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Abstract

This paper proposes minimal solutions to uncalibrated
two-view geometry with known epipoles. Exploiting the
epipoles, we can reduce the number of point correspon-
dences needed to find the fundamental matrix together with
the intrinsic parameters: the focal length and the radial lens
distortion. We define four cases by the number of available
epipoles and unknown intrinsic parameters, then derive a
closed-form solution for each case formulated as a higher-
order polynomial in a single variable. The proposed solvers
are more numerically stable and faster by orders of magni-
tude than the conventional 6- or 7-point algorithms. More-
over, we demonstrate by experiments on the human pose
dataset that the proposed method can solve two-view geom-
etry even with 2D human pose, of which point localization
is noisier than general feature point detectors.

1. Introduction
Solving the two-view geometry of uncalibrated cameras

is one of the basic tasks for many computer vision appli-
cations such as the structure-from-motion [1, 31], Visual-
SLAM [6, 26], and novel view synthesis [4, 25]. The goal
of this problem is to find the fundamental matrix and the in-
trinsic parameters of the two cameras from point correspon-
dences. Since point correspondences are generally contami-
nated by outliers, many efforts have been devoted to develop
efficient and numerically stable solvers that can be incorpo-
rated into RANSAC [9] to extract a set of inlier point pairs.

It is known that the fundamental matrix with an unknown
focal length and known principal points can be determined
by six point correspondences. Stewénius et al. [34] first de-
veloped a minimal solution to this problem by manually de-
riving Gröbner basis. Then, other methods were proposed
based on various approaches, e.g. the hidden variable tech-
nique [23], the polynomial eigenvalue problem [19], the
automatic generator [21]. Following the success of the 6-
point algorithms, research interests have been expanded to
deal with the radial lens distortion. Jiang et al. [15] and

Kuang et al. [18] showed that the fundamental matrix with
both unknown focal length and unknown radial distortion
can be solved by seven point correspondences. However,
with more intrinsic parameters to be estimated, new issues
arise in terms of numerical stability and computational effi-
ciency. The root cause is that those methods assume general
conditions with no restrictions on the camera motion and
thus cannot reduce the number of point correspondences.

To address the above issue, we assume that two cam-
eras are mutually observed, as shown in Fig. 1. This is
not a rare and limited situation but occurs in real applica-
tions. For example, multiple cameras are installed to cap-
ture human behaviors from 360◦ views in dataset creation
(Figs. 2a and 2b). In dynamic scenes such as multi-agent
Visual-SLAM, robots collaboratively create a single map
of a wide area (Fig. 2c). Visual-SLAM can also be ap-
plied to calibrate camera networks consisting of fixed and
moving cameras (Fig. 2d). In those scenarios, epipoles or
2D positions of the camera center are directly obtainable
from images. Epipoles constrain a fundamental matrix to
be rank-deficient, thus reducing the number of point cor-
respondences. Nistér [27] showed a theory for finding a
relative rotation of calibrated cameras with a single epipole.
Ito et al. [14] utilized epipole(s) for fundamental matrix es-
timation, then Sato [30] generalized it to three- and four-
view geometry. However, both methods are based on the
DLT algorithm [11], thus not minimal solutions. They also
do not address how to find the intrinsic parameters.

In this paper, we propose minimal solutions utilizing
epipole(s) to determine a fundamental matrix with unknown
intrinsic camera parameters: focal length and radial lens
distortion. The proposed method has four variations de-
pending on the number of available epipoles and the num-
ber of unknown parameters to be estimated. Moreover, we
introduce a simple regularization term to fix the epipoles
during the non-linear optimization, which is conducted on
inliers after RANSAC. Through exhaustive experiments, we
show that the proposed algorithms provide more reliable es-
timations than the conventional methods while achieving a
significant acceleration by orders of magnitude.
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(a) Single epipole case. The projection of the second camera is
observed as e in the first camera.
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(b) Two epipoles case. The two cameras are mutually observed as
e and e′ in each image.

Figure 1. Two-view geometry with known epipoles.

