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Abstract

Benchmark performance of deep learning classifiers
alone is not a reliable predictor for the performance of a
deployed model. In particular, if the image classifier has
picked up spurious features in the training data, its predic-
tions can fail in unexpected ways. In this paper, we de-
velop a framework that allows us to systematically iden-
tify spurious features in large datasets like ImageNet. It is
based on our neural PCA components and their visualiza-
tion. Previous work on spurious features often operates in
toy settings or requires costly pixel-wise annotations. In
contrast, we work with ImageNet and validate our results
by showing that presence of the harmful spurious feature of
a class alone is sufficient to trigger the prediction of that
class. We introduce the novel dataset “Spurious ImageNet”
which allows to measure the reliance of any ImageNet clas-
sifier on harmful spurious features. Moreover, we introduce
SpuFix as a simple mitigation method to reduce the depen-
dence of any ImageNet classifier on previously identified
harmful spurious features without requiring additional la-
bels or retraining of the model. We provide code and data
at https:// github.com/YanNeu/spurious_imagenet.

1. Introduction

Deep learning has led to tremendous progress in image
classification [37, 50] and natural language processing [14].
Over the years, however, it has become apparent, that evalu-
ating predictive performance on a fixed test set is not neces-
sarily indicative of the performance when image classifiers
are deployed in the wild. Several potential failure cases
have been discovered. This starts with a lack of robust-
ness due to image corruptions [31], adversarial perturba-
tions [68], and arbitrary predictions on out-of-distribution
inputs [45, 32, 30]. In this paper, we consider the problem
of identifying and debugging image classifiers from spuri-
ous features [2]. Spurious features in image classification
are features that co-occur with the actual class object and
are picked up by the classifier. In the worst case, they lead
to shortcut learning [25], where only the spurious but not the
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Figure 1: Top: Examples of spurious features found via
our neural PCA components but not in previous study [61].
Bottom: We validate our spurious features by mining im-
ages from the web showing only the spurious feature but
not the class. They are classified by four ImageNet models
as the corresponding class. Some of them even contain Im-
ageNet classes (bees on feeder, grasshopper in leaves).

correct feature is associated with the class, e.g., [86] found
that a pneumonia detector’s bad generalization across hos-
pitals was caused by the neural network learning to iden-
tify the hospital where the training data originated from. A
weaker form of spurious feature (at least from a learning
perspective) is the case when the classifier picks up the cor-
rect class features, e.g., of a hummingbird, but additionally
associates a spurious feature, e.g., a bird feeder, with the
class as they appear together on a subset of the training set.
This becomes a harmful spurious feature if only the spuri-
ous feature without the class feature is sufficient to trigger
the classification of that class, see Fig. 1 for an illustration of
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such spurious features found via our method. Harmful spu-

rious features are difficult to detect and thus can easily go

unnoticed, leading to unexpected behaviour of a deployed
image classifier.

In this paper we make the following key contributions:

* we develop a pipeline for the detection of harmful spuri-
ous features with little human supervision based on our
class-wise neural PCA (NPCA) components of an adver-
sarially robust classifier together with their Neural PCA
Feature Visualization (NPFV).

* unlike prior work, which used masking images or pixel-
wise annotations, we validate our found spurious features
by using our NPCA components to find real images con-
taining only the spurious feature but not the class object.

* using these images we create the dataset “Spurious Im-
ageNet” and propose a measure for dependence on spu-
rious features. We do a large-scale evaluation of state-
of-the-art (SOTA) ImageNet models. We show that the
spurious features found for the robust model generalize
to non-robust classifiers. Moreover, we analyze the in-
fluence of different training setups, e.g. pre-training on
ImageNet21k or larger datasets like LAION.

* we develop SpuFix, a technique to mitigate the depen-
dence on identified harmful spurious features without re-
quiring new labels or retraining, and show how to trans-
fer it to any ImageNet classifier. SpuFix consistently im-
proves the dependence on harmful spurious features even
for SOTA models with negligible impact on test accuracy.

2. Related work

When classifiers in safety-critical systems such as

healthcare or autonomous driving are deployed in the wild
[3], it is important to discover potential failure cases before
release. Prior work has focused on corruption [31], adver-
sarial robustness [1 1, 68, 43], and out-of-distribution detec-
tion [45, 32, 30]. There is less work on spurious features,
although their potential harm might be higher.
Spurious features: It has been noted early on that classi-
fiers show reliance on spurious features [15] e.g., a cow on
the beach is not recognized [9] due to the missing spuri-
ous feature of grass. Other forms of spurious features have
been reported in the classification of skin lesions [ 2], pneu-
monia [86], traffic signs [67], and object recognition [88].
Moreover, it has been shown that deep neural networks are
biased towards texture [26] and background context [80],
see [25] for an overview. [58] argues theoretically that spu-
rious features are picked up due to a simplicity bias.

