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Abstract

This paper proposes joint attention estimation in a single
image. Different from related work in which only the gaze-
related attributes of people are independently employed, (i)
their locations and actions are also employed as contex-
tual cues for weighting their attributes, and (ii) interac-
tions among all of these attributes are explicitly modeled
in our method. For the interaction modeling, we propose a
novel Transformer-based attention network to encode joint
attention as low-dimensional features. We introduce a spe-
cialized MLP head with positional embedding to the Trans-
former so that it predicts pixelwise confidence of joint atten-
tion for generating the confidence heatmap. This pixelwise
prediction improves the heatmap accuracy by avoiding the
ill-posed problem in which the high-dimensional heatmap is
predicted from the low-dimensional features. The estimated
joint attention is further improved by being integrated with
general image-based attention estimation. Our method out-
performs SOTA methods quantitatively in comparative ex-
periments. Code: https://github.com/chihina/
PJAE.

1. Introduction

Attention analysis enables various applications, such as
customer’s interest estimation [51], analyzing atypical gaze
perception in autism spectrum disorder [21, 2], and human-
robot interaction [47]. While attention is represented as a
point, region, or object in the literature, we represent it as
an attention point, AP, because a point can be used in any
applications as an elemental representation. The confidence
distribution of APs can be expressed in a heatmap image [5,
60, 8, 52] where each pixel value represents the confidence.

Attention estimation has two categories: single attention
estimation [45, 46, 4, 3, 5, 9, 52, 18] and joint attention esti-
mation [8, 60, 40, 41, 17]. While single attention estimation
targets the attention of a person, attention shared by multi-
ple people is detected by joint attention estimation.

In single attention estimation, an AP is estimated based
on the gaze direction of a target person [42, 33, 10, 36,
26, 25, 14, 24] and the saliency map of a scene im-
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Figure 1. Difference between joint attention estimation methods.
(a) Aggregating the gaze-related features of equally-weighted peo-
ple without considering their interaction. (b) Aggregating the at-
tributes of people weighted by their contextual attributes (i.e., lo-
cations and actions) via the interaction among all the attributes.

age [27, 38, 23, 56, 59, 24] in general. By simply aggre-
gating (e.g., averaging) multi-people APs that are indepen-
dently estimated by single attention estimation, a joint AP
can be estimated [5, 52]. However, the APs of multiple peo-
ple are not independent but jointly correlated in context.

For joint attention estimation with such contextual corre-
lation, in [8, 60], only the gaze-related attributes of people
(e.g., “Gaze distribution” in Fig. 1 (a)) are employed. Such
a straightforward approach has the problems below:

• No contribution weights of people: Some people
share attention, but others do not. The latter people
should not affect joint attention estimation, while all
people are equally weighted in [8, 60].

• No explicit interaction among people attributes: As
contextual cues related to joint attention, not only
gazes [8, 60] but also other attributes of people, such
as their locations and actions, are useful. Their interac-
tions are also informative. For example, nearby people
doing the same action may share the AP. Such interac-
tions among people attributes are neglected in [8, 60].
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These problems are resolved by the following novel con-
tributions in this paper, as illustrated in Fig. 1 (b):

• Activity awareness: Each person’s activity such as
the location and action can be an important clue for
joint attention estimation. For example, people shar-
ing the AP tend to share their activities as group mem-
bers. This assumption motivates us to focus on what
and where each person is doing, namely the location
and action of each person, to weight the contributions
of people for joint attention estimation.

• Interaction awareness: Interactions among people
attributes are explicitly modeled by our Position-
embedded Joint Attention Transformer (PJAT), where
a self-attention mechanism extracts the features of peo-
ple sharing the AP.

• Pixelwise joint attention heatmapping: While the
extracted joint-attention features are efficiently but suf-
ficiently low-dimensional, it is ill-posed to estimate a
high-dimensional heatmap image representing the AP
confidences from such low-dimensional features. To
avoid such an ill-posed estimation problem, we em-
ploy a network with image-coordinate embedding for
estimating the AP confidence pixelwise.

2. Related Work
2.1. Single Attention Estimation

To understand a person’s attention in a scene, appearance
cues observed in the person’s head, face, and eye images are
important. Scene image features are also useful to extract
saliency that attracts people’s attention. Recasens et al. [45,
46] and Chong et al. [4] fuse CNN features extracted from
a whole image and a cropped face image. Chong et al. [5]
employ LSTM [16] for fusing these two kinds of features
extracted in a video. Tu et al. [52] simultaneously estimate
heads and their APs from a whole image.

