηθ

M∏
j=1

p(z|xj , θ), (15)

q(z|X, φ) := 1

M

M∑
i=1

q(z|xi, φ), (16)

where η−1
θ :=

∫ ∏
p(z|xj , θ)dz is the renormalization term.

Then, we can rewrite Jalign as a form that encourages align-

ing latent variables from different modals;

Jalign =
∑
i,j

Eq(z|xi,φ) [log p(z|xj , θ)] +M log ηθ, (17)

Eq. (15) is from Prop. 4.1 described below. Eq. (16) is the

definition theoretically validated in [47, 48]. Practically, we

can ignore unimodal comparisons (i.e., i = j) since they

provide less effective information.

Proposition 4.1. Let p(z) be a non-informative prior. The

multi-modal posterior p(z|X, θ) takes the form of PoE of the

single-modal posteriors p(z|xj , θ).

Proof. See Appx. A.1.

We claim that Eq. (10) generalizes the objectives in

Eqs. (1), (2) and (3) as summarized in Table 1. In the rest of

this section, we describe how to recover the objectives in the

table from Eq. (10). In the derivations, the term M log ηθ is

ignored by approximating it as a constant (denoted as
+�).

4.1. SimSiam as inference

First, we discuss the relationship between SimSiam and

the following definition involving the hyperspherical space

S
d−1.

Definition 4.2.

p(z) := U(Sd−1), (18)

q(z|X, φ) := 1

M

M∑
i=1

δ(z − fφ(xi)), (19)

p(z|X, θ) := ηθ

M∏
j=1

vMF(z;μ = gθ(xj), κ), (20)

vMF(z;μ, κ) := CvMF(κ) exp(κμ
Tz), (21)

where gθ(x), fφ(x) ∈ S
d−1, and U(Sd−1) is the uniform

distribution on the hypersphere. The term vMF(z;μ, κ) is

the von-Mises-Fisher distribution [35] parameterized with

the mean direction μ ∈ S
d−1 and concentration (inversed

variance) κ ∈ R
+. The term CvMF(κ) is a normalization

constant defined with the modified Bessel function. In §4, κ
and CvMF(κ) are defined to be constants.

Relation to Jalign

Claim 4.3. Under Def. 4.2, we can recover JSimSiam in

Eq. (1) from Jalign;

Jalign
+�
∑
i,j

gTθ (xj)fφ(xi), (22)

Proof. See Appx. A.2.

Relation to Juniform

Claim 4.4. The presence of the predictor hθ implicitly maxi-

mizes Juniform.

Proof. Here, we borrow theoretical findings from the Di-

rectPred literature [50]. In the literature, considering that

gθ = hθ ◦ fθ, the predictor hθ, defined as the following

linear model, can lead to successful convergence;

hθ(z) := (UΛ
1
2UT)z, (23)
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Table 1: The summary of SSL methods interpreted as variational inference.

SimSiam [6] (§4.1) SimCLR [5] (§4.2) DINO [49] (§4.3) VI-SimSiam (ours) (§5)

p(z) U(Sd−1) U(Δd−1) U(Sd−1)
q(z|xi, φ) Deterministic Categorical Deterministic

p(z|xj , θ) von-Mises-Fisher Categorical Power Spherical

Jalign zTj zi log
exp(zTj zi)∑
z exp(zTzi)

∑
Pj · logPi logCPS(κj) + κj log1p(z

T
j zi)

Juniform DirectPred Centering DirectPred

JKL Const. Sharpening Const.

Uncertainty No Yes Yes

aware (uncertainty parameter κ is fixed) (but has not been discussed) (uncertainty parameter κ is estimated)

where U and Λ are the eigenvectors and eigenvalues of the

covariance matrix of random variables z from fθ(x); i.e.,

EpD(x)[fθ(x)f
T
θ (x)] = UΛUT. (24)

With Eq. (23), the cosine similarity can be rewritten as2;

gTθ (xj)fφ(xi) = (UTzj)
TΛ

1
2 (UTzi), (25)

where zj = fθ(xj) and zi = fφ(xi) are projected by UT

(i.e., projection matrix of PCA) so that each dimension is

as independent as possible. In addition, the eigenvalues

Λ converge to the identity matrix, i.e., the variances of

z are constant. These behaviors encourage the marginal-

ized z-distribution to be isotropic, i.e., U(Sd−1). Conse-

quently, Juniform is maximized since it takes the maximum

iff pD(z|θ) = U(Sd−1).

Relation to JKL Since q(z|X, φ) is deterministic, JKL is

constant.

4.2. SimCLR as inference

Further, we derive the contrastive learning objective with

Def. 4.2. JKL is constant, as in the previous section, and

hence, is disregarded in the current section.