Detection of spurious features has been achieved using
human label-intense pixel-wise annotations [48, 59, 60].
In [78], they use sparsity regularization to enforce a more
interpretable model and use it for finding spurious fea-
tures. [4] propose a complex pipeline to detect spurious fea-
tures. While they scale to ImageNet, their analysis is lim-

ited to a few spurious features for a subset of 100 classes.
[61, 44, 62] do a search on full ImageNet based on class-
weighted “neural maps”. The neural maps are used to add
noise to “spurious” resp. “core” features but no significant
difference in classification performance is observed. It re-
mains unclear if their found spurious features are harmful,
that is the feature alone triggers the decision for that class.

Interpretability methods: In recent years several inter-
pretability methods have been proposed e.g., attribution
methods such as GradCAM [57], Shapley values [42], Rel-
evance Propagation [7], and LIME [51]. The use of these
methods for the detection of spurious features has been an-
alyzed in [2, 1] with mixed success and it has been argued
that interpretability methods are not robust [19, 64, 27].
However, attribution methods work better for robust clas-
sifiers due to more interpretable gradients [22]. Another
technique is counterfactual explanations [76, 75] which are
difficult to generate for images due to the similarity to ad-
versarial examples [68]. Thus visual counterfactual expla-
nations are realized via manipulation of a latent space [56]
or in image space [53, 6, 13] for an adversarially robust clas-
sifier. Visual counterfactuals for non-robust classifiers using
diffusion models [35, 65, 33, 18] have been proposed in [5].
ImageNet: ImageNet [52] suffers from several shortcom-
ings: apart from an inherent dataset bias [71], semanti-
cally overlapping or even identical class pairs were reported
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], e.g., two classes “maillot”, “sunglass” vs “sun-
glasses”, “notebook” vs “laptop” etc. We disregard such
trivial cases of dataset contamination and focus on classes
with harmful spurious features, in particular ones where

only a small portion of the training set is contaminated.

3. Spurious features

A proper definition of spurious features is difficult. We
describe two settings of harmful spurious features which ap-
pear in this paper. We denote by Cj, the set of all images
containing objects belonging to class k£ (assuming for sim-
plicity that we have a deterministic problem and ignoring
multi-labels). Let S be the set of all images containing a
feature s (e.g. a bird feeder). It is a correlated feature for
class k when C, NS and S\ C, are non-empty, i.e. the fea-
ture occurs frequently with the class object but there is no
causal implication that appearance of s implies the appear-
ance of the class object (a bird feeder in the image does not
imply presence of a hummingbird). A correlated feature
becomes a spurious feature when the classifier picks it up
as feature of this class. Not every spurious feature is imme-
diately harmful, even humans use context information [25]
to get more confident in a decision. However, a spurious
feature is harmful if the spurious feature alone is enough to
trigger the decision for the corresponding class without the
class object being present in the image. We consider two
scenarios for a harmful spurious feature shown in Fig. 2.
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Figure 2: Type of harmful Spurious Feature: Left: The
spurious feature s is taken up by the classifier which pre-
dicts class k on C, U S instead only on C}. Right: The spu-
rious feature s is shared between classes but appears more
often in class k. The classifier associates S with class k and
thus predicts class & also on C; N S instead of class [.

Spurious Class Extension: For this type of spurious
feature (left in Fig. 2) the classifier picks up the spurious
feature s for class k and predicts the class k even on S\ Cj,
with high confidence (prediction of “hummingbird” for
images showing a bird feeder but no hummingbird). The
classifier predicts class k£ beyond its actual domain C and
thus we call this a spurious class extension. While this
spurious feature does not necessarily hurt in terms of test
performance it can easily lead to completely unexpected
behavior when the classifier is deployed in the wild.

Spurious Shared Feature: Here, two classes C}, and
C) share a spurious feature s (e.g., “water jet” for the
classes “fireboat” and ‘“fountain”). As there are more
training images with feature s in C}, than in Cj the classifier
associates S with class k and predicts class &k for S N C;.