Rather than the raw images of the head, face, and eyes
used in the aforementioned methods, the gaze direction esti-
mated from these images is more informative for identifying
attention. Since the estimated gaze direction is not accurate
enough, it is in general extended to a more noise-robust rep-
resentation, such as a fan shape expressing the probabilistic
distribution of the gaze direction [31, 9, 29]. As the scene
features, features extracted from each object region can be
more useful than those in the whole image [3].

2.2. Joint Attention Estimation

Joint attention estimation merges the APs of multiple
people. For such estimation, gaze maps are superimposed
to yield a social saliency field whose modes are regarded as
multiple joint APs in [39]. In [40], the spatial relationship

between multiple gaze directions and their attention is mod-
eled via latent social charges inspired by Coulomb’s law. As
well as single attention estimation, joint attention estimation
can be achieved by both raw head, face, and eye images [50]
and gaze directions estimated in these images [8, 60]. For
example, in [8], a fixed-size fan-shaped gaze map is drawn
from the gaze direction of each person, and a CNN fuses
the averaged gaze map of all people and the region proposal
map of objects (i.e., saliency map) [61]. In [60], LSTM
fuses the gaze maps observed in an image. Such CNN and
LSTM might weight the gaze maps of people for joint at-
tention estimation. However, the fixedly-shaped gaze maps
cannot represent more flexible weights determined by inter-
actions among people attributes (e.g., their locations, gaze
directions, and actions). Such flexible weights are estimated
by a self-attention mechanism in our method.

2.3. Location- and Action-, and their Interaction-
Awareness

Our method is aware not only of the gaze directions
of people but also of their other attributes such as the lo-
cations and actions, which are informative for a variety
of tasks as follows. The locations of people provide a
meaningful context for individual reasoning [12], person
re-identification [53], people grouping [48], and trajectory
prediction [49]. The action class of each person is infor-
mative for human pose estimation [11, 20], human motion
synthesis [43, 35], action anticipation [1], human-human in-
teraction estimation [57], human-object interaction estima-
tion [32], and group activity recognition [28, 55, 44, 13, 37].
We can also simultaneously take into account the locations
and the actions for further improving individual and group
activity recognition [7], while these attributes are just im-
plicitly encoded by general image feature extraction in [7].

While the effects of the locations and actions of people
are validated for the above tasks, their effectiveness is un-
clear for joint attention estimation. For example, in [8, 60],
the location is not directly used for attention estimation,
while it is used for representing the gaze distribution, as
shown in Fig. 1 (a). Our novelty in PJAT lies not in just ver-
ifying their effectiveness but in how to model interactions
among these attributes (i.e., interaction awareness).

3. Proposed Method
The overview of the proposed method, consisting of

three modules (α), (β), and (γ), is illustrated in Fig. 2.
The attributes of each person are extracted from an image
(Sec. 3.1). The extracted people attributes are fed into the
Transformer encoder in (α) PJAT for interaction-aware joint
attention estimation (Sec. 3.2 and Sec. 3.3). The estimated
joint attention is integrated with the one estimated by (β)
a general image-based network for further improvement in
(γ) the fusion module (Sec. 3.4).
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Figure 2. Overview of the proposed method consisting of the three modules. (α) Our proposed Position-embedded Joint Attention Trans-
former (PJAT) for joint attention estimation. In PJAT, a Transformer encoder models interactions among the attributes of people. (β) An
image-based attention estimator. Any general attention estimation method can be fused with PJAT for improvement. (γ) Fusion module.
The heatmaps obtained from (α) and (β), denoted respectively by HJA and HAT , are fused into the final heatmap, HF .

3.1. Pre-processes for Person Attributes

The following pre-processes are used in our implementa-
tion, while these pre-processes are modularized so that they
can be easily replaced with any SOTA methods.
Location detection. Our method employs the location of
each person (denoted by l) as one of the person attributes.
While any location in the body can be regarded as the per-
son’s location, we use the head position as the person’s lo-
cation because the head is the edge point of a gaze line.
For this head detection, the pretrained YOLOv5 [22] is fine-
tuned with the head bounding boxes in each dataset.
Gaze direction estimation. The head bounding box of each
person is fed into the gaze direction estimator. This estima-
tor is a simple network consisting of VGG-16 for feature
extraction followed by two fully-connected layers with out-
put sizes of 64 and 2, in accordance with [60, 8]. The last
output is a vector consisting of x and y directions (denoted
by g = (gx, gy)) whose norm is normalized to one.
Action recognition. As with the head, a full-body bound-
ing box is detected by YOLOv5 [22]. This bounding box is
fed into an action recognition network (ARG [55] in our ex-
periments). Given Na action classes, this network outputs a
Na-dimensional probability vector (denoted by a) in which
j-th component is the probability of j-th action class.

