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Abstract

Predicting survival rates based on multi-gigapixel
histopathology images is one of the most challenging tasks
in digital pathology. Due to the computational complexities,
Multiple Instance Learning (MIL) has become the conven-
tional approach for this process as it breaks the image into
smaller patches. However, this technique fails to account
for the individual cells present in each patch, while they are
the fundamental part of the tissue. In this work, we devel-
oped a novel dynamic and hierarchical point-cloud-based
method (CO-PILOT) for the processing of cellular graphs
extracted from routine histopathology images. By using
bottom-up information propagation and top-down condi-
tional attention, our model gains access to an adaptive
focus across different levels of tissue hierarchy. Through
comprehensive experiments, we demonstrate that our model
can outperform all the state-of-the-art methods in survival
prediction, including the hierarchical Vision Transformer
(ViT), across three datasets and four metrics with only half
of the parameters of the closest baseline. Importantly, our
model is able to stratify the patients into different risk co-
horts with statistically different outcomes across three large
datasets, a task that was previously achievable only us-
ing genomic information. Furthermore, we publish a large
dataset containing 873 cellular graphs from 188 patients,
along with their survival information, making it one of the
largest publicly available datasets in this context.

1. Introduction

The utilization of deep learning models in the digital pro-
cessing of medical images has garnered substantial inter-
est in the computer vision community, where these mod-
els have been used for a wide range of image types (e.g.,
histopathology images and CT scans) and tasks (e.g., clas-
sification, segmentation, and survival prediction) [41, 6, 49,
28, 47, 30, 37, 40, 29]. The ability of these models to learn
meaningful features from raw images with little to no su-

Figure 1: Cellular graph constructed by connecting the ad-
jacent nodes within a 4, 000 × 4, 000 pixels image. The
two enlarged windows demonstrated two different tissue
types with distinct spatial positioning and composition of
the cells. The window on the right demonstrates a high-
density area while the one on the left is associated with a
low-density tissue region.

pervision has created exciting opportunities, especially in
digitized histopathology where unique challenges are posed
due to the large scale and high granularity of input images,
also known as Whole-Slide Images or WSIs (Fig. 1).

The high resolution and intricate details of WSIs (each
image reaching up to 150,000×150,000 pixels in size) can
pose intriguing challenges in computer vision such as mem-
ory limit issues during end-to-end training. To address
the computational difficulties, Multiple Instance Learning
(MIL) techniques are often used as the main training strat-
egy. These techniques divide the WSI into smaller patches,
pass them through a pre-trained feature extractor, and ag-
gregate the patch embeddings to provide a representation
for the whole slide. Although MIL has shown promising
results in several tasks, including cancer subtype classi-
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fication and survival prediction, it has several significant
shortcomings [20, 2, 6]. Firstly, due to the large number
of patches generated from the high-resolution WSIs, most
studies utilize either a simple pooling [20] or hierarchical
aggregation [6]. However, the former limits the representa-
tional capacity of the model, and the latter requires substan-
tial computational power. Secondly, the bottom-up infor-
mation flow of these methods prevents them from attending
to high-granular details lying at higher resolutions. On the
other hand, acquiring a top-down aggregation strategy along
with the bottom-up information flow can potentially address
this issue. Thirdly, the training process is heavily dependent
on the number of available images, resulting in lower gen-
eralizability when only a limited number of data points are
available. Lastly, focusing on patches rather than individ-
ual cells leads to missing the mutual interactions of cells,
thereby reducing the representation power of the model to-
ward the biological basis.

Various studies have shown that the spatial positioning
of the cells and their mutual interactions can have a promi-
nent impact on the progression of the tumor [35, 50, 34].
For instance, Sirinukunwattana et al. [34] have shown that
quantitative statistics extracted from cell-cell connections
can provide meaningful insights into cancer metastasis, and
Son et al. [35] explained different roles of tumor-tumor,
tumor-stromal, and tumor-extracellular matrix connections
in the development of therapeutic resistance. Hence, di-
recting attention toward the processing of cellular structures
may boost models’ performance by offering a comprehen-
sive, multi-scaled perspective of the tissue.