The two types of harmful spurious features are not
exclusive. A shared spurious feature s can at the same
time lead to a spurious class extension, e.g., the object
bird feeder leads to a spurious class extension of the class
“hummingbird” (see Fig. 4) to images of bird feeders with-
out hummingbirds. In the training set the hummingbird
feeder appears only in images of class “hummingbird” but
the hummingbird feeder has parts which mimic flowers and
flowers are a shared spurious feature with bees. In Fig. 4
right top row, images of bees on a bird feeder are classified
as “hummingbird” instead of “bee”, so the spurious feature
is strong enough to override the decision for the true class
“bee” (spurious shared feature).

4. Finding spurious features via neural PCA
and associated feature visualizations

First, we define our class-wise neural PCA (NPCA)
which allows us to find diverse subpopulations in the train-

ing data, e.g., we checked that the bird feeder for “hum-
mingbird” is visible in 15% of the training images (compo-
nent 2), while another 15% contain a part of it (component
3), see Fig. 3 or, for more examples, App. F. Then we intro-
duce our neural PCA feature visualization (which requires
an adversarially robust model) and how we select NPCA
components for human inspection. The identification of
spurious features requires minimal human supervision, and
our effective setup allows us to screen all ImageNet classes.
Adpversarially robust model: Similar to [61], we use an
adversarially robust model to find spurious features in Ima-
geNet. The reason for this is that robust models have gener-
ative properties [74, 53, 6, 61, 13] in the sense that maximiz-
ing the predicted probability of a class in a neighborhood of
an image leads to semantically meaningful changes. They
also have more informative gradients [22] and thus attri-
bution maps such as GradCAM [57] work better. We use
the multiple-norm robust model of [13] as they claim it has
the best generative properties. The generative properties of
robust models are mainly used for the neural PCA feature
visualization where we maximize the NPCA component of
a class starting from a gray image. If a spurious feature
appears without the class object, this is a strong indicator
of a harmful spurious feature. A non-robust model would
only produce semantically meaningless adversarial noise,
hence we need a robust model for this part of our detection
pipeline. Our detected spurious features are not specific to
the robust model. We show that SOTA ImageNet models
share the same spurious features (Fig. 4 and Sec. 7.2).
Class-wise neural PCA: Let (z;, ;)Y | be the training
set, where y; € {1,..., K} and K is the number of classes.
We consider features of the penultimate layer ¢(z) € RP
of a neural network for an input x. For a given class k£ and
its associated weights wy, € RP in the final layer, we define

Yi(x) = wi © ¢(z). (D
where ® is the componentwise product. Let b € R¥ be the
bias vector of the final layer then the logit fj of class k is:

D
Ji(@) = ijl wij $(2); + bk = (1, ¢x(z)) + bi. (2)
Let I;; be the index set of the training set of class £ and
1, the class-wise mean, v = ﬁ Zselk Yp(zs). The
class-wise neural PCA allows us to identify variations in
the set {¢)(z,) }rer, arising due to small subpopulations in

the training set. In the class-wise neural PCA, we compute
eigenvectors of the class-wise covariance matrix,

C =Y (nles) ) (e — ). 3
sely,

The eigenvectors, v1, . .., vp form an orthonormal basis of
R® and we write ¢ () — v, in this basis,

Un(x) — i, = ZlDzl v (Y (@) = sy, (4
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Top 5 neural PCA components (ours)

Figure 3: Top 5 Neural PCA components for class hum-
mingbird: first row shows our neural PCA feature visu-
alization (NPFV), second row shows four most activating
training images of each NPCA component and the last row
GradCAM for the NPCA component. Our NPCA compo-
nents capture different subpopulations in the training data.
Comp. 2 is identified as spurious feature “bird feeder”, see
NPFV and most activating training images (see also Fig. 4).

and define

az(k)(x) = (1,v) (Yr(z) — g, v1), &)
The logit fi(z) of the k-th class can then be written as

D

fel@) =3 @)+
(k)

Thus for a given x, we can interpret o, ' (x) as the con-
tribution of the neural PCA component [ of class & to the
logit fi(x) of class k since the term <1, zj_zk> + by, is con-
stant for all inputs. Based on this we introduce a mitigation
technique for spurious features without retraining in Sec. 5.