3.2. Transformer Encoder for Feature Interaction

The interaction among the features of people (i.e., loca-
tion li, gaze direction gi, and action ai, where i denotes
the ID of each person), extracted by the pre-processes de-
scribed in Sec. 3.1, is the main focus of this paper. We
here employ Transformer to model such interactions. Trans-

C

D Query: 

Key: 

Value:

Attention 
map

Transpose
+1

D

Figure 3. Self-attention network in the Transformer encoder. Self-
attention models interactions among people attributes. The inter-
actions are embedded into the joint attention feature JJA using
the features of individual people (i.e., F 1,F 2, · · · ,FNp ) and a
learnable joint attention token (i.e., J ).

former [54] has been proven in various fields to be pow-
erful for modeling interactions of entities (e.g., spatial in-
teraction among image patches split from an image for vi-
sion tasks [6, 34] and people interaction for group activity
recognition [15, 13]). With the self-attention mechanism,
Transformer successfully handles the interaction of multiple
people. This mechanism is expected to play a crucial role
in joint attention estimation because it can directly reason
about who shares attention by using each person’s location,
gaze direction, and action. In addition, the characteristics of
(i) accepting variable-length input and (ii) its permutation-
invariant property are particularly important for our joint
attention estimation problem, where the number and the or-
der of detected people may change between images due to
imperfect human detection.
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Figure 4. Pixelwise joint attention estimation network. Coordi-
nates of each pixel (denoted by x and y) and extracted joint atten-
tion feature JJA are fed into the network in which joint attention
probability (denoted by HJA(x, y)) is estimated.

The attributes of i-th person are concatenated to be
Hi = (li,ai, gi). Hi is fed into the feature extractor (fF

in Fig. 2) consisting of two fully-connected layers.
The features of all Np people, each of which is a D-

dimensional vector (denoted by F i), are fed into the Trans-
former encoder (fT in Fig. 2). fT consists of two trans-
former encoder layers with multi-head attention. Each
transformer encoder is composed of the self-attention net-
work, feed forward layer, layer normalization, and residual
path, as with [54]. In the self-attention network shown in
Fig. 3, all the features and a learnable token [6, 30] of joint
attention (denoted by J ) are concatenated to be F ′. F ′ is
used to compute a query matrix Q = F

′
Wq , a key matrix

K = F ′Wk, and a value matrix V = F ′Wv , where Wq ,
Wk, and Wv denote D×D learnable weight matrices. With
Q, K, and V , F ′

JA is defined to be softmax
(

QKT

√
D

)
V .

F ′
JA is split into the feature vectors of Np people (de-

noted by F 1
JA, · · · ,F

Np

JA ) and the joint attention feature
JJA. This self-attention mechanism allows us to optimize
JJA by taking into account the mutual interaction between
the people attributes (i.e., li, ai, and gi of all Np people).

3.3. Pixelwise Joint Attention Estimator

With JJA, a low-dimensional latent vector, PJAT aims to
generate a high-dimensional heatmap whose a value in each
pixel (x, y) is the probability of joint attention in (x, y).
While such a map can be directly estimated from JJA using
fully-connected layers [30], it is difficult to yield a map ro-
bustly due to its ill-posed nature. We therefore propose pix-
elwise estimation of a heatmap while maintaining the spa-
tial relationship between pixels by positional embeddings.

The proposed joint attention estimator (fJ in Fig. 2) con-
sists of three fully-connected layers followed by the Sig-
moid activation at the last layer, as shown in Fig. 4. To
estimate the probability of joint attention at (x, y), we feed
the position (x, y) together with the encoded vector JJA to
the estimator by concatenating (x, y) with JJA. Its out-
put is obtained between 0 and 1 via the Sigmoid activa-
tion, which is regarded as the probability value (denoted by
HJA(xi, yi)). We attach this specialized head to the Trans-
former encoder introduced in Sec. 3.2 to constitute PJAT.