In this study, with a point-cloud perspective, we in-
vestigate the utilization of graph neural networks (GNNs)
for the representation learning of the histopathology im-
ages through the dynamic and hierarchical processing of
the cellular graphs extracted from these images. Cellu-
lar graphs grant our model the ability to examine cell-
level information and the interconnections between cells
(Fig.1). The versatility in focus at different scales (rang-
ing from cell to tissue level) permits the model to have
a multi-faceted perspective of the tissue. This is in con-
trast to MIL models, which only examine patches with a
pre-determined resolution and magnification. Furthermore,
compared to the costly hierarchical pooling procedure in
Visual-Transformer-based methods [6], GNNs offer a more
efficient approach for the processing of WSIs due to the
weight sharing across the graph nodes. Consequently, this
could help with the mitigation of over-parameterization is-
sues in low-data regimes.

We present a dynamic top-down point-cloud-based GNN
with conditional neighborhood aggregation (CO-PILOT)
for learning the representation of histopathology images.
Our model begins by processing information at the cel-
lular level and gradually expands to larger neighborhoods

of cells, capturing the hierarchical structure of the tissue.
Through a bottom-up hierarchical process, our model com-
bines the representation of each cell with its surrounding
neighbors using conditional and position-aware information
propagation. However, it utilizes a top-down procedure to
aggregate the representations from higher to lower levels.
This enables our model to attend to finer details in the tis-
sue, which is critical for challenging tasks like survival pre-
diction. Our work advances the frontiers of MIL, Vision
Transformer (ViT), and GNNs in multiple directions:

• We introduce the first dynamic top-down GNN on cel-
lular graphs with conditional neighborhood aggrega-
tion that achieves state-of-the-art survival prediction
results across three large datasets comprising 872 pa-
tients.

• CO-PILOT eliminates the critical barriers of MIL
models, enabling efficient training of multi-gigapixel
images on a single GPU and outperforming all the
baselines including Vision Transformer (ViT). It also
implements the hierarchical structure of ViT while
keeping the number of parameters significantly lower
during end-to-end training.

• For the first time, we demonstrate that it is possible
to stratify high-grade serous patients (the most aggres-
sive and common subtype of ovarian cancer) into dif-
ferent risk groups soley based on routine hematoxylin
and eosin (H&E)-stained tissue slides.

• We will also publish a large cellular graph dataset, con-
taining 873 graphs from 188 high-grade serous ovarian
patients along with their survival information. To be
best of our knowledge, this dataset is one of the largest
datasets in this context.

2. Related Work
2.1. Multiple Instance Learning in Histopathology

The concept of permutation-invariant bag-of-features for
image representation learning was first introduced by Za-
heer et al. [52] and Brendel et al. [3]. Early works in digital
histopathology employed similar techniques to learn repre-
sentations of WSIs by aggregating information at the patch
level [17, 21]. However, later works introduced more so-
phisticated methods. For instance, Ilse et al. [20] proposed
the use of attention-based pooling, Campanella et al. [4]
introduced RNN-based aggregation, Li et al. [25, 24] de-
signed a self-supervised multi-resolution MIL, and Zhang
et al. [53] utilized the pseudo-bagging in a double-tier set-
ting. Chen et al. [6] also recently proposed using the large-
scale Vision Transformers for the hierarchical pooling of
WSIs, while Thandiackal et al. [41] designed a differen-
tiable zooming strategy for multi-scale attention. Despite
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these advancements, the aforementioned studies still fail to
take into account the cell-level details present in the images
and require a large amount of data for training. In this work,
we aim to address these limitations by using a cell-centric
method for hierarchical and dynamic information propaga-
tion across different sections of the image.

2.2. Graph Neural Networks in Histopathology

Recent achievements in graph neural networks (GNNs)
have attracted significant attention, as they have obtained
exceptional results in various tasks due to their capability
in preserving the structural information of data [39, 36].
GNNs are well-suited for capturing spatial relationships in
histopathology images as well [13]. Several studies in com-
putational histopathology have leveraged GNNs as aggrega-
tor models to combine representations of WSIs at the patch
level. For example, Adnan et al. [1] used a fully-connected
graph constructed from the most informative patches to pro-
duce a graph-level representation via a GNN. Meanwhile,
Lu et al. [27] combined similar patches into nodes in a
graph and processed it with a GNN. Zheng et al. [55] ap-
plied GNNs to provide a hashing mechanism for retriev-
ing contextually similar regions of interest in response to
a query image. In line with our work, Chen et al. [8] and
Wang et al. [45] used cellular graphs for survival prediction.
However, these studies differ from our approach as they ig-
nore the conditional dependency of cells during the message
propagation and do not take the top-down dependency of the
tissue structure into account. Additionally, cellular-based
processing and dynamic graph construction along with the
positional encoding are the two main differentiation factors
of our work and the prior graph-based approaches.