(1,9%) + by (6)

Neural PCA Feature Visualization: To identify se-
mantic features corresponding to our neural PCA compo-
nent [, we show the training images which attain the maxi-

mal values of al(k) (x). Additionally, we generate an image

zl(k), which we call the Neural PCA Feature Visualization

(NPFV) of feature [ of class k, by maximizing (" (z):

k
( ) = g + argmax5| <. al( (g+9),

where g is a gray image (all channels equal to 0.5). Thus we
maximize the feature al(k) outgoing from a non-informative
and unbiased initialization g. The optimization problem is
solved using adaptive projected gradient descent (APGD)
[16] with 200 steps. The budget for changes, ¢ = 30, is
small to avoid the overactivation of feature attacks maxi-

mizing the output of individual neurons [21, 63, 61], see

Fig. 8. In Fig. 4 we show for each identified spurious fea-
ture, the corresponding NPFV, e.g., for “hummingbird” one
can see the bird feeder but no hummingbird. The NPCA
components together with the maximally activating training
images are in principle sufficient to identify spurious fea-
tures, but the NPFV is very useful to judge how harmful
a spurious feature is. Therefore, we use an adversarially
robust model, since a non-robust model would yield seman-
tically meaningless adversarial noise as NPFV.

Selection of neural PCA components for human in-
spection: The penultimate layer of the robust ResNet50
we are using has 2048 neurons. Thus it is infeasible (and
unnecessary) to investigate all neural PCA components. A
strong criterion that one has found a harmful spurious fea-
ture is i) the NPFV shows mainly the spurious feature and
not the class, and ii) the NPFV has high confidence. If ii) is
not satisfied, then the NPFV is a spurious feature the clas-
sifier may have picked up, but it is not harmful in the sense
that this feature alone causes the classifier to choose that
class. Moreover, we noticed that the eigenvalues of the neu-
ral PCA, and the corresponding « values, decay quickly.
Thus we compute the NPFV for the top 128 neural PCA
components (having maximal variance) and then select the
ten components which realize the highest confidence for
their NPFV in the corresponding class. Note that we do
not optimize the confidence when generating the NPFV but
only a( )( ) which is part of the logit of the k-th class.

Identlﬁcation of spurious neural PCA components
via human supervision: For each ImageNet class k we
show the human labeler the top 10 components. For each

(k)

component [ we show the NPFV 2, and the 5 training im-

ages z, of class k with the largest values of al(k) (x,). More-
over, we compute GradCAM [57] images for the NPFV and
the five training images using the NPCA component a( )
as score. The human marks a component as spurious 1f i)
the NPFV shows dominantly an object not belonging to the
class ii) the five training images show consistently this ob-
ject, iii) the GradCAM activations are primarily not on the
class object. The setup shown to the human labeler can be
seen in App. B. The labeling of one class takes on aver-
age about 45 seconds, so the full labeling of all ImageNet
classes took about 13 hours. The human labeler (researcher
in machine learning) found in total 337 spurious compo-
nents. Another human labeler checked all of them and re-
moved spurious features in case of disagreement, resulting
in 322 spurious features from 230 ImageNet classes.

5. SpuFix - Mitigation of spurious features

Once the spurious features are identified, the question is
how one can mitigate that the classifier relies on them. One
way is to identify the training images containing the spu-
rious feature and then discard or downweight them during
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Images with spurious bird feeder but no hummingbird
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Freight car - Random train. images (confidence / av,) Images with spurious grafitti but no freight car

1.00/7.7 1.00/3.4 1.00/6.3 0.98/—-0.8 1.00/4.2 0.97/35 0.79/40 0.81/24 0.85/3.2 0.88/2.6
NPFV-1 Max. activating train. 1mages NPCA Comp 1 all class1ﬁed as freight car by four ImageNet models
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1.00/12.1 1.00/10.9 1.00/10.4 1.00/10.2 100/102 0.85/2.5 0.86/2.5 0.90/2.3 0.82/2.2 087/22
Koala - Random train. images (confidence / o) Images w1th spurlous eucalyptus/plants but no koala

7 e ) e g LA h~‘N

1.00/0.77 087/24 1.00/0.4 1.00/0.0 0.95/0.5 0.49/3.5 061/31 036/31 036/31 0.69/2.7
NPFV 3  Max. actlvatmg train. 1mages NPCA Cornp 3 all classified as koala by four ImageNet models
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1.00/5.5 1.00/4.6 1.00/4.5 100/44 086/43 056/26 062/25 074/25 072/24 066/22

Flreboat Random train. images (confidence /ak) Images with SpllI‘lOllS water jet but no fireboat
pa—— :