Relation to Jalign and Juniform Converse to the previ-

ous non-contrastive case, we consider explicitly optimizing

Juniform, leading to the following claim;

Claim 4.5. Under Def. 4.2, we can recover JSimCLR in

Eq. (2) from Jalign and Juniform;

Jalign + Juniform
+�

∑
i,j

Eq(z|xi,φ)

[
log

exp(gθ(xi)
Tfφ(xj))∑

x′∼B exp(gθ(x′)Tfφ(xj))

]
. (26)

Proof. See Appx. A.3.

2gTθ (xj)fφ(xi) = ((UΛ
1
2 UT)zj)

Tzi = (UTzj)
TΛ

1
2 UT(UUTzi),

where UUT = I .

Note that as per Ref. [53], Eq. (2) can be decomposed into

two objectives similar to Jalign and Juniform. In contrast,

our derivation here aimed to derive Eq. (2) in a general form

from variational inference.

4.3. DINO as inference

Finally, we derive the objective of DINO with the follow-

ing definitions, where z is defined in the simplex Δd−1,

Definition 4.6.

p(z) := U(Δd−1), (27)

q(z|X, φ) := 1

M

M∑
i=1

Cat (z;Pi,φ) , (28)

p(z|X, θ) := ηθ

M∏
j=1

Cat (z;Pj,θ) , (29)

where the definitions of Pi,φ and Pj,θ follow Eqs. (4) and

(5), and Cat means categorical distribution.

Relation to Jalign

Claim 4.7. Under Def. 4.6, we can recover JDINO in Eq. (3)

from Jalign;

Jalign
+�
∑
i,j

−H(Pi,φ, Pj,θ), (30)

Proof. Substituting Eqs. (28) and (29) into Eq. (11) derives

Eq. (30).

Relation to Juniform

Claim 4.8. Centering in Eq. (4) optimizes Juniform.

Proof. The centering parameter c in Eq. (4) is determined

and updated with an exponential moving average of batch

mean of fφ; c ← mc+ (1−m)EB[fφ(x)] [4], where m is

a rate parameter. This batch-norm-like centering encourages

the marginalized distribution q(z|φ) = EpD(x)[q(z|x, φ)]
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to be U(Δd−1)3 As a result, pD(z|θ) will also be uniform

while optimizing Jalign, thus maximizing Juniform.

Relation to JKL

Claim 4.9. Sharpening in Eq. (4) regularizes JKL.

Proof. Since p(z) is defined to be uniform, JKL acts as an

entropy regularizer to the variational distribution q(z|X, φ).
With a carefully designed temperature τφ, sharpening di-

rectly regularizes the entropy for learning success; e.g., τφ
must be within 0.02 and 0.06 [4].

4.4. Discussion

Relation to another SSL method Moreover, we can in-

tegrate Barlow Twins [61] into this SSL as inference frame-

work. Barlow Twins considers the cross-correlation ma-

trix EB[gθ(xi)fφ(xj)
T] and optimizes its diagonal and non-

diagonal elements to be ones and zeros, corresponding to the

optimization of Jalign and Juniform, respectively.

Limitations In the derivation, we made some assumptions;

p(X|θ) � pD(X) in Eq. (9), q(z|X, φ) is MoE (Eq. (16)),

and the renormalization term ηθ can be ignored in Eq. (17).

The JSSL derived under these assumptions is not guaranteed

to be the lower bound of J in Eq. (6). However, the previous

success of the SSL method empirically indicates that the

assumptions are valid and the optimization progressed while

keeping J ≥ JSSL. We hypothesize that to update the target

network fθ such as stop gradient and exponential moving

average (EMA) [14, 6, 4, 18], the heuristics may contribute

to the above optimization behavior. However, further theoret-

ical analysis is necessary for future work. Notably, the stop

gradient and EMA can be interpreted as the EM algorithm in

variational inference [1]. It is also an attractive research di-

rection to extend SSL methods by relaxing the assumption of

q(z|X, φ); e.g., changing its form from MoE to MoPoE [48],

and replacing the deterministic δ in Eq. (19) with probability

distributions.

Representation Uncertainty As shown in Table 1. DINO

inherently can estimate uncertainty because it fully estimates

categorical parameters. However, its ability has hardly been

discussed. Conversely, although SimSiam and SimCLR

assumed hyperspherical distributions, the uncertainty pa-

rameter κ is fixed, thus missing the ability for uncertainty

estimation. To bridge the gap of uncertainty awareness, we

propose a new uncertainty-aware method VI-SimSiam by

extending SimSiam in §5. The capability of uncertainty esti-

mation of VI-SimSiam and DINO is subsequently evaluated

in §6.

3In contrast, batch-norm makes the batch distribution N (0, 1) [24].

5. Variational inference SimSiam
This section introduces a novel uncertainty-aware SSL

method by extending SimSiam based on the SSL as inference
principle. The previous derivation assumes that κ is constant.