2.3. Point-Clouds

Due to its ability in capturing fine details of complex
structures, the processing of unordered Cartesian points
(also known as point-clouds) has become a popular ap-
proach for 3D object representation. PointCNN [26] uses a
convolutional neural network (CNN) that operates directly
on point-clouds, enabling it to capture both local and global
features. Similarly, KPConv [42] uses a kernel point con-
volution approach that is able to process large point clouds
efficiently while also preserving fine details. Wang et al.
[44] take an adaptive approach to the processing of the point
cloud, and He et al. [16] propose a density-preserving archi-
tecture to improve the reconstruction ability of the network.
On the other hand, Pang et al. [31] investigated the util-
ity of masked autoencoders as a self-supervised pre-training
tool for downstream tasks, and Choe et al. [9] explored the
utility of MLP-Mixer in point cloud understanding. Even
though these architectures have shown impressive perfor-
mance on a variety of tasks, including segmentation [16, 9],
classification [26, 44], and object detection [11], they either

have to limit the number of input nodes in the point-cloud
to a fixed number or reduce the batch size to 1 which subse-
quently deducts the performance of the model. As the first
study to investigate the point-cloud utility in cellular graphs,
we address this problem by using a dynamic GNN model,
allowing the processing of arbitrary-size point-clouds.

3. Method

3.1. Problem Formulation

Let the set of images in a given dataset be denoted by
{xn,k|n = 0, ..., N ; k = 0, ...,K(n)}. In this notation, n
represents the unique patient number, k serves as the identi-
fier for the images corresponding to patient n, N represents
the total number of patients in the dataset, and K(n) spec-
ifies the number of images available for patient n. Our aim
is to obtain a representation vector of Rn ∈ R1×d given all
the available images of patient n. Finally, we will use the
aforementioned representation to predict the estimated sur-
vival time (outcome) of the patient. In the rest of the paper,
we refer to xn,k as both the image and the point cloud of
cells extracted from this image to prevent any duplications.

3.2. Model Architecture

Our framework, as depicted in Fig. 2, consists of six
Dynamic Neighborhood Processing Units (DNPUs) that are
grouped in pairs to form three main blocks. These blocks
are responsible for low-, mid-, and high-level feature pro-
cessing. To minimize the number of parameters, the DN-
PUs in each block are closely weight-coupled together.

Given xn,k as the input, all the points in the cloud are
processed by the stack of DNPUs to provide a set of fea-
tures for each point. These processed features are then
passed to the designated Waterfall attention module, which
performs top-down conditional attention at different scales
of hierarchy to generate the final patient representation of
Rn,k ∈ R1×d. To combine all the representations of a pa-
tient, we employ an instance attention resulting in the final
representation vector of Rn ∈ R1×d, which is then used for
downstream tasks such as survival prediction.

We will elaborate on each part of our model in more de-
tail in the following sections.

3.2.1 Dynamic Neighborhood Processing Unit (DNPU)

Histopathology tissue samples often exhibit a complex, in-
tricate hierarchical structure involving the interplay of cells
and their neighbors at a local level, as well as interactions
between different tissue types at a larger scale. In order to
effectively capture this complex hierarchy, our design uti-
lizes a dynamic graph construction, a neighborhood mes-
sage passing operations, and a hierarchical node pooling
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Figure 2: Our proposed framework, CO-PILOT, comprises of 6 DNPU layers that are weight-coupled in pairs, resulting in 3
low-, mid-, and high-level blocks. Each DNPU layer consists of a dynamic graph constructor, a position encoding module,
a CNA (Conditional Neighborhood Aggregations) layer, and a SAGE pooling layer. The positional encoding module takes
into consideration the spatial location and cellular density during aggregation, while the CNA layer combines the contextual
information from neighbors on a conditional basis. Along with the bottom-up information flow within the backbone, the
top-down conditional mechanism of the Waterfall attention ensures that the model can properly take the finer details into
account. Finally, for each patient, the obtained representations are combined using the instance attention module, converted
to hazard risks, and used for survival prediction.

mechanism. Specifically, each DNPU consists of four con-
secutive sub-modules:

Graph Construction: The first sub-module includes a
graph construction layer that is responsible for creating a
graph from the input nodes (i.e. points in the cloud) by
connecting each node to its K nearest neighbors. This dy-
namic construction guarantees the information flow at dif-
ferent levels of hierarchy by preventing node isolation in the
graph. This step also adds a self-loop for each node, which
will be used for information balancing between the node
and its neighbors in the message-passing process.