0.88/—-1.1 0.95/0.5 0.12/—-0.6 0.84/—-0.20.02/—-1.1 0.63/2.3 0.71/22 0.84/2.2 0.65/2.1 0.63/1.9
NPFV 2 Max. actlvatmg tram 1mages NPCA Comp 2 all classified as ﬁreboat by four ImageNet models

100/55 0.42/4.1 1.00/4.0 1.00/3.9 1.00/3.9 0.53/1.9 079/19 0.78/1.8 0.79/1.8 0.76/1.8

Figure 4: Spurious features (ImageNet): found by human labeling of our neural PCA components. For each class we
show 5 random train. images (top left), the neural PCA Feature Visual. (NPFV) and 4 most activating train. images for the
spurious feature component (bottom left). Right: four ImageNet models classify images showing only the spurious feature
but no class object as this class.
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training. However, this would require relabeling all spu-
rious ImageNet classes which is not feasible. We could
order the training set according to the value al(k) of the
corresponding neural PCA component which indicates how
much of the spurious feature an image contains. While this
would speed up the process significantly, it would still re-
quire a significant amount of manual relabeling. Can one do
it also without any additional labeling? Yes, as described in
Sec. 4 we can rewrite the logit of the k-th class as

fr(x) = Zil af® (x) + (1,91) + by. ©)

For a spurious component [ of class k, we use min{agk), 0}

instead of al(k) to remove its positive contribution from the
logit (negative contributions are semantically different). Af-
ter removal of the spurious features, the new logit becomes

lfquix (z) = fr(z) — Z max{al(k) (x),0} (8

LESK

where Sy is the set of spurious NPCA components of class
k. We denote this method as SpuFix. It significantly re-
duces dependence on spurious features, see Sec. 7.3.

Transfer of SpuFix to any ImageNet classifer: As de-
scribed in Sec. 3, harmful spurious features are a result of
subpopulations in the training data. While not every spuri-
ous correlation will be picked up by every model, most of
our detected spurious features generalize to a wide range of
classifiers (see Sec. 7). In the following, we show how Spu-
Fix can be transferred to any given ImageNet classifier f
for which f; denotes the logit and 1, the weighted penul-
timate layer of class k. The goal is to find a direction b
in the weighted feature space Uy, of f for every spurious
NPCA component [ corresponding to the eigenvector v; of
the original model, resp. al(k) (z), and then truncate its pos-
itive component. To find this direction we maximize the co-
variance of the projection onto b and al(k)
images of class k:

over the training

b

= argmax g
llbll=1

<b7 ¢k<x5> _qZk> al(k)(xs) (9)

sely

which has a closed form solution

(10)

In contrast to the eigenvectors v;, the matched vectors bl(k)
are not necessarily orthogonal. Thus before truncation the

centered features 1, () — v, need to be projected onto the

(k)

subspace spanned by the b, and represented in the non-

orthogonal basis {bl(k)}legk. We denote this representation

by P*) () (details in C.1). The logit of class k of the Spu-
Fix version of f is then:

~]§qu1‘3¢($) — fk(x) _ Z ma‘X{<1’bl(k)>F)l(k)(x)’0}

1Sk
(1D
In the case where f = f (the robust model), we recover
the original SpuFix truncation in (8) (see C.2). It turns out
that SpuFix is even effective when the architecture is quite
different from the ResNet50 we used for detection, e.g. ViT
or VOLO, see Sec. 7.3 and Table 1 and 2.

6. Comparison to neural features of [61]

We compare our NPCA framework to the method of [61]
to detect spurious features for ImageNet. As model, they
use a /o-robust ResNet50. Let J, be the set of training im-
ages classified as class k. [61] define the j-th component

m; ) of the class-wise mean over predictions,

1
m®) — oA Z%ejk Ui (zs), (12)

as the importance of the j-th neuron for class k.! Then,
they order the neurons of the penultimate layer according
to the score mgk) and consider the top-5 neurons of each
class. The main difference to our approach is that they as-
sume single neurons with maximal influence on the mean
are capturing spurious features whereas our NPCA compo-
nents are linear combinations of neurons that capture the
variance around the mean. Given that the ResNet50 has
only 2048 neurons for 1000 classes, some neurons are la-
beled as core and spurious feature for multiple classes si-
multaneously, even though the images are quite different. A
major advantage of NPCA is that due to the orthogonality
of the PCA components, we identify diverse subpopulations
in the training data. As [61] use no constraints for the neu-
rons, they often find very similar subpopulations. Hence,
one may miss spurious subpopulations when only checking
the top-5 components, see Fig. 5. Another difference is that

they maximize the score mg-k) for the training images x,.

w;k) =X, + argmaXH(SHQSG m;k) (er + 5),

whereas we maximize our NPCA component ozl(k) (z) start-
ing from a gray image to introduce no bias. Thus, we check
if the classifier produces the spurious feature and not only
enhances it on an image showing it already.