(a) HumanEva [32] (b) Panoptic studio dataset [16]

(c) Collaborative Visual-
SLAM [28, 36]

(d) SLAM-based calibration for surveil-
lance and moving cameras [29]

Figure 2. Mutual camera projections in applications. (a)–(b): Hu-
man pose dataset. (c)–(d): Multi-agent Visual-SLAM.

2. Uncalibrated two-view geometry
This section describes the theoretical background of two-

view geometry for uncalibrated cameras. We represent
2D points as their homogeneous coordinates, i.e. m =
[u, v, 1]T, and assume a pinhole camera model whose in-
trinsic parameters are partially known: the principal point
is approximated by the image center; the skewness is zero.
Solving uncalibrated two-view geometry is to find the focal
length f and the radial lens distortion k as well as the rela-
tive rotation R and translation t between the two cameras.

Given n pairs of a 2D point correspondence {mi ↔ m′
i}

between the two cameras, each point pair is constrained by
a 3× 3 fundamental matrix F:

m′
i
T
Fmi = (m′

i ⊗mi)
Tf = 0, (1)

where ⊗ denotes the Kronecker product and f is a 9-dim
vector representation of F.

Epipoles, e = [x, y, 1]T and e′ = [x′, y′, 1]T, are the
2D projections of the image center of one camera onto the
image plane of the other camera, which satisfy

Fe = FTe′ = 0. (2)

Equation (2) leads to one of the constraints on F, i.e.
det(F) = 0. Thus, F is of rank two.

When the two cameras can be assumed to have the same
focal length f , another constraint is given by

2FQFTQFQ− tr(FQFTQ)FQ = 0, (3)

where Q = diag(f2, f2, 1). Equation (3) is the necessary
and sufficient conditions to recover R and t by decomposing
F. Eliminating f , we can rewrite Eq. (3) in a closed-form
w.r.t. F [20] as follows:

h(F) = F11F
3
13F31 + F 2

13F21F23F31 + F11F13F
2
23F31

+ F21F
3
23F31 − F11F13F

3
31 − F21F23F

3
31 + F12F

3
13F32

+ F 2
13F22F23F32 + F12F13F

2
23F32 + F22F

3
23F32

− F12F13F
2
31F32 − F22F23F

2
31F32 − F11F13F31F

2
32

− F21F23F31F
2
32 − F12F13F

3
32 − F22F23F

3
32

− F 2
11F

2
13F33 − F 2

12F
2
13F33 − 2F11F13F21F23F33

− 2F12F13F22F23F33 − F 2
21F

2
23F33 − F 2

22F
2
23F33

+ F 2
11F

2
31F33 + F 2

21F
2
31F33 + 2F11F12F31F32F33

+ 2F21F22F31F32F33 + F 2
12F

2
32F33 + F 2

22F
2
32F33 = 0,

(4)

where Fij denotes the (i, j) element of F.
Once we obtain an F such that det(F) = 0 and Eq. (3) (

or Eq. (4)), the focal length f can be computed in a closed-
form [20]:

f2 =

F12F13F
2
33 + F22F23F

2
33

− F 2
13F32F33 − F 2

23F32F33

F11F13F31F32 + F21F23F31F32 + F12F13F
2
32

+ F22F23F
2
32 − F 2

12F32F33 − F 2
22F32F33

− F11F12F31F33 − F21F22F31F33

. (5)

It is well known that the relative motion, R and t, can be
obtained by using a singular value decomposition [11] or a
closed-form method [13].

If the cameras have a wide angle lens with a radial dis-
tortion parameter k, a 2D point m is observed as a radially
distorted point m̂. The relation can be written by using the
division model [10]:

m =
1

1 + kr
m̂ ∝

 û
v̂

1 + kr

 , (6)

where r = û2 + v̂2. Hereafter, we use the hat symbol ˆ to
express radially distorted values.
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3. Finding F-matrix with known epipoles
In this section, we propose four different algorithms de-

pending on the number of unknown intrinsic parameters and
the number of known epipoles. The basic strategy com-
monly used in all methods is to parameterize a fundamen-
tal matrix F as a linear combination of the null space of a
coefficient matrix computed from epipoles and point corre-
spondences. We reduce the number of unknown variables to
one and employ Eq. (4) to lead to a higher-order polynomial
equation of the single variable. The fundamental matrix F

is obtained by substituting the real roots of the polynomial
equation into the linear combination of the null space. The
null space is derived from the epipoles, and Eq. (4) is used
for the root finding, therefore, both the intrinsic and extrin-
sic parameters can be recovered from the computed F.