Position Encoding: The second sub-module is a posi-
tion encoding layer that encodes the spatial positioning of
the neighbors. Graph neural networks are designed to pro-
cess unstructured data using permutation-invariant opera-
tions, regardless of the positional arrangement of the nodes.
Even though this is a desirable characteristic for graphs such
as social networks, it can drastically affect the interpretation
of cellular graphs. For instance, despite the fact that each
graph in Fig. 3 has its own unique structure, they are both
represented in the same manner by graph convolutional lay-
ers such as GCN [22], GAT [43], and SAGE [14]. To over-
come this challenge, a positional encoding mechanism is

(a) Sample Graph 1 (b) Sample Graph 2

Figure 3: Different positioning of nodes in graphs. Even
though these two graphs have different node positioning,
they are represented in the same way by the conventional
graph neural networks. Using a relative positional encod-
ing, CO-PILOT is able to address this issue.

employed to integrate the arrangement of the nodes into the
graph representation. In this regard, the positional encoding
of a given node can be derived through the computation of
its Cartesian coordinate, denoted as pi, using Eq. 1

Pi =
∑
j∈Ni

αj({pj , |pj − pi|,
pj − pi
|pj − pi|

}Wpos + bpos).

(1)
In this equation, Pi is the positional encoding of node i,
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|.| is the second order norm, {., .} is concatenation, Ni is the
set of nodes connected to node i in the graph, Wpos ∈ R5×d

and bpos ∈ R1×d are learnable matrices, d is the embedding
dimension of node features, and αj is the normalized atten-
tion weight obtained by a linear layer. This structure of the
position encoding enables us to attend to both the density
and geometry of the neighborhood.

In contrast to previous works [18, 16], we simply add the
positional encoding of the node to its feature. This approach
helps the model to reduce the number of parameters com-
pared to a feature concatenation process while maintaining
a comparable performance (see Sec. 4.6). More specifi-
cally, given a node feature of h′l

i for node i at layer l, the
positional encoding aggregation follows Eq. 2

hl
i = h′l

i + Pi. (2)

It is worth mentioning that despite the significant role
played by positional encoding in capturing the spatial local-
ization of cells, it is imperative that the model remains im-
partial towards the absolute value of the position. To ensure
this, we have incorporated a random rotation augmentation
that uniformly rotates all the nodes in each graph with the
same angle of rotation and around the center of (0, 0).

We have integrated the positional encoding only in the
first DNPU layer of the model, as the introduction of extra
positional encoding in subsequent layers exhibited similar
performance (see Sec. 4.6).

Conditional Neighborhood Aggregation (CNA): The
contextual composition of the neighborhood, particularly
the specific types of cells present, is a crucial determinant
of tissue characteristics. For instance, the presence of lym-
phocytes in close proximity to tumor cells has been corre-
lated with better outcomes in ovarian cancer [33]. While
graph neural networks can integrate this information via
message-passing operations, they work on an unconditional
likelihood basis relative to the current node. This approach
can result in the over-smoothing of the representation and
lead to inferior performance. To surmount this limitation,
we have designed a novel graph convolutional layer, called
Conditional Neighborhood Aggregations (CNA), which ag-
gregates the representations of neighboring nodes given that
of the current node. The formulation of CNA is articulated
by Eq. 3

hl
i =

∑
j∈Ni

softmax(⟨|hl−1
i W l

1|, |hl−1
j W l

1|⟩)hl−1
j W l

2, (3)

where hl
i is the representation of node i at layer l, Nj is

the collection of nodes connected to the node i in the graph
at layer l, W l

1 and W l
2 ∈ Rd×d are learnable matrices, |.|

is the second order norm, and ⟨.⟩ is the inner product. In
contrast to the conventional GNN layers such as GAT [43],

SAGE [14], and GIN [48], CNA offers the required flexi-
bility for the model to propagate the information depending
on the composition of the environment while maintaining
computational efficiency (see Sec. 4.6).

Node Pooling: Cellular graphs typically include large
numbers of nodes which can lead to computational issues
in deep models. To make the computations manageable on
large graphs, a hierarchical SAGE pooling operation [23] is
performed to select the most important nodes at each level.