The third difference is that [6 1] want to identify any spu-
rious feature while our goal is to find harmful ones. Thus,
they use weaker criteria for deciding if a neuron shows a
spurious feature: main criterion is if the neural activation

I'The top-5 neurons do not change when using I}, instead of .Jj,.
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Figure 5: Comparison of top-5 NPCA and top-5 neurons
for class hummingbird for the robust model of [61]: Our
NPCA components identify diverse subpopulations in the
training set whereas the top neurons show similar ones and
the spurious bird feeder is not detected, see also App. A.

(k)

map based on m;"’ is off the class object according to a

majority vote of 5 human labelers. The visualizations w( )
are only used if the activation maps are inconclusive. In
contrast, we require i) our NFPV to show the spurious fea-
ture, ii) the GradCAM based on al(k) highlights mainly the
spurious feature, and iii) our human labelers have to agree
that the NPCA component is a harmful spurious feature.

As our criteria are more strict (in particular, that the
NFPV shows the spurious feature is a strong criterion), it
is not surprising that [61] find more spurious features (630
in 357 classes) than we do (322 in 230 classes). More-
over, the employed models are different and we examine
top-10 NPCA components whereas they check top-5 neu-
rons. Thus, the comparison is difficult and our novel dataset
“SpuriousImageNet” could be biased towards spurious fea-
tures which only we found. Hence, we compute our top-5
NPCA components for their robust ResNet50 for a direct
comparison to their top-5 neurons and their found spurious
features. In Fig. 5 we compare them for the class hum-
mingbird where they do not find the spurious feature “bird
feeder”. In general, we observe that our found subpopu-
lations are more diverse and thus we find more spurious
features than they do when using their weaker criteria. In
App. E we do an extensive comparison for all classes.

7. Experiments

In this section, we provide a qualitative and quantitative
evaluation of our 322 detected spurious features in Ima-

geNet, see Sec. 4. For the quantitative evaluation, we cre-
ate the dataset “Spurious ImageNet”, which allows check-
ing the reliance of a given ImageNet classifier on spurious
features. We also evaluate our mitigation strategy “SpuFix”
which does not require additional labels or retraining of the
classifier and can be transferred to other image classifiers.

7.1. Qualitative evaluation

For the qualitative evaluation, we visualize some of our
found 322 spurious features, see Fig. 4. For each class, we
show five random training images, the NPFV, and the four
most activating training images of the neural PCA compo-
nent labeled to be spurious. Additionally, we always show
ten images which only show the spurious feature but not
the actual class e.g., only the bird feeder (spurious) but no
hummingbird (class). All ten images are classified as the
corresponding class for the robust classifier we have used to
compute the NPCA components and three non-robust Im-
ageNet classifiers (ResNext101, Eff.Net B5, ConvNext-B,
see also Tab. 2). This shows that our spurious features gen-
eralize from the robust classifier to SOTA ImageNet classi-
fiers, indicating that the found spurious features are mainly
due to the design of the training set, rather than failures in
model training. Our novel validation by collecting real im-
ages with the spurious feature but without the class object
which are consistently classified as this class directly shows
the impact of harmful spurious features and has the advan-
tage that it does not introduce artifacts via masking nor re-
quires expensive pixel-wise segmentations.

Image Collection: The images showing only the spuri-
ous feature were obtained by sorting the 9 million images of
Openlmages [38] by the value al(k) (x) of the neural PCA
component. We check the top 625 retrieved images clas-
sified by the robust classifier as the corresponding class if
they are all classified as the same class by the additional
non-robust classifiers and do not show the corresponding
class. This is a quite strict criterion as spurious features
can be shared across classes, e.g., twigs for birds, and thus
agreement of classifiers is not granted and the images can
show the spurious feature and the true class. Neverthe-
less, this procedure yields between 77 (“hummingbird”)
and 179 (“freight car”) images of which we show a selec-
tion. For “hummingbird”, a lot of these images show red
flowers (without a hummingbird) which makes sense as the
NPFV displays features of red flowers and due to the bias
that Openlmages does not contain many images of hum-
mingbird feeders. In these cases, we additionally retrieve
Flickr images with appropriate text queries e.g., “humming-
bird feeder” and filter them.