3.1. 2-pt algorithm for F+f with two epipoles

We start with the simplest case where two epipoles e
and e′ are observed by each camera with an unknown fo-
cal length f but no lens distortion. If we define the 3 × 3
identity matrix by I and a 6× 9 matrix N1 by

N1 =


eT

eT

eT

x′I y′I I

 , (7)

Eq. (2) can be written in the form

N1f = 0. (8)

Here, N1 is of size 6× 9 but its row rank is only five.
Utilizing two point correspondences, a 8 × 9 coefficient

matrix M1 is given by

M1 =

 N1
(m′

1 ⊗m1)
T

(m′
2 ⊗m2)

T

 . (9)

Then, we have
M1f = 0. (10)

Since the row rank of M1 is seven, f can be parameterized
by a linear combination of two null vectors v1, v2 of M1:

f = αv2 + v1. (11)

Substituting Eq. (11) into Eq. (4), we obtain a fifth-order
equation for the single variable α, which is represented by

h(F(α)) = c5α
5+c4α

4+c3α
3+c2α

2+c1α+c0 = 0. (12)

Once we found the roots of Eq. (12), the fundamental matrix
F is then obtained from Eq. (11). This algorithm gives at
most five solutions.

3.2. 4-pt algorithm for F+f with single epipole

When one of the two epipoles is only available, we can
solve the F + f problem by adding more two point cor-
respondences. Using four point correspondences together
with the single epipole e, we can construct a 7 × 9 coeffi-
cient matrix M2 by

M2 =



eT

eT

eT

(m′
1 ⊗m1)

T

...
(m′

4 ⊗m4)
T


, (13)

which satisfies

M2f = 0. (14)

The row rank of M2 is seven, which is identical to M1.
Consequently, we can find F using exactly the same ap-
proach as in Eqs. (11) and (12). The number of the real
solutions of this algorithm is at most five.

3.3. 3-pt algorithm for F+f+k with two epipoles

We address a more complicated problem where a radial
distortion parameter k is additionally unknown. Since we
have two epipoles in this case, this problem can be solved
using three point correspondences.

In this problem, the epipoles, ê and ê′, are observed in
the distorted image coordinates, as with the point corre-
spondences m̂. Using Eq. (6), we can represent the undis-
torted epipoles, e and e′, as

e =
1

1 + kz
ê ∝

 x̂
ŷ

1 + kz

 ,

e′ =
1

1 + kz′
ê′ ∝

 x̂′

ŷ′

1 + kz′

 ,

(15)

where z = x̂2 + ŷ2 and z′ = x̂′2 + ŷ′2. Note that the radial
distortion k is an unknown parameter.

Similar to Eqs. (7) and (8), we can rewrite Eq. (2) by

N2f = 0, (16)

where

N2 =


eT

eT

eT

x̂′I ŷ′I (1 + kz′)I

 . (17)
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The null space of N2 can be symbolically given by

V1 =

ŷŷ′ ŷ′(1 + kz) ŷ(1 + kz′) (1 + kz)(1 + kz′)
−x̂ŷ′ 0 −x̂(1 + kz′) 0
0 −x̂ŷ′ 0 −x̂(1 + kz′)

−x̂′ŷ −x̂′(1 + kz) 0 0
x̂x̂′ 0 0 0
0 x̂x̂′ 0 0
0 0 −x̂′ŷ −x̂′(1 + kz)
0 0 x̂x̂′ 0
0 0 0 x̂x̂′


.