3.4. Fusion with Image-based Attention Estimation

Scene features. As described in Sec. 3.2 and Sec. 3.3, PJAT
estimates joint attention by focusing on interactions among
people attributes. However, there are some specific situa-
tions where the people attributes alone cannot estimate joint
attention well. For example, when the number of people
present in a scene is small, precise estimation might be dif-
ficult due to their sparse gaze distributions. A larger number
of people in a scene does not necessarily improve the esti-
mation accuracy; for example, when the gaze directions are
almost parallel, their intersection is sensitive to their noise.
Here, using scene features extracted from each image may
alleviate such difficulties. For example, visual saliency is
demonstrated as useful appearance information in previous
attention estimation methods [5, 52]. That is, the distribu-
tion of saliency captured by scene features helps localize the
AP of each person in the gaze direction. While the AP of
each person is independently estimated in single attention
estimation [5, 52], the image-based scene features also ben-
efit joint attention estimation [8] regardless of the number
of people in a scene.

Fusion. Based on the discussion above, we design our
method to fuse “the joint attention heatmaps HJA estimated
by PJAT” and “a map HAT estimated by an image-based at-
tention estimator (fA in Fig. 2)” into the final joint attention
heatmap HF . We here employ DAVT [5], a SOTA attention
estimation method using image-based scene features, as fA.
In DAVT, the average of individual attention heatmaps is re-
garded as HAT . HF is computed by the weighted fusion as
follows: HF = WJAHJA + WATHAT , where WJA and
WAT are weight coefficients. By training these coefficients
for each dataset, our network fuses two heatmaps based on
the scene properties.

Training objective. The overall network consisting of
PJAT, DAVT, and the fusion module is trained with the
heatmap estimation loss LALL = LJA+LAT +LF , where
LJA, LAT , and LF denote the loss functions used for train-
ing PJAT, DAVT, and the fusion module, respectively. All
the loss functions are based on the mean squared errors:
LJA =

∑
n(H

n
JA − Gn

JA)
2, LAT = 1

Np

∑
i

∑
n(H

i,n
AT −

Gi,n
AT )

2, and LF =
∑

n(H
n
F−Gn

JA)
2, where Hn

JA, Hn
F , and

Gn
JA denote the n-th pixel value of the heatmaps estimated

by PJAT, estimated by the fusion module, and given by the
ground-truth, respectively. Hi,n

AT and Gi,n
AT denote the n-th

pixel value of the i-th person’s heatmaps estimated by the
image-based attention estimator and given by the ground-
truth, respectively. GJA and Gi

AT are generated by draw-
ing the 2D Gaussian distribution so that its center is located
at the given ground-truth position of joint attention and i-th
person’s attention, respectively.
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Estimated JA
Ground-truth of JA

Detected ball

Blurred ball
(Zoom-in)

Image Ball detection [58] ISA [8] DAVT [5] Ours

Figure 5. Visual comparison on the Volleyball dataset. Estimated joint attention heatmap is overlaid on the image. Green and yellow circles
indicate the ground-truth and estimated joint APs, respectively.

Table 1. Experimental conditions on the Volleyball (Vol) and
VideoCoAtt (Vid) datasets. People attributes given by prediction
(Pr) and ground-truth (GT) are used in Ex.1 and Ex.2, respectively.
The condition details are described in the supplementary material.

Att Body Head Action

Vol Ex.1 l, g, a Pr Pr in image Pr
Ex.2 l, g, a GT Pr in GT body GT

Vid Ex.1 l, g – Pr in image –
Ex.2 l, g – GT –

Estimated JA
Ground-truth JA

ISA [8] DAVT [5] Ours

Figure 6. Visual comparison on the VideoCoAtt dataset. See the
caption of Fig. 5 for details.

4. Experiments

4.1. Datasets and Evaluation Metrics

The proposed method is evaluated with the following
two datasets. The Volleyball dataset, which includes many
interactions among people, is mainly used to validate our
contributions. Furthermore, the VideoCoAtt dataset is used
to validate the generality of our method. While VideoCoAtt
is used only in Sec. 4.3.2 with Table 3 and Fig. 6, detailed
results are available in the supplementary material.
Volleyball dataset. This dataset [19] has 4,830 sequences.
While each sequence has 41 frames, its center frame is an-
notated with the full-body bounding boxes of all players
and their action classes, each of which is either of Wait-
ing, Setting, Digging, Falling, Spiking, Jumping, Moving,
Blocking, and Standing classes. In addition to these anno-
tations, we newly provided the bounding box annotations
of a ball whose center is regarded as the ground-truth of a