3.2.2 Waterfall Attention

When it comes to downstream tasks, the processed repre-
sentations in the final layer of the network are generally uti-
lized. This leads to using high-level representations of the
image as a result of the bottom-up information propagation
of the model. However, we hypothesize that the lower-level
features could potentially reveal more valuable information
if they were conditioned on the high-level features. This
is also supported by clinical studies, such as Huang et al.’s
work [19], which shows that cellular statistics (such as the
proportion of different cell types) can be utilized to predict
the therapeutic response, especially when they are classi-
fied based on their corresponding tissue types. To put our
hypothesis to the test, we created a top-down attention ag-
gregation module, called Waterfall Attention, which is il-
lustrated in Fig. 2. More specifically, Waterfall Attention
adheres to Eq. 4

gl =
∑
i∈Gl

softmax(clMLP l(hl
i))h

l
i,

cl = σ(gl+1W l
wf + blwf ).

(4)

In this equation, gl ∈ R1×d is the aggregated represen-
tation of the graph at layer l, Gl is the collection of nodes
in the graph at layer l, hl

i is the representation of node i at
layer l, W l

wf ∈ Rd×1 and bwf ∈ R are learnable param-
eters, and MLP l is a two-layer MLP with hidden size of
d and output size of 1. To calculate gL−1, where L is the
total number of DNPU layers, we set the cL−1

i to 1 which is
equivalent to an unconditional aggregation at the last layer.
Finally, the aggregated g0 (equivalent to Rn,k mentioned in
Sec. 3.2) is fed into an instance attention to combine all of
the image representations for the patient.

3.2.3 Instance Attention & Loss Function

In order to combine embeddings from different images be-
longing to the same patient, an instance attention is used
similar to Eq. 5

Rn =

K(n)∑
k=0

softmax(Rn,kWinst)Rn,k + binst, (5)
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Type Method Parameters
HGSOC 1 HGSOC 2 TCGA-OV

C-Index (↑) RMST (↑) SRD@10 (↑) P-value (↓) C-Index (↑) RMST (↑) SRD@10 (↑) P-value (↓) C-Index (↑) RMST (↑) SRD@10 (↑) P-value (↓)

Patch-Based

DeepSet [52] 395K 0.475± 0.020 1.06 −4.6% 0.52 0.505± 0.019 1.29 +0.7% 0.04 0.500± 0.000 1.0 0% 1.0
Attention MIL [20] 657K 0.541± 0.040 1.88 +11.9% 0.05 0.535± 0.025 1.52 +3.4% < 0.01 0.532± 0.078 0.80 +11.0% 0.04
Variance MIL [5] 789K 0.539± 0.051 0.86 +3.5% 0.51 0.518± 0.017 1.49 +6.9% < 0.01 0.538± 0.072 0.64 +11.4% 0.04
DGC [54] 658K 0.502± 0.074 1.55 +3.7% 0.41 0.524± 0.017 1.27 +0.7% 0.05 0.538± 0.061 0.48 +8.8% 0.10
Patch-GCN [7] 1.3M 0.522± 0.086 0.75 −4.4% 0.93 0.531± 0.017 1.49 +6.1% < 0.01 0.517± 0.043 0.35 +11.5% 0.03
HIPT [6] 24M 0.477± 0.034 0.66 +1.6% 0.51 0.486± 0.007 0.95 +3.3% 0.45 0.486± 0.027 1.16 +8.8% 0.96

Point Cloud-Based
PointNet [32] 710K 0.513± 0.033 1.18 +12.2% 0.16 0.500± 0.012 0.77 −8.2% < 0.01 0.500± 0.012 0.77 −8.2% < 0.01
DGCNN [44] 1.9M 0.519± 0.027 0.73 −3.9% 0.64 0.506± 0.022 1.11 +5.3% 0.15 0.506± 0.022 1.11 +5.3% 0.15
DPCC [16] 17M 0.505± 0.040 0.67 −6.5% 0.36 0.514± 0.025 1.14 +5.7% 0.21 0.514± 0.025 1.14 +5.7% 0.21

Graph-Based HGSurvNet [10] 431K 0.513± 0.043 0.74 −3.1% 0.71 0.450± 0.164 0.59 +3.4% 0.38 0.520± 0.069 0.75 +6.1% 0.23

CO-PILOT (Ours) 356K 0.568± 0.027 2.29 +12.6% < 0.01 0.558± 0.033 1.61 +10.2% < 0.01 0.557± 0.040 1.44 +13.8% 0.03

Table 1: Survival prediction performance comparison of our model with all the baselines on two datasets.

where Rn,k is the corresponding representation of xn,k

obtained from the Waterfall attention, while Winst ∈ Rd×1

and binst ∈ R are learnable parameters. Finally, Rn is
passed through a fully connected layer to generate the haz-
ard, and the network is trained using the Negative Log Like-
lihood (NLL) loss [51].