Spurious Class Extension: For “hummingbird”,
“freight car”, and “koala” the spurious features signifi-
cantly extend the predictions beyond the actual class (see
Fig. 2). Bird feeders are classified as hummingbirds, graf-
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Figure 6: Spurious Score: we plot the AUC of different models for 7 out of 100 classes in “Spurious ImageNet” (see Fig
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Figure 7: Spurious ImageNet: sample images from the
dataset for 6 out of 100 classes showing the spurious feature
but not the class object, see also App. G.

fiti as freight cars, and (eucalyptus) plants as koalas. This
class extension cannot be detected by monitoring test per-
formance and thus is likely to be noticed only after deploy-
ment. For “hummingbird”, we see in Fig. 4 two images
with bees on the bird feeder where “bee” is an ImageNet
class (also a grasshopper for “koala”). Nevertheless, the
spurious “bird feeder” feature of “hummingbird” overrules
“bee” even though no hummingbird is present.

Spurious Shared Feature: The spurious feature “wa-
ter jet” is shared among the classes “fireboat” and “foun-
tain”. It appears more frequently for “fireboat” (see Fig. 2)
which leads to an in-distribution shift where now a large
number of images of the “fountain”-class with a water jet
are wrongly classified as “fireboat”. The spurious feature
“water jet” for “fireboat” has been found also in the Salient
ImageNet dataset [61, 62]. However, they did not find spu-
rious features for freight car and koala (in App. A we do a
comparison). More examples are in App. F.

7.2. The Spurious ImageNet dataset

A key contribution of this paper is our novel evaluation
of spurious features for image classifiers without requiring
pixel-wise annotations [48, 59] or having to rely on the va-
lidity of neural heatmaps [61]. Instead, we use images from
Openlmages to show that images only containing the spu-
rious feature but not the class object are classified as this
class. This has the advantage that we consider real images
and thus provide a realistic impression of the performance
of ImageNet classifiers in the wild. Adding noise [61] or
masking [48, 44] image regions requires pixel-wise accu-
rate annotations which are labor-expensive, masking only
the object still contains shape information, and using masks
avoiding this, e.g., a bounding box around the object, can
hide a significant portion of the image which is unrealistic.

To allow for a quantitative analysis of the influence of
spurious features on ImageNet classifiers, we collected im-
ages similar to the ones shown to illustrate the spurious
features in Fig. 4. The images are chosen such that they
show the spurious feature but not the class object. The only
difference is that we relax the classification condition and
only require two of the four classifiers (robust ResNet50,
ResNext101, EfficientNet-B5, ConvNext-B) to predict the
corresponding class. We select 100 of our spurious features

and for each collect 75 images from the top-ranked images

in Openlmages according to the value of al(k) for which two

human labelers agree that they contain the spurious feature
but not class k and two out of four classifiers predict class
k. We call the dataset Spurious ImageNet as it allows to
check the dependence on spurious features with real images
for ImageNet classifiers, see Fig. 7 and App. G for samples.

Spurious Score: A classifier f not relying on the spuri-
ous feature should predict a low probability for class & for
the Spurious ImageNet samples, especially compared to Im-
ageNet test set images of class k. Thus, for each class, we
measure the AUC (area under the curve) for the separation
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of images with the spurious features but not showing class k
versus test set images of class &k according to the predicted
probability for class k. A classifier not depending on the
spurious feature should attain a perfect AUC of 1, whereas
a value significantly below 1 shows strong reliance. We re-
port the mean AUC (mAUC) over all 100 classes in Tab. 1.
All ImageNet models trained only on ImageNet1k are heav-
ily influenced by spurious features. Thus, spurious features
are mainly a problem of the training set rather than the clas-
sifier, and spurious features found with an adversarially ro-
bust model transfer to other ImageNet classifiers.
Pre-training on larger datasets: Some spurious fea-
tures such as flag (flag pole), bird feeder (hummingbird),
and eucalyptus (koala) are classes in ImageNet21k. There-
fore, they should no longer be spurious for the other classes.
Thus, we test if ImageNetlk-classifiers fine-tuned from an
ImageNet21k model are less reliant on spurious features.
The results in Tab. 1 and Fig. 6 suggest that the influ-
ence of spurious features is damped but they are far from
being free of them. To check how much is lost due to
fine-tuning we evaluate a ViT-B trained on ImageNet21k
which has a mean AUC of 0.931 whereas the fine-tuned
model has 0.917. This shows that fine-tuning does not hurt
much. While finetuning from ImageNet21k improves the
mean AUC, for several classes the dependence on spuri-
ous features is still significant, see also Fig. 16 how one
has to be careful in the interpretation of higher AUC val-
ues. In addition to ImageNet21k, we also evaluate mod-
els trained on other large image datasets (JFT-300M[28],
YFFC-100M, 1B Instagram[84], MIM[24], LAION-2B and
LAION-400M[54]) using self-supervised learning or which
are based on CLIP [49]. However, these models also do
not achieve better spurious scores (Tab. 1 and Tab. 2). We
evaluate a large number of SOTA models in App. D.