joint AP. Since the ball is not observed in Left-winpoint and
Right-winpoint sequences (662 sequences in total), these
sequences are omitted. Consequently, the center frames in
4,168 sequences, consisting of 3,020 training and 1,148 test
sequences [19], are used in our experiments.
VideoCoAtt dataset. This dataset [8] with 380 TV-show
videos is for evaluating joint APs in more general scenes.
Each frame is annotated with the bounding boxes of the
ground-truth joint APs and people’s heads. The number of
APs differ between frames (i.e, 0, 1, and more APs), while
it is fixed to be one in all frames in the Volleyball dataset.
Since no action annotation is given to this dataset, only li

and gi compose Hi. DAVT as fA was trained on GazeFol-
low [45] and VideoAttentionTarget [5] datasets.

Our experimental conditions on the aforementioned two
datasets are shown in Table 1. In “Att,” people attributes
used in each dataset are shown. In each dataset, two types
of experiments were conducted, namely those with the peo-
ple attributes of prediction (Ex.1) and ground-truth (Ex.2).
In the Volleyball dataset, an annotated full-body bounding
box (“Body”) is used only for head detection. Head bound-
ing boxes are detected in a whole image and in ground-
truth full-body bounding boxes in Ex.1 and Ex.2, respec-
tively. In the VideoCoAtt dataset, annotated ground-truth
head bounding boxes are used in Ex.2, while head bound-
ing boxes are also detected in a whole image in Ex.1.
Evaluation metrics. The pixel with the max value in a
heatmap image is regarded as a joint AP. All results are
evaluated with the Euclidean distance between the pixels of
the estimated joint AP and its ground-truth. The distances
along x and y axes are also evaluated separately for detailed
analysis because AP locations are biased about y axis, as
mentioned in [8]. In addition, the detection rate is evalu-
ated. Each detection is considered to be successful if the
distance between the estimated and ground-truth joint APs
is less than each threshold. In accordance with the diameter
of joint attention in images (i.e., around 30 and 40 pixels in
the Volleyball and VideoCoAtt datasets, respectively), “30,
60, and 90 pixels” and “40, 80, and 120 pixels” are selected
as thresholds for Volleyball and VideoCoAtt, respectively.
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Table 2. Quantitative comparison on the Volleyball dataset evaluated in the two experimental conditions mentioned in Sec. 4.1. Results
obtained in ball detection, Ex.1, and Ex.2 are separated by double lines. Dist: the mean distance between the ground-truth and estimated
joint APs. Thr: the threshold for the joint AP detection rate. The best result in each column is colored in red.

Method Dist (x) ↓ Dist (y) ↓ Dist ↓ Thr=30 ↑ Thr=60 ↑ Thr=90 ↑
Ball detection [58] 147.6 66.5 174.8 54.3 56.0 58.5
ISA [8] (Ex.1) 53.1 35.5 70.1 60.7 69.7 75.9
DAVT [5] (Ex.1) 60.2 28.1 72.0 62.0 72.8 78.6
Ours (Ex.1) 44.1 25.2 56.0 64.5 76.8 83.0
ISA [8] (Ex.2) 36.7 24.7 48.7 46.0 79.1 92.8
DAVT [5] (Ex.2) 65.2 29.7 77.4 59.7 69.7 76.6
Ours (Ex.2) 9.3 4.7 11.4 96.3 98.9 99.6

Table 3. Quantitative comparison on the VideoCoAtt dataset. Accuracy and F-score: metrics for the joint AP prediction on the threshold
given by validation data. AUC: area under the ROC curve for the joint AP prediction.

Method Dist (x) Dist (y) Dist Thr=40 Thr=80 Thr=120 Accuracy F-score AUC
ISA [8] (Ex.1) 108.5 85.7 152.7 8.5 24.9 48.9 0.41 0.19 0.41
DAVT [5] (Ex.1) 55.6 26.8 68.2 58.6 68.5 79.2 0.52 0.32 0.58
HGTD [52] (Ex.1) 112.5 65.7 142.7 20.4 32.9 46.3 0.18 0.28 0.50
Ours (Ex.1) 54.3 26.5 66.5 59.1 68.7 79.7 0.52 0.36 0.64
ISA [8] (Ex.2) 80.5 61.7 107.1 5.6 36.7 71.3 0.62 0.36 0.64
DAVT [5] (Ex.2) 35.7 21.1 46.6 72.9 80.7 89.2 0.61 0.30 0.57
HGTD [52] (Ex.2) 112.5 65.7 142.7 20.4 32.9 46.3 0.18 0.28 0.50
Ours (Ex.2) 34.4 21.0 45.0 74.3 82.5 89.6 0.57 0.37 0.65

For the VideoCoAtt, detection accuracy is also evaluated
in accordance with [8, 5, 52]. However, more than using ac-
curacy is needed because there is no joint AP in over 71% of
test images. To relieve the class imbalance problem, F-score
and Area Under the ROC Curve (AUC) are also used. If the
max value in a heatmap is greater than a certain threshold, it
is regarded that a joint AP is detected. The threshold which
leads to the max F-score in validation data is used.