4. Experiments

4.1. Data

We utilized two tissue microarray (TMA) datasets from
high-grade serous ovarian cancer: HGSOC 1 represents 873
tissue samples from 188 patients, and HGSOC 2 contains
1, 348 samples from 684 patients. All the tissue samples
were stained with H&E and scanned to generate 4, 000 ×
4, 000-pixel images at 40x magnification. Each patient has
multiple TMA cores, and the latest survival status (alive or
dead) along with the overall survival time (since diagnosis)
is available for all of the patients. We also used the publicly
available ovarian TCGA as part of our experiments. Even
though the pre-processing of TCGA-OV was the same as
that of the other datasets, we used

4.2. Preprocessing Steps

We first obtained an instance segmentation mask for each
of the images using HoVer-Net [12]. The embedding repre-
sentation of each cell was extracted by applying ResNet34
(pre-trained on ImageNet) on a 72 × 72 pixels window
around that cell. These embeddings served as the node fea-
tures in the cellular graph (point cloud). In addition, we nor-
malized the cell coordinates within each image to a range of
0 to 1 and used them for positional encoding.

4.3. Implementation Details

The Pytorch and DGL python libraries were utilized to
develop the model, and all experiments were conducted on
RTX 3090 GPUs with 3 distinct initialization seeds. During
training, the adam optimizer was used in conjunction with
a cosine scheduler and a weight decay of 0.00001, and a
batch size of 64. The learning rate was set to 0.002 for the
HGSOC 1 dataset, 0.01 for the HGSOC 2 dataset, and 0.02

for the TCGA-OV. The hidden dimension of all CNA mod-
ules was set to 128. Additionally, K was set to 6, and a 0.4
ratio was utilized in the SAGE pooling layers. However, we
reduced the ratio to 0.3 for the TCGA-OV to accommodate
the computations.

4.4. Survival Outcome Prediction

The results of the survival prediction are available in Tab.
1. Our model’s performance was compared to that of the
baselines using four metrics. The C-index (ranging from
0 to 1) measures the consistency between predicted and ac-
tual survival times across all patients. A value of 1 indicates
complete agreement, while a value of 0 indicates complete
disagreement. Although the C-index is commonly used to
compare machine learning models, patient stratification into
risk groups is more important for clinical decision-making.
Therefore, the p-value of the log-rank test was used as the
main metric for clinical utility (see Sec. 4.5). We also uti-
lized the restricted mean survival time (RMST) [15] as the
third evaluation metric. This metric quantifies the ratio of
the area under the survival curves of the low- and high-risk
cohorts. Additionally, we employed the survival rate differ-
ence (SRD) as the fourth measure. This metric was calcu-
lated by subtracting the 10-year survival rate of the high-risk
cohort from that of the low-risk. Larger values of SRD indi-
cate that the identified low-risk group has a higher survival
rate compared to the high-risk patients in long term.

We conducted all experiments using a 3-fold cross-
validation approach and ran each fold using 3 seeds to ac-
count for initialization variability, resulting in a total of 9
runs for each experiment. The results of our experiments
confirm that CO-PILOT is able to outperform all of the
baselines, including Vision Transformer, and has consis-
tent performance improvement across both datasets and all
four metrics, unlike the baselines. In particular, our model
achieves a c-index of 0.568, 0.558, and 0.557 on the HG-
SOC 1, HGSOC 2, and TCGA-OV datasets while those of
the closest baselines are 0.541, 0.535, and 0.544. Our re-
sults are also consistent with previous studies, where Nakhli
et al. [29] demonstrate a c-index of 0.550 on ovarian cancer
patients using immunohistochemistry images.