7.3. Evaluation of mitigation technique SpuFix

Fixing spurious features is a non-trivial task and can re-
quire a substantial labeling effort. We evaluate our Spu-
Fix from Sec. 5 that does not require retraining or addi-
tional labels. The positive effect of this fix of spurious fea-
tures (SpuFix) can be seen in Tab. 1 and Fig. 6. Compared
to the original robust ResNet50 with a spurious mAUC of
0.630, the SpuFix version has a significantly better spurious
mAUC of 0.763. Test set accuracy reduces by 0.6% but this
is a rather positive effect, as several of the additional errors
arise since the robust ResNet50 uses spurious features for
its decision, e.g., for classes like “balance beam” or “puck”
the class object is often not visible in the cropped test set im-
ages. In Table 2 we provide a large scale evaluation of the
transfer of SpuFix to SOTA ImageNet models. We observe
a consistently better mAUC on Spurious ImageNet, even for
very large models fine-tuned from 21k or trained on other
large datasets, e.g. SpuFix improves the mAUC of VOLO-

Original SpuFix
INet | SpurIN | INet | SpurIN
Model Acc. 7|mAUC 1| Acc. T|{mAUC 1
ImageNetlk
Rob. ResNet50 574%| 0.630 |56.8%| 0.763
Rob. ResNet50[61] 579%| 0.651 |572%| 0.764
ConvNeXt-L[41] 84.8%| 0.803 |84.8%| 0.819
ViT-B AugReg[66] 81.1%| 0.850 |81.1%| 0.859
VOLO-DS5 512[85] 87.1%| 0.882 |87.1%| 0.907
ImageNet21kFT1k
EfficientNetv2-L[70] |86.8%| 0.893 |86.8%| 0.898
ConvNeXt-L[41] 87.0%| 0.910 |87.0%| 0.913
ViT-B AugReg[66] 86.0%| 0.917 |85.9%| 0.925
BEIT-L\16[8] 88.6% | 0.921 |88.6%| 0.927
LAION-2B
CNeXt-L CLIP 384[49] |87.8%| 0.879 |87.9%| 0.884
ViT-L\ 14 CLIP[49] 88.2%| 0.912 |88.2%| 0.914
MIM
EVA-G\14 CLIP 560[21[89.8%| 0.919 [89.8%]| 0.925
ImageNet21k
ConvNeXt-L[41] - 0.943 - 0.943
ViT-B AugReg[66] - 0.931 - 0.931

Table 1: Quantitative Evaluation on Spurious ImageNet:
ImageNet classifiers of different training modalities depend
on spurious features in varying strength. The mAUC is the
mean of AUCs for the separation of images containing the
spurious feature but not class k versus test images of class
k with the predicted probability of class & as score.

D5 (87.1% acc.) trained only on 1k by 2.5%, or by 0.6% for
EVA-G\ 14 CLIP 560 trained on MIM (91.9% acc.), as well
as BeiT-L\ 16 fine-tuned from 21k (88.6% acc.) by 0.6%.
Thus even SOTA models profit from our SpuFix with neg-
ligible difference in accuracy (< 0.1%) and thus the use of
SpuFix is recommended for any ImageNet model.

8. Conclusion

We have shown that large-scale identification of spuri-
ous features is feasible with our neural PCA components
and neural PCA feature visualizations. With “Spurious Ima-
geNet” we introduced a novel dataset to evaluate the depen-
dence of ImageNet classifiers on spurious features based on
real images. We demonstrated that our SpuFix method mit-
igates the dependence on harmful spurious features for any
ImageNet classifier without costly labeling or re-training.
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