We relax this assumption and allowed κ to be estimated by

a newly introduced encoder uθ : x → κ. Additionally, we

replace the vMF distribution with another spherical distri-

bution, i.e., Power Spherical (PS) distribution [10]. This is

because estimating gradients through the modified Bessel

function in CvMF(κ) is computationally expensive and un-

stable [10]. The modified posterior is defined as:

p(z|X, θ) := ηθ

M∏
j=1

PS(z;μ = gθ(xj), κ = uθ(xj)), (31)

PS(z;μ, κ) := CPS(κ)(1 + μTz)κ. (32)

The normalization constant of the PS distribution CPS(κ) is

defined with the beta distribution. It can be efficiently com-

puted using general deep-learning frameworks. Substituting

Eqs. (19) and (31) into Eq. (11) yields:

Jalign
+� (33)∑

i,j

(
logCPS (uθ(xj)) + uθ(xj) log1p

(
gθ(xj)

Tfφ(xi)
))

,

where log1p(x) := log(1 + x). Similar to Eqs. (1) and (22),

this loss maximizes the cosine similarity of features from

different models, but the similarity term is weighted by κ.

A novel method referred to as variational inference Sim-

Siam (VI-SimSiam) that optimizes Eq. (33) is proposed. The

architecture and pseudo code are shown in Fig. 2 and Alg. 1,

respectively, where the number of modalities is M = 2 and

the single-modal comparisons are ignored.

6. Experiments
We evaluate VI-SimSiam for two aspects-performance

and method of uncertainty prediction. First, we compare the

performance of VI-SimSiam and SimSiam. We perform a

linear evaluation of these methods on ImageNet100 [11]4.

Second, we investigate representation uncertainty. We quali-

tatively evaluate representation uncertainty by comparing in-

put images and the predicted uncertainty parameter κ. Then,

we examine the relationship between uncertainty and classi-

fication accuracy. We also study how DINO predicts repre-

sentation uncertainty.

6.1. Linear evaluation

We conduct self-supervised pretraining with Ima-

geNet100 dataset without labels to learn image represen-

tations using SimSiam and VI-SimSiam at 50, 100, 200, and

4ImageNet100 is a 100-category subset of ImageNet [11].
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Algorithm 1 Pseudocode of VI-SimSiam, PyTorch-like

# backbone: ResNet-backbone
# f: Projector
# h, u: Predictor for mu and kappa

# Definition of power spherical dist.
class PSd(Distribution):
def _init_(self, mu, kappa):

...

for x in loader: # Load a minibatch x
x1, x2 = aug(x), aug(x) # Apply augmentation
y1, y2 = backbone(x1), backbone(x2)
z1, z2 = f(y1), f(y2) # Project

mu1, mu2 = h(z1), h(z2) # Predict mu
kappa1, kappa2 = u(y1), u(y2) # Predict kappa
p1, p2 = PSd(mu1, kappa1), PSd(mu2, kappa2)

# Stop gradient & compute loss
z1, z2 = z1.detach(), z2.detach()
L = - p1.log_prob(z2) - p2.log_prob(z1)
L.mean().backward() # Back-prop.
update(backbone, f, h, u) # SGD update

Table 2: Top-1 accuracies of linear evaluation on ImageNet100.

Each setting is repeated in triplicate to compute mean and standard

derivation. We report the result as “mean ± std.”

Method 50 epochs 100 epochs 200 epochs 500 epochs

SimSiam [6] 41.07±0.99 63.86±1.48 78.49±0.89 81.61±0.23

VI-SimSiam 63.89±2.74 73.78±0.58 76.31±0.32 77.49±0.42

500 epochs. Then, we trained a linear classifier on frozen

representations on the training set of the dataset with the

labels. Finally, we evaluated it in the test set of the dataset.

The implementation details are reported in Appx. B. We used

Top-1 accuracy as an evaluation metric.

Table 2 shows Top-1 accuracy on the validation split of

ImageNet100. VI-SimSiam achieves a competitive result to

SimSiam in several epochs. VI-SimSiam significantly out-

performs SimSiam, especially when the number of epochs

is less, e.g., 50 and 100.

6.2. Qualitative analysis of uncertainty

We evaluate uncertainty estimation qualitatively by com-

paring an input image to the predicted concentration κ, a

parameter related to the uncertainty. We use images from

the validation split of ImageNet100. We use the model pre-

trained with ImageNet100 on 100 epochs. Fig. 1 shows the

images for which κ is in the top 1% and those for which κ
is in the bottom 1%. When κ is low, i.e., the uncertainty of

the latent variable is high, there are few noticeable features

in the input images. This result shows that our method can

estimate high uncertainty for semantically uncertain images.

Additional image examples estimated to have high or low

uncertainty are shown in Appx. L.

Figure 4: ROC and AUROC when the κ predicted by VI-SimSiam

is used as the confidence score.