(18)
Thus, the fundamental matrix can be represented as a linear
combination of the column vectors of V1, i.e.

f = V1α1, (19)

where α1 is a 4-dim vector.
We now have three point correspondences, which satisfy

(m′
i ⊗mi)

Tf = 0. If we define a 3× 4 matrix G1 by

G1 =

(m′
1 ⊗m1)

T

(m′
2 ⊗m2)

T

(m′
3 ⊗m3)

T

 V1, (20)

we obtain (m′
1 ⊗m1)

T

(m′
2 ⊗m2)

T

(m′
3 ⊗m3)

T

 f = G1α1 = 0. (21)

The unknown vector α1 can be determined as the kernel
of G1 up to scale. Since G1 is of size 3 × 4, the kernel can
be symbolically computed as a 4-dim vector:

α1 ∝ Ker(G1) = Q1β1, (22)

where Q1 is a 4× 5 matrix and β1 = [k4, k3, k2, k, 1]T. We
can replace α1 with Q1β1, then Eq. (19) can be rewritten as

f = V1α1 = V1Q1β1. (23)

Plugging Eq. (23) into Eq. (4), we finally obtain a 16th-
degree polynomial equation in k:

h(F(k)) = c16k
16 + · · ·+ c1k + c0 = 0. (24)

We can recover f by substituting the real roots of Eq. (24)
into Eq. (23). This algorithm provides at most 16 real solu-
tions.

3.4. 5-pt algorithm for F+f+k with single epipole

Given only a single epipole e, we need two additional
point pairs to solve the F + f + k problem. We omit the
details of the derivation and describe the differences only
because the procedure of this algorithm is basically similar
to Sec. 3.3.

The null space of

eT eT

eT

 can be symbolically

given by

V2 =

−ŷ 1 + kz 0 0 0 0
x̂ 0 0 0 0 0
0 −x̂ 0 0 0 0
0 0 −ŷ 1 + kz 0 0
0 0 x̂ 0 0 0
0 0 0 −x̂ 0 0
0 0 0 0 −ŷ 1 + kz
0 0 0 0 x̂ 0
0 0 0 0 0 −x̂


.

(25)

Since V2 is of size 9 × 6, the unknown vector α2 for this
problem becomes a 6-dim vector. Using the five point cor-
respondences, G2 is represented as a 5× 6 matrix, as shown
in Eq. (20). Then, we can symbolically obtain the kernel of
G2, which is given as the matrix-vector product of a 6 × 6
matrix Q2 and β2 = [k5, k4, k3, k2, k, 1]T. Now we can
express the fundamental matrix by

f = V2Q2β2. (26)

Substituting Eq. (26) into Eq. (4), we finally obtain a 21st-
order polynomial equation in k, i.e.

h(F(k)) = c21k
21 + · · ·+ c1k + c0 = 0. (27)

Thus, we can obtain at most 21 real solutions.

3.5. Non-linear refinement

After running a RANSAC scheme, we generally obtain
many inlier points and perform a non-linear refinement to
polish the accuracy of the parameters. For example, mini-
mizing the symmetric epipolar distance is one of the major
cost functions in the literature [11], i.e.

Lsym =

n∑
i=1

(m′
i
T
Fmi)

2

[Fmi]21 + [Fmi]22
+

(m′
i
T
Fmi)

2

[FTm′
i]
2
1 + [FTm′

i]
2
2

,

(28)
where [Fmi]

2
j denotes the square of the j-th element of the

vector Fmi.
Since we have an initial guess of the focal length of the

two images as f1 = f2 = f , we can parameterize the
fundamental matrix by F = diag(1, 1, f2) E diag(1, 1, f1),
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where E represents an essential matrix. Thus, we can use the
Helmke’s method [12] to update E with preserving 5 DoFs.
Also, we initialize the lens distortion of the two images by
k1 = k2 = k.