4.2. Training Details

For the Volleyball dataset, the overall network consisting
of (α), (β), and (γ) in Fig. 2 is trained in an end-to-end
manner after pretraining (α) and (β). For the VideoCoAtt
dataset, only (γ) is trained after pretraining (α) and (β). The
learning rates for the Volleyball and VideoCoAtt datasets
were 0.001 and 0.00001, respectively.

4.3. Comparative Experiments

4.3.1 Volleyball Dataset

Our method is compared with SOTA methods [8, 5] on the
Volleyball dataset. DAVT [5] is proposed as a single atten-
tion estimation, so joint attention is detected from the mean
of the independently-estimated APs of all people. As the
visual cue of a whole image, ISA [8] and DAVT [5] require
a saliency map obtained by CenterNet [58] and a raw im-
age, respectively. A head location is used for cropping a
head image as an input feature in DAVT [5], while it is used

only for computing the gaze direction in ISA [8]. In addi-
tion, our method is also compared with ball detection [58]
because the ball is a strong cue for joint attention estima-
tion in a ball game. As mentioned in Sec. 4.1, we evaluated
these methods on two experimental conditions (i.e., using
(Ex.1) predicted or (Ex.2) ground-truth people attributes).

Experimental results are shown in Table 2. Compared
with all other methods, our method is better in all metrics.
Visual results are shown in Fig. 5. While the joint atten-
tion is always on the ball in the Volleyball dataset, ball de-
tection [58] often fails when a ball is visually unclear (i.e.,
blurred). Heatmaps estimated by SOTA methods [8, 5] tend
to be erroneously blurred. On the other hand, our method
can successfully estimate joint attention on the ball.

4.3.2 VideoCoAtt Dataset

For the evaluation with the VideoCoAtt dataset, HGTD [52]
is also included as a comparative method. HGTD is trained
with GazeFollow and VideoAttentionTarget as in the origi-
nal paper since it requires a ground-truth head bounding box
for its training. While HGTD is single attention estimation,
joint attention is detected in a similar way as for DAVT.

Experimental results are shown in Table 3. Our method
is better in all metrics except the accuracy of DAVT and
ISA in Ex.1 and Ex.2, respectively. It is not surprising be-
cause accuracy is optimized for F-score by validation data,
as described in Sec. 4.1.
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Table 4. Ablation studies in Ex.1 on the Volleyball dataset. Ablated components about the people attributes and the network architectures
are separated by double lines. Each metric is evaluated with two results, namely HJA in branch (α) and HF in fusion module (γ).

Method Dist (α) Dist (γ) Thr=30 (α) Thr=60 (α) Thr=90 (α) Thr=30 (γ) Thr=60 (γ) Thr=90 (γ)
Ours w/o l 112.2 60.3 10.5 31.6 51.8 62.0 73.1 79.3
Ours w/o g 138.9 70.8 22.8 40.7 53.2 60.5 72.0 78.3
Ours w/o a 82.1 60.2 28.7 55.7 74.0 64.6 77.0 83.0
Ours w/o (α) - 72.0 - - - 62.0 72.8 78.6
Ours w/o (β) 87.2 87.2 25.8 52.9 70.3 25.8 52.9 70.3
Ours 84.8 56.0 30.3 55.9 71.3 64.5 76.8 83.0

Table 5. Ablation studies in Ex.2 on the Volleyball dataset.
Method Dist Thr=30 Thr=60
Ours w/o a 39.2 75.5 86.2
Ours w/o (α) 77.4 59.7 69.7
Ours w/o (β) 14.3 95.1 98.6
Ours 11.4 96.3 98.9

Estimated JA Ground-truth JA

Figure 7. Visualization of HJA, HAT , and HF obtained by mod-
ules (α), (β), and (γ) in Fig. 2. HF is better than HJA and HAT .