6.3. Quantitative analysis of uncertainty

We investigate the effects of uncertainty on a classifica-

tion task with ImageNet100 dataset. We evaluate the rela-

tionship between uncertainty and Top-1 accuracy using the

AUROC (Area Under the Receiver Operating Characteristics

Curve) metrics following as per Ref. [13]. Fig. 4 shows ROC

and AUROC when the κ predicted by VI-SimSiam is used

as the confidence score. We use the VI-SimSiam-trained 500

epochs on ImageNet100. We use two classifiers – a linear

classifier and a k-nearest-neighbor (KNN) classifier [56].

The AUROC score of 0.72 by the linear classifier is greater

than the chance rate of 0.5 (p < 0.01)5. Furthermore, the

AUROC score of KNN is 0.76. The score of the linear clas-

sifier is lower than that of the KNN, possibly due to the

presence of epistemic uncertainty in the linear classifier it-

self. These results suggest we can estimate the difficulty of

classifying an image based on uncertainty-related parame-

ters without training the classification model or having the

correct labels.

6.4. Relationship between DINO and uncertainty

We consider that DINO can estimate uncertainty because

it fully estimates distributions, similar to VI-SimSiam. In

this section, we discuss how DINO expresses uncertainty.

We assume that the entropy of the latent variable, related to

the variability of the distribution such as κ, has a relationship

with uncertainty.

To discuss this, we evaluate the relationship between its

entropy and Top-1 accuracy using the AUROC metrics. We

use the negative entropy of representation as the confidence

score. The implementation details are reported in Appx. B.

We use ImageNet100 dataset, and the number of epochs is

set to 200. The results are shown in Fig 5. The AUROC score

of 0.67 by linear classification is greater than the chance rate

of 0.5 (p < 0.01).

Fig. 6 shows the scatter plot of κ by VI-SimSiam and

the entropy of representation by DINO. Their correlation

5How to calculate the p-value is mentioned in Appx. J.
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Figure 5: ROC and AUROC when the negative entropy predicted

by DINO is used as the confidence score.

Figure 6: Scatter plot of κ of VI-SimSiam and entropy of DINO.

The solid red line is the linear regression line. Their correlation

coefficient is 0.5459.

Table 3: Mean and standard derivation of κ for each augmentation.

The term "normal" means without augmentations.

normal blur color jitter grayscale random crop

852.63±143.69 836.05±147.96 843.94±144.59 846.14±140.53 812.26±159.05

coefficient is 0.5459. The results show that entropy is highly

related to κ (p < 0.01). Therefore, the entropy of represen-

tation by DINO seems to be related to uncertainty.

6.5. Relation to image augmentation

We investigate how image augmentations affect uncer-

tainty. We use the validation dataset of ImageNet100. We

also prepare image augmentations for blur, color jitter,

grayscale, and random crop. The random crop scale for

random crop is set from 0.05 to 1.0. We perform five aug-

mentations for each image and calculate the average con-

centration κ estimated by the pre-trained model for each

augmentation. The results are shown in Table 3. The vari-

ance of the κ of the random crop is greater, and its mean

value is less than those of other augmentations. Fig. 7 shows

examples of images that applied random crop. This result

shows κ of images excluding important objects by cropping

is low. Therefore, random crop is considered to have a more

significant impact on κ than the other augmentations.

Originalg Cropped Cropped

Figure 7: A set of cropped images and κ’s; the images on the left

are original. The images in the center and on the right are cropped

images. This result shows that the κ values of images excluding

important objects by cropping are low.

6.6. Limitation

Performance of Linear evaluation. In Sec 6.1, VI-

SimSiam underperforms at 200 and 500 epochs, when com-

pared with SimSiam. When the cosine similarity is low

during training, SimSiam only learns to increase the cosine

similarity, while VI-SimSiam learns to also decrease κ. It is

assumed that VI-SimSiam underperforms at greater epochs

because it is not trained to increase cosine similarity for

inputs with representations that are difficult to predict. We

compare the cosine similarity of SimSiam and VI-SimSiam

in Appx. K. Our method would be more effective if a solution

to this issue is proposed.

Utilization of Representation Uncertainty. Our future

work involves proposing novel applications using represen-

tation uncertainty. One example of such use of uncertainty

is in the selection of data, the prototype results of which are

reported in Appx. E.

7. Conclusion

In this work, we clarify the theoretical relationship be-

tween variational inference and SSL. Additionally, we pro-

pose variational inference SimSiam (VI-SimSiam), which

could model the latent variable’s uncertainty. We investi-

gate the estimated uncertainty parameter κ from various

perspectives. We derive the relationship between κ and input

images and between κ and classification accuracy. We also

experimentally demonstrate that uncertainty could be esti-

mated even when the latent variable follows the categorical

distribution.
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