However, those typical approaches of the non-linear re-
finement do not assume that epipoles are known, which in
turn may degrade the fundamental matrix obtained by the
proposed method. To avoid this issue, we introduce a regu-
larization term of Eq. (2) as follows:

Lepi = ∥Fe∥2 +
∥∥FTe′∥∥2 . (29)

Note that the epipoles, e and e′, are undistorted using
Eq. (15) with k1 and k2. In the case of the single epipole,
the second term

∥∥FTe′∥∥2 is simply dropped.
The total cost function of the proposed scheme is given

by jointly optimizing Lsym and Lepi with a weight w:

L = Lsym + wLepi. (30)

4. Degenerate configurations

Analysis of the degenerate configurations is important
to avoid ambiguous 3D shape reconstructions and use the
proposed method in real applications. Due to limitations of
space, we give several simple examples for F + f problem
with two known epipoles in this section.

Degenerate configurations of two-view geometry in gen-
eral cases have been extensively studied for the past
decades [5, 17, 33, 35]. One typical situation that could
often occur in practice is forward motion, where both focal
length and radial distortion cannot be uniquely determined
regardless of the point distributions. Forward motion alone
is not the case for the proposed solvers, but forward motion
with special point distributions is. One configuration where
the proposed 2-point solver for F + f problem cannot be
solved is that two epipoles and two point correspondences
are collinear under forward motion. For example, the row
rank of M1 is less than seven in Eq. (9) when e = e′ =
[0, 0, 1]T, mi = [ui, 0, 1]

T, m′
i = [−ui, 0, 1]

T, i ∈ {1, 2}.
Another well-known degenerate configuration for the gen-
eral solvers is that all 3D points are on a plane. However, in
our case, unique solutions can be obtained in planar scenes
when two epipoles are known [30].

The rigorous conditions can be given by analyzing the
rank of submatrices of N1 and M1 (N2 and M2 for the other
problems as well). In other words, we first find epipoles
and image points that cause rank deficiency, then link them
to actual camera motions and 3D point distributions. How-
ever, as reported in the previous studies, it is not easy to re-
veal all possible ambiguities. We would leave the in-depth
discussion to future research.

5. Experiments
This section reports experimental results on synthetic

and real data. We conducted all experiments on a PC with
Core i7-13700k.

5.1. Implementation

We have implemented five conventional methods and the
four proposed methods in MATLAB, as shown in Tab. 1.
We chose three Gröbner basis solvers that are the state-
of-the-art based on the efficient parameterization (Eq. (4)):
Larsson’s 6-point solver for F+f problem (L6f) [21], Lars-
son’s 7-point solver for F + f + k problem (L7fk) [21],
and Martyushev’s 7-point solver for F + f + k problem
(M7fk) [24]. Those are designed for general scenes, there-
fore, epipoles are not assumed to be available. Moreover,
we used two DLT-based approaches by Ito et al. [14]: the
3-point solver with two epipoles (I3), and the 5-point solver
with a single epipole (I5). Although I3 and I5 do not guar-
antee to satisfy Eq. (3) or Eq. (4), we calculated focal length
by simply applying Eq. (5) to a fundamental matrix given by
I3 or I5. We used the root function for solving the polyno-
mials of the proposed solvers, i.e. Eqs. (12), (24) and (27).

5.2. Evaluation metrics

We measured the following metrics to quantitatively
evaluate the estimation accuracy:

ϵF Symmetric epipolar distance in pixels by applying Fest
onto the ground-truth 2D points.

ϵf Relative error by |fest − fgt|/fgt × 100 [%].

ϵk Normalized pixel distance [%] between undistorted co-
ordinates using kest and kgt. 100 points were uni-
formly sampled, and the mean distance is normalized
by the diagonal length of the image.

ϵR Angle-axis error by cos−1

(
tr(RTgtRest)−1

2

)
[degrees].

ϵt Cosine similarity by cos−1

(
tTgttest

∥tgt∥∥test∥

)
[degrees].

5.3. Synthetic data

We investigate the performance of the minimal solvers
using synthetic data in this section.