Visual results are shown in Fig. 6. In [8], the blur is
worse in the bottom example. In [5], the estimated AP is
in the right person’s face, while the ground-truth AP is in
the left person’s face in the bottom example. In contrast,
our method can estimate the AP points more closely to their
ground-truths in both examples.

4.4. Ablation Studies

The effect of each important component in our method
is verified with the ablation studies shown in Tables 4 and 5
in which the results on the Volleyball dataset are shown; see
the supplementary material for the VideoCoAtt dataset. We
ablate either of l, g, and a (i.e., people attributes) by filling
zero into ablated nodes in the first layer of the feature ex-
tractor network (Fig. 2). We also ablate either of network
branches (α) and (β) shown in Fig. 2. For the experiments
without branch (α) or (β), the output of each branch is re-
garded as the final joint attention estimation.

Table 6. Analysis of the negative impact caused by erroneous in-
dividual attributes, l, g, and a, on the Volleyball dataset. GT and
Pr denote the ground-truth and the prediction, respectively.

Inputs Dist Thr=30 Thr=60
(l=GT,g=GT,a=GT) 11.4 96.3 98.9
(l=GT,g=Pr,a=GT) 113.1 17.5 37.8
(l=GT,g=GT,a=Pr) 19.4 88.9 94.8
(l=GT,g=Pr,a=Pr) 116.2 16.7 37.5
(l=Pr,g=Pr,a=Pr) 150.8 12.4 26.8

0 (digging)

8 (standing)

Ground-truth JA
0.14

0.12

0.10

0.08

0.06

0.040 1 2 3 4 5 6 7 8 9 10 11

3 (standing)

1 (standing)

2 (standing)
10 (standing)

11 (standing)

9 (standing)

4 (standing)

6 (blocking)

7 (standing)

5 (standing)

Figure 8. Visualized attention values, which come from the atten-
tion map shown in Fig. 3, learned by PJAT. The values for 12 peo-
ple, which are in sNp+1,1, · · · , sNp+1,Np where si,j denotes the
(i, j)-th entity of the attention map, are colored and shown on the
bottom right side. The person ID (∈ 0, · · · , 11) is appended to
this color map and each person’s bounding box.

In Table 4, the best results for all metrics are obtained
by “Ours” and “Ours w/o a.” The low performance of a
can be attributed to the large recognition error of a, where
the accuracy of the action recognition is 53.3%. In fact, the
use of the ground-truth of a in Ex.2 significantly improves
performance, as shown in Table 5. Regarding l and g, the
results are improved in all metrics, as shown in Table 4.
This is natural as (i) g is an essential gaze-related cue and
(ii) head detection for estimating l is more reliable than the
action recognition accuracy mentioned above (i.e., 53.3%).

While the contribution of branch (β) is larger in Ex.1,
that of branch (α) is larger in Ex.2, as shown in Tables 4
and 5, respectively. The difference is also caused by pre-
diction errors of l, g, and a. The negative effect of such
prediction errors is discussed in Sec. 4.5. In addition to the
contribution of each branch, the combination of branches
(α) and (β) is better than the results obtained by branch (α)
or (β) independently. These results prove that each branch
complementarily helps their estimation, as shown in Fig. 7.
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Figure 9. Three types of PJAT architectures. PJAT with “(iii) JJA

only” (the rightmost) is used as branch (α) in our method.

4.5. Detailed Analysis

Negative impact of erroneous individual attributes. The
error in the person attributes (l, g, and a) degrades joint
attention estimation, as seen in Tables 4 and 5. To verify the
negative impact of error in each individual attribute, we use
the model trained in Ex.2, but use the possible combination
of ground-truths and predictions of l, g, and a in inference
(Table 6). Note that the three combinations with l=Pr, i.e.,
(l=Pr, g=GT, a=GT), (l=Pr, g=GT, a=Pr), and (l=Pr, g=Pr,
a=GT), cannot be evaluated because the ground-truths of g
and a can be used only when the location l is correct.