CO-PILOT’s results indicate that the cellular graph alone
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Figure 4: Survival curves for cohorts of patients identi-
fied as low-risk (predicted hazard < hazard threshold) and
high-risk (prediction hazard > hazard threshold) by our
model. Our model can predict patients who have signifi-
cantly higher risks and shorter survival times.

captures enough information to surpass the patch-based
methods, implying the model’s potential to deduce the
micro-environment structure from the cellular graph. Fur-
thermore, our model reduces the number of parameters by
half compared to the closest baseline, which can be linked
to its cellular foundation. More results and visualizations
can be found in the supplementary material.

Additionally, our model can separate the low- and high-
risk patients significantly on both datasets, being the only
one to do so on the HGSOC 1. Our study is the first to show
the possibility of this separation on the high-grade serous
ovarian patients using only the routine H&E images.

4.5. Patient Risk Stratification

C-index is a common metric for comparison between
machine learning models in the survival prediction domain
[6, 8]. However, from the clinical utility perspective, it is
more crucial for the model to stratify patients into groups
with statistically significant differences in outcome. Such
patient groups can then be managed differently in the clinic.
For example, low-risk patients may be managed with less
aggressive treatments (e.g., radiotherapy) while high-risk
patients may be treated with more aggressive regimens (e.g.,
systemic chemotherapy, combination therapy). This evalu-
ation is usually achieved through the use of Kaplan-Meier
(KM) curves and log-rank test p-values. To demonstrate the
potential of our model in this regard, we segregated patients
into low- and high-risk groups based on the predicted haz-
ards by the model for all patients. Fig. 4 presents the KM
plots of our model across both datasets along with the corre-
sponding log-rank test p-value. As shown, our model effec-
tively stratifies patients into low- and high-risk cohorts, with
high-risk patients exhibiting statistically significant shorter
survival times. Specifically, the median survival times of

high-risk patients in the HGSOC 1 and HGSOC 2 were 38.5
and 40.7 months, respectively, while the median times for
low-risk cohorts were 53.6 and 50.4 months.

Our datasets represent a highly aggressive subtype of
ovarian cancer patients (high-grade serous) that are uni-
formly treated. To the best of our knowledge, there are no
clinical parameters that can separate the low- and high-risk
patients in this subtype, and despite numerous attempts over
the past few decades, most research has been unsuccessful
in identifying biomarkers that indicate response to treatment
in these patients. Studies conducted by Wang et al. [46] and
Talhouk et al. [38] found that such markers could be iden-
tified through global genomics and transcriptomics aberra-
tion profiles, whereas our study is the first to yield promis-
ing results based on routine H&E histopathology images.

4.6. Ablation Studies

We validated our design choices through extensive abla-
tion experiments (Tab. 2). Our results confirm the impor-
tance of the low-, mid-, and high-level blocks as their abla-
tion (rows 1 & 2) resulted in reduced c-index and insignif-
icant separation of the patient cohorts. We also observed
that our CNA layer outperformed the state-of-the-art GAT
(row 3), SAGE (row 4), and GIN (row 5) layers, with better
efficiency in terms of memory consumption (CNA requires
only 1 GPU while the others require 2). The elimination
of conditional aggregation of the neighboring nodes in our
CNA layer resulted in a performance drop similar to that
of the SAGE layer, while having better patient stratification
capability (row 6). This performance drop illustrates the im-
portance of conditional aggregation for micro-environment
representation in cellular graphs.

The conditional top-down aggregation using our Water-
fall attention proved crucial, as its ablation (row 7) led to the
failure of patient stratification and a reduction in other met-
rics. The replacement of the waterfall attention with averag-
ing operation also significantly affected the model’s perfor-
mance (row 8), reinforcing our hypothesis regarding the key
role of hierarchical top-down dependency in histopathology
applications.

Our experiments on positional encoding concatenation
(row 9) validated our previous hypothesis concerning the
over-parametrization of the network and the challenges of
its dynamics during training. Additionally, we observed
that rotational augmentations of node positions could sig-
nificantly impact both the c-index and the stratification p-
values, consistent with our earlier assumption (row 10).
Conversely, we found that including extra positional encod-
ing in all DNPU layers (row 11) did not lead to any signif-
icant differences, indicating the model’s robustness in con-
veying positional information throughout.
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Row Ablated Feature
HGSOC 1 HGSOC 2

C-Index (↑) RMST (↑) SRD@10 (↑) P-value (↓) C-Index (↑) RMST (↑) SRD@10 (↑) P-value (↓)