5.3.1 Scene configuration

We created synthetic scenes as follows. Two cameras were
randomly located in the area of 5.0 m × 5.0 m and 2.0 m
high to project each other, as shown in Fig. 1b. Small per-
turbations within 5 degrees and ± 0.2 m were added to the
rotation and position of the cameras, respectively. The im-
age resolution was 640 × 480, the focal length was set to
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Method Reference Problem
Decomposability
Eqs. (3) and (4)

# of
points

# of
epipoles

# of
solutions Approach

L6f [21] F+ f ✓ 6 0 15
Gröbner basisL7fk [21] F+ f + k ✓ 7 0 68

M7fk [24] F+ f + k ✓ 7 0 68

I5 [14] F 5 1 1 DLTI3 [14] F 3 2 1

P4f

this paper

F+ f ✓ 4 1 5

Closed-formP2f F+ f ✓ 2 2 5
P5fk F+ f + k ✓ 5 1 16
P3fk F+ f + k ✓ 3 2 21

Table 1. Methods compared in the experiments.

Figure 3. The cumulative histogram of numerical accuracy for 106 trials of randomly generated data without noise.

f = 381.3, which is approximately 80◦ HFOV. The radial
lens distortion was set to k = −0.2/f2 for the F + f + k
problem. We uniformly generated 100 3D points in the
common viewing frustum of the two cameras and projected
the 3D points onto the image plane. Then, we randomly
picked the minimal number of the points needed for each
method.

5.3.2 Numerical stability

In the first test, we investigated the numerical stability of
the methods in noise free data. Figure 3 summarizes a cu-
mulative histogram of ϵF, ϵf , and ϵk over 106 independent
trials. The figure indicates that the proposed methods are
numerically stable. Comparing the methods in each cate-
gories, we see that P2f and P4f are better than I3, I5, and
L6f in the F+ f problem, and P5fk and P3fk are better than
L7fk and M7fk in the F + f + k problem. Here, it should
be noted that L7fk is so unstable as to be impractical. We
further investigate this issue in the following experiments.

5.3.3 Robustness w.r.t. noise on points

To evaluate the robustness against the image noise, we mea-
sured the estimation errors by adding the zero-mean Gaus-
sian noise onto point correspondences with the standard de-
viation 0 ≤ σ ≤ 2 pixels. In this experiment, the image

noise was not added to the epipoles, that is, the ground-
truth values are given for the epipoles. Figure 4 shows the
mean error over 105 independent trials for each noise level.
From the figure, we see that the proposed methods are the
most robust against noise. Since the two DLT methods, I3
and I5, do not consider the decomposability conditions de-
scribed in Eqs. (3) and (4), their focal length estimation are
sensitive to image noise, which is even worse than the gen-
eral methods, L6f and M7fk. The proposed methods out-
perform M7fk in estimation of the fundamental matrix and
lens distortion while showing comparable accuracy in the
focal length estimation.

5.3.4 Robustness w.r.t. noise on epipoles

In this experiment, we studied the noise robustness of the
six methods using epipoles: two Ito et al.’s and four pro-
posed methods. We added the Gaussian noise on epipoles
varying 0 ≤ σ ≤ 2 while fixing the image noise as σ = 0.5.
Figure 5 reports the mean error over 105 independent trials
for each noise level. The results have similar trends to the
previous experiments. Among the proposed methods, P4f
and P5fk are more robust to image noise than P2f and P4fk
because P4f and P5fk utilizes a single epipole.
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Figure 4. Mean error w.r.t. the image noise on point correspondences over 105 trials for each noise level.

Figure 5. Mean error w.r.t. the image noise on epipoles over 105 trials for each noise level.

Figure 6. Runtime comparison of the minimal solvers.

5.3.5 Computational time

Figure 6 shows the mean runtime of all methods over 106

independent trials. The computational time of the proposed
methods is less than 1 msec, which is not as fast as the Ito et
al.’s methods, but is still reasonably fast enough for real-
time applications.

5.4. Real data

In this experiments, we incorporated each method into
RANSAC together with the non-linear refinement to inves-
tigate the performance in real data. We excluded L7fk due
to its instability and high computational cost shown in the
synthetic data experiments in Sec. 5.3.