In comparison between (l=GT, g=Pr, a=GT) and (l=GT,
g=GT, a=Pr), the error in g gives a much negative impact.
This result is natural because the gaze direction g might be
most important, while the positive effects of l and a are
also validated in Tables 4 and 5. The significant perfor-
mance gap between (l=Pr, g=Pr, a=Pr) and (l=GT, g=GT,
a=GT) reveals that using different GT/prediction combina-
tions in training and test phases degrades the performance.
In fact, the result of Ex.1 shown in Table 2 is better than
(l=Pr, g=Pr, a=Pr) because the predicted attributes are used
for both the training and test phases in Ex.1.
Attention values in self-attention. PJAT can weight the
contributions of people by the self-attention mechanism, as
shown in Fig. 8. It shows that the “digging” person (i.e., 0-
th person) closest to the AP and people nearby this person
(i.e., 5-th and 8-th people) are highly weighted. It can also
be seen that the weights given to people doing the same
action (e.g., “standing” of all people except 0-th and 6-
th people) are different from each other. This is evidence
that PJAT can learn complex people interactions so that the
weight of each action is not fixed but changes depending on
other attributes such as the location and gaze direction.
PJAT architecture comparison. Table 7 shows the com-
parison of different PJAT architectures in Fig. 9. To esti-
mate HJA, “FJA only” takes the average of Hi

JA, the AP
heatmaps estimated from F i

JA. In “FJA and JJA”, JJA

is also used to estimate each Hi
JA. While the two meth-

ods aggregate estimated maps Hi
JA to compute HJA, “JJA

only” estimates HJA directly from JJA. “JJA only” shows
the best performance as it can directly utilize person-level
contribution weights. However, the gap from “FJA only”

Table 7. Comparison of different heatmap generators in branch (α)
in Ex.1 on the Volleyball dataset. Ours uses “(iii) JJA only” for
pixelwise estimation. See the supplementary material for Ex.2 and
the results on VideoCoAtt.

Method Dist (α) Thr=30 Thr=60
(i) FJA only 87.8 25.9 51.6
(ii) FJA and JJA 93.7 25.2 50.3
JJA only for imagewise 126.7 10.7 28.4
(iii) JJA only (Ours) 87.5 27.1 53.4

Table 8. Comparison of different fusion modules in Ex.1 on the
Volleyball dataset. See the supplementary material for Ex.2 and
the results on VideoCoAtt.

Fusion Dist Thr=30 Thr=60
CNN 94.6 44.1 68.8
Average 58.1 61.8 76.2
Weighted (Ours) 56.0 64.5 76.8

is small, which may reflect the characteristics of the Vol-
leyball dataset, i.e., the large number of people in a scene
yields robust estimation with simple averaging.
Pixelwise vs. imagewise. Pixelwise estimation with PJAT
is compared with general imagewise heatmapping. As
shown in Table 7, “Ours” outperforms “JJA only for im-
agewise” because pixelwise estimation with positional in-
formation avoids an ill-posed problem mentioned in Sec. 1.
Fusion module comparison. Three fusion modules are
compared in Ex.1. “CNN” fuses HJA and HAT by convolu-
tional layers, where the details of the architecture are shown
in the supplementary material. “Average” takes the aver-
age of HJA and HAT to compute HF . In “Weighted,” the
weight coefficients for HJA and HAT (i.e., WJA and WAT

in Sec. 3.4) are optimized. As shown in Table 8, “CNN” is
worse than the others due to inefficient convolution for the
sparse heatmaps, HJA and HAT . While the gap from “Av-
erage” is small, “Weighted” requires only a few parameters,
leading to stable weight estimation and better results.

5. Concluding Remarks
We addressed joint attention estimation by modeling

the interaction of people attributes as rich contextual cues.
To relieve the difficulty in estimating a high-dimensional
heatmap from a low-dimensional latent vector, we pro-
posed the Position-embedded Joint Attention Transformer
(PJAT). Our method achieves state-of-the-art results on two
significantly-different datasets, which prove the wide ap-
plicability of our method. This paper focused on the im-
age domain, as with [50, 52], to validate our key idea (i.e.,
activity- and interaction-aware joint attention heatmapping)
more clearly, which is directly applicable also to videos, as
with [5, 8]. On the other hand, the use of video-specific
features is important future work.
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jects as points. arXiv, abs/1904.07850, 2019. 5, 6

[59] Yijun Zhou and James Gregson. Whenet: Real-time fine-
grained estimation for wide range head pose. In BMVC,
2020. 1

[60] Ning Zhuang, Bingbing Ni, Yi Xu, Xiaokang Yang, Wenjun
Zhang, Zefan Li, and Wen Gao. MUGGLE: multi-stream
group gaze learning and estimation. IEEE Trans. Circuits
Syst. Video Technol., 30(10):3637–3650, 2020. 1, 2, 3

[61] C. Lawrence Zitnick and Piotr Dollár. Edge boxes: Locating
object proposals from edges. In David J. Fleet, Tomás Pajdla,
Bernt Schiele, and Tinne Tuytelaars, editors, ECCV, 2014. 2

10233