1 Weight sharing of all DNPUs 0.559± 0.032 1.56 +3.8% 0.27 0.544± 0.029 1.08 −0.1% 0.97
2 No DNPU weight sharing 0.564± 0.037 1.71 +5.9% 0.07 0.546± 0.026 0.98 +2.9% 0.47
3 Replacing CNA with GAT 0.530± 0.036 1.14 −6.7% 0.39 0.532± 0.031 0.97 +1.4% 0.88
4 Replacing CNA with SAGE 0.564± 0.030 1.41 −2.0% 0.53 0.548± 0.030 1.06 +3.3% 0.23
5 Replacing CNA with GIN 0.552± 0.022 1.69 +7.3% 0.01 0.520± 0.033 1.12 −0.8% 0.36
6 Unconditional CNA 0.567± 0.033 1.75 +6.0% 0.05 0.547± 0.030 1.43 +8.0% 0.04
7 Unconditional Waterfall attention 0.551± 0.030 1.27 −5.6% 0.96 0.548± 0.034 0.98 +1.6% 0.94
8 No waterfall attention 0.565± 0.017 1.53 +1.8% 0.27 0.546± 0.037 0.95 −1.4% 0.85
9 Position encoding concatenation 0.564± 0.038 0.66 −9.0% 0.33 0.548± 0.033 1.42 +4.4% 0.02
10 No rotation augmentation 0.523± 0.056 1.12 −12.3% 0.57 0.558± 0.039 1.42 +7.0% 0.04
11 Position encoding in all DNPUs 0.568± 0.027 2.29 +12.6% < 0.01 0.558± 0.032 1.61 +10.2% < 0.01

CO-PILOT (Ours) 0.568± 0.027 2.29 +12.6% < 0.01 0.558± 0.033 1.61 +10.2% < 0.01

Table 2: Ablation studies of our model on both datasets.
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Figure 5: Performance of the model with respect to the
number of nearest neighbors used in the graph construction.
As the number of nearest neighbors increases, the c-index
rises as well. This is mainly because the model receives
more information about the neighborhood to perform the
prediction. On the other hand, a number larger than K = 9
results in a performance drop, which can be attributed to the
over-smoothing problem. The experiments on the right side
of the vertical line require 2 GPUs.

4.7. Impact of the Number of Cell Neighbors (K)

We analyzed how the performance of the model was af-
fected by the number of neighbors, which is the only hyper-
parameter of our proposed model. The results are shown in
Fig. 5, where we present the model’s performance on the
HGSOC 1 dataset as a function of the number of nearest
neighbors in the dynamic graph construction. As expected,
the model’s performance increases as the number of near-
est neighbors grows, since it can capture more information
about each cell’s neighborhood. However, after a certain
point (k = 9), a drop in the performance can be seen. We
attribute this to over-smoothing issues and improper infor-
mation processing caused by an excessively large neighbor-
hood in the graph neural network.

5. Conclusion

This study, for the first time, introduces a dynamic
point-cloud approach for the processing of cellular graphs
extracted from histopathology images. Our model (CO-
PILOT) utilizes a bottom-up conditional neighborhood ag-
gregation for information propagation and a hierarchical
top-down aggregation to combine representations at dif-
ferent scales. CO-PILOT outperforms the existing patch-
based survival prediction methods, including the Hierarchi-
cal Vision Transformer [6], demonstrating the potential of
the model in deducing tissue environment from the cellular
graphs.

Most importantly, our model stratifies high-grade serous
ovarian cancer patients into low- and high-risk cohorts us-
ing routine H&E images across two different datasets, a
task that previously required global genomic and transcrip-
tomics profiles or immunohistochemistry images, neither
of which is routinely used in practice. This underscores
the importance of cellular heterogeneity, spatial positioning,
and mutual interactions in histopathology image represen-
tation learning.

Our work offers promising new pathways for efficient
cell-based processing of histopathology images, poten-
tially leading to new applications in massive archives of
histopathology images already available in clinics. Inte-
grating our model with additional clinico-pathological vari-
ables, such as stage and age, may enable us to establish con-
nections between histopathology images and genomic mu-
tational profiles, thereby facilitating in-depth analyses and
biological inquiries. Even though we have confined our
experiments to histopathology data only, the application of
our model in other imaging domains such as fluorescent im-
ages can be interesting as well. Furthermore, our model’s
emphasis on cellular-based methodologies opens doors for
identifying visually understandable biological components
that have a significant impact on predicting outcomes, and
which may prove beneficial for clinical and deep biological
interrogations.
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