5.4.1 Dataset

We used two publicly available dataset where multiple cam-
eras are mutually projected:

HumanEva [32]1 Four RGB cameras with the 656 × 490
resolution are installed in the corners of a room. The
intrinsic parameters are calibrated by Zhang’s method,
then the extrinsics are calculated using Vicon sensors.
A single person is asked to do simple actions such as
walking, jogging, etc. There are two combinations of
mutual camera projections with two epipoles.

Panoptic studio [16]2 30 HD cameras, 480 VGA cameras,
and 5 Kinect2 are installed on the walls of a dome-
shaped studio. Both the intrinsic and extrinsic parame-
ters of all cameras are simultaneously calibrated based
on the structure-from-motion. All sensors are used for
recording multi-person interactions. There are 20 com-
binations of a single epipole and 80 combinations of
two epipoles in the HD cameras.

We chose a video sequence from each dataset in which a
single person moves around the scene: S2 sequence of Hu-
manEva (Fig. 2a) and dance1 of Panoptic studio (Fig. 2b).
Then, 2D human joints on the video frames were detected
using OpenPose [7]. The neck and hip joints were selected
as the point correspondences because they are less likely to
be occluded and are easily observed from any camera. We
manually labeled epipole locations in each image.

1http://humaneva.is.tue.mpg.de/
2http://domedb.perception.cs.cmu.edu/
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Method ϵR ϵt ϵf ϵk iter. time

L6f 28.0 14.3 48.8 0.78 1241 0.25
M7fk 29.8 15.1 56.1 1.46 2819 7.69
I3 32.8 16.1 70.0 0.26 92 0.04
P2f 22.7 11.3 48.0 0.26 39 0.03
P3fk 24.7 12.3 46.9 1.11 146 0.04

(a) HumanEva: S2 (2 epipoles, 2 sequences)

Method ϵR ϵt ϵf ϵk iter. time

L6f 17.3 8.5 18.6 2.70 10000 2.68
M7fk 23.8 12.2 19.8 2.61 10000 33.43
I5 15.5 12.4 30.7 2.69 10000 0.83
P4f 11.3 6.8 18.0 2.68 10000 1.22
P5fk 11.2 6.5 18.2 2.09 10000 3.64

(b) Panoptic studio: dance1 (single epipole, 20 sequences)

Method ϵR ϵt ϵf ϵk iter. time

L6f 10.3 4.9 19.8 2.67 10000 1.80
M7fk 12.0 5.9 20.0 2.85 10000 24.88
I3 13.1 8.0 33.7 2.66 2001 0.15
P2f 6.1 2.8 17.7 2.66 318 0.04
P3fk 6.6 3.2 17.9 1.72 2438 0.40

(c) Panoptic studio: dance1 (2 epipoles, 80 sequences)

Table 2. Quantitative results of real image dataset (best in bold and
second-best underlined). iter.: the number of RANSAC iterations,
time: the total processing time of RANSAC and the non-linear
refinement in seconds.

5.4.2 Quantitative results

For testing the methods, we configured RANSAC to have
the threshold by 3 pixels, the confidence by 0.995, and the
maximum iteration number by 10000. The random seed
was fixed for all methods during a single trial so that the
same sample points were drawn. After RANSAC, the non-
linear refinement described in Sec. 3.5 was performed on
inliers to polish the camera parameters to be more accurate.
The two general solvers, L6f and M7fk, optimized only the
symmetric epipolar distance Lsym in Eq. (29). The rest of
the solvers utilizing epipoles employed the total cost func-
tion L in Eq. (30) with a weight w = 100 × n to balance
Lsym and Lepi depending on the number of the points n.

We conducted 100 and 10 trials for each camera pair of
S2 and dance1, respectively. Table 2 reports the aver-
age values of (ϵR, ϵt, ϵf , ϵk), the number of RANSAC it-
erations, and the total processing time. Comparing Tab. 2a
with Tabs. 2b and 2c, we can see that all methods show bet-
ter scores in dance1 even though two epipoles are avail-
able in HumanEva. The person in dance1 is captured in
the higher-resolution image than in HumanEva, resulting
in higher localization accuracy of the 2D joints.

(a) 2D trajectory of the neck. (b) Reprojection of estimated
epipoles (green area in (a)).

(c) Top view. (d) Side view.
Figure 7. 3D shape reconstruction of HumanEva S2.

(a) 2D trajectory of the neck. (b) Reprojection of estimated
epipoles. (green area in (a))

(c) Top view. (d) Side view.
Figure 8. 3D shape reconstruction of Panoptic studio dance1.

Table 2 indicates that the proposed solvers outperform
the conventional methods in either case of one or two
epipoles. The proposed solvers show the best or the second-
best scores in most evaluation criteria. For example, P2f and
P4f are more than 100 times faster than M7fk while achiev-
ing lower estimation errors. Although P2f and P4f does not
estimate the radial distortion k in RANSAC, the non-linear
refinement successfully converges to an accurate solution of
k due to a good initial guess of F and f . On the other hand,
in spite of the use of epipoles, I3 and I5 are inferior to the
general solvers L6f and M7fk. As reported in Sec. 5.3, two
Ito’s methods are sensitive to image noise.According to the
above observations, we can conclude that satisfying the de-
composability conditions, Eqs. (3) and (4), significantly im-
proves the estimation accuracy even with known epipoles.
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5.4.3 Qualitative results

Figures 7 and 8 visualize a 3D shape reconstruction of S2
and dance1, respectively. For ease of viewing, only neck
joints are shown in both 2D and 3D images. We plotted the
position of estimated epipoles over 30 independent trials in
Figs. 7b and 8b. The P3fk’s epipole and the ground-truth
overlap so closely that the difference is not visible. On the
other hand, the camera motion given by M7fk has large er-
rors and the epipole is estimated on a different place in each
trial. This is consistent with the result in Tab. 2 where the
proposed methods have the smallest motion errors. Also,
we can visually validate that P3fk reconstructs a 3D shape
more accurately than M7fk in Figs. 7c, 7d, 8c and 8d.

6. Limitations and future work
One of the limitations is that epipole positions are man-

ually annotated. This is not a critical issue in data set
creation (Figs. 2a and 2b) because device installations
and data capturing spend time dominantly. However, a
fast-automatic epipole detector is required to use the pro-
posed method in real-time applications such as multi-agent
Visual-SLAM [28, 29, 36] shown in Figs. 2c and 2d. Al-
though direct epipole estimation has been studied for sev-
eral decades [2, 8, 22], unfortunately it cannot be said as
active nor extensive. We think that the manual labeling is
merely a current limitation, which can be resolved by fu-
ture effort in the computer vision community. For instance,
a quick workaround is to place a camera at the center of a
colored sphere or circle and detect the camera’s center in
images by ellipse fitting. Alternatively, there are more so-
phisticated ways that use wifi/radio waves or IMUs to find
the relative locations between devices in 3D space [3].

Another future work is to extend the proposed approach
to multi-view geometry, just as Sato [30] extended Ito et
al.’s DLT method [14] for obtaining a trifocal or quadrifocal
tensor. Combining the multi-view extension with an auto-
matic epipole detector, we can expect that the proposed ap-
proach stabilizes multi-agent Visual-SLAM with wide base-
lines for large-scale scene.

7. Conclusion
We have presented four minimal solutions to the uncal-

ibrated two-view geometry where one or two epipoles are
visible in the image plane. All solvers are manually formu-
lated as higher-order polynomials in a single variable with-
out an automatic Gröbner basis generator. We briefly dis-
cussed the degenerate conditions and showed several exam-
ples where the proposed solvers are feasible but not the con-
ventional methods. In the experiments, we first compared
the proposed solvers with the conventional methods in the
numerical stability and robustness against image noise us-
ing synthetic data. Then, we demonstrated that the proposed

solvers successfully stabilize the structure-from-motion us-
ing human joints as point correspondences, which are noisy
and less accurate than image feature points. Through these
experiments, the proposed solvers outperform the conven-
tional methods in estimation accuracy with maintaining
computational efficiency. Finally, we discussed the current
limitations of the proposed approach and future work to be
applicable in real-time applications. We hope this paper will
motivate the computer vision community to develop auto-
matic epipole detectors more extensively.
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