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Abstract

The motivation of the semi-supervised domain adapta-
tion (SSDA) is to train a model by leveraging knowledge
acquired from the plentiful labeled source combined with
extremely scarce labeled target data to achieve the low-
est error on the unlabeled target data at the testing time.
However, due to inter-domain and intra-domain discrepan-
cies, the improvement of classification accuracy is limited.
To solve these, we propose the Trico-training method that
utilizes a multilayer perceptron (MLP) classifier and two
graph convolutional network (GCN) classifiers called inter-
view GCN and intra-view GCN classifiers. The first co-
training strategy exploits a correlation between MLP and
inter-view GCN classifiers to minimize the inter-domain dis-
crepancy, in which the inter-view GCN classifier provides
its pseudo labels to teach the MLP classifier, which en-
courages class representation alignment across domains. In
contrast, the MLP classifier gives feedback to the inter-view
GCN classifier by using a new concept, ‘pseudo-edge’, for
neighbor’s feature aggregation. Doing this increases the
data structure mining ability of the inter-view GCN clas-
sifier; thus, the quality of generated pseudo labels is im-
proved. The second co-training strategy between MLP and
intra-view GCN is conducted in a similar way to reduce the
intra-domain discrepancy by enhancing the correlation be-
tween labeled and unlabeled target data. Due to an im-
balance in classification accuracy between inter-view and
intra-view GCN classifiers, we propose the third co-training
strategy that encourages them to cooperate to address this
problem. We verify the effectiveness of the proposed method
on three standard SSDA benchmark datasets: Office-31,
Office-Home, and DomainNet. The extended experimental
results show that our method surpasses the prior state-of-
the-art approaches in SSDA.

1. Introduction
Recently, the semi-supervised domain adaptation

(SSDA) task has received much attention because the
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target classification accuracy significantly increases thanks
to a little labeled target data during training. However,
it releases a new issue called intra-domain discrepancy
presenting the difference between labeled and unlabeled
target data within the target domain. Specifically, only the
unlabeled target data having a strong correlation with the
labeled target data is attracted for alignment, while the
unlabeled target data having a less correlation with the
labeled target data can be misaligned. Therefore, SSDA
is still a challenging task because of existing inter-domain
and intra-domain discrepancies, as represented in Figure 1.

The inter-domain discrepancy occurs due to the different
data distribution between source and target domains called
domain shift [27]. To alleviate inter-domain discrepancy,
the previous works [1, 4, 24, 28, 34] rely much on the ad-
versarial learning strategy. In contrast, to solve the intra-
domain discrepancy, many approaches [10,11,15,19,25] in-
crease the correlation between labeled and unlabeled target
representations by using contrastive learning or clustering
integrated with the pseudo-labeling strategy. For example,
CDAC [10] combines the pseudo labeling and clustering
methods to enhance the relationship between labeled and
unlabeled target data, while Con2DA [19] and CLDA [25]
select a solution combining pseudo labeling and contrastive
learning. However, the classification accuracy of these ap-
proaches has opportunities for improvement because their
multilayer perceptron (MLP) classifiers often misclassify
the unlabeled target data since the inter-domain and intra-
domain discrepancies still exist. This is because the quality
and quantity of pseudo labels generated by these MLP clas-
sifiers are still limited. Indeed, the MLP classifier only has
the ability to exploit the semantic information of each indi-
vidual image; thus, it can be failed to capture neighbor fea-
tures for generalizing data structure for training. To solve
this problem, we take advantage of the graph convolutional
network (GCN) classifier for the neighbor feature aggrega-
tion that effectively mines the data structure. To be specific,
we use an inter-view GCN classifier to elaborately exploit
label information on the rich source data that provides an
inter-view observation on the unlabeled target data. Then,
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Figure 1: Illustration of inter-domain and intra-domain dis-
crepancies in the SSDA setting.

this inter-view GCN classifier generates pseudo labels for
supporting the MLP classifier to alleviate the inter-domain
discrepancy. Similarly, we use an intra-view GCN classi-
fier to mine data structure on the limited labeled target data,
which offers an intra-view observation on the unlabeled tar-
get data. Then, this intra-view GCN classifier also creates
pseudo labels that guide the MLP classifier to mitigate the
intra-domain discrepancy by enhancing the correlation be-
tween labeled and unlabeled target samples. To increase
the quality of pseudo labels generated from inter-view and
intra-view GCN classifiers, we introduce a novel concept
called ‘pseudo-edge’ created by the MLP classifier to train
these GCN classifiers. The mutual interaction among two
GCN classifiers and the MLP classifier can be represented
by two co-training strategies such as MLP and inter-view
GCN, and MLP and intra-view GCN.

However, the number of labeled source data is signifi-
cantly larger than the labeled target data. Therefore, the im-
balance of classification accuracy between inter-view GCN
and intra-view GCN classifiers can occur. Finally, to solve
this problem, we introduce the third co-training strategy, in
which these two GCN classifiers teach each other by ex-
changing their pseudo labels. We summarize the contribu-
tions of this paper as follows:

• We propose a method Trico-training (TriCT) that in-
cludes three co-training strategies to overcome the
inter-and-intra-domain discrepancies and the imbal-
ance classification accuracy issue in the SSDA task.

• We successfully cooperate between GCN and MLP
classifier models with the pseudo labeling technique
flexibly to boost the classification performance by in-
troducing a novel concept named ‘pseudo-edge’.

• The experimental results of the proposed TriCT on
three benchmark datasets, including Office-31, Office-
Home, and DomainNet surpass the state-of-the-art ap-
proaches.

2. Related works
2.1. Semi-supervised domain adaptation (SSDA)

The main goal of SSDA is to use the knowledge ex-
tracted from a large amount of labeled source data and a

small amount of labeled target data to minimize the clas-
sification error on the unlabeled target data. MME [23] is
the most popular method in SSDA using a minimax entropy
strategy, in which the labeled source and target samples are
integrated to estimate the prototypes. Then, the minimax
entropy strategy is used to encourage the estimated pro-
totypes toward the unlabeled target samples. Inspired by
this approach, UODA [20] and ASDA [21] introduce a new
framework that trains multiple classifier models with dif-
ferent minimax entropy strategies for explicit feature align-
ment. However, the classification accuracy of these ap-
proaches still has room to improve due to the biased pro-
totype estimation and intra-domain discrepancy issues. The
estimated prototypes are dominated by the rich information
of the source data. The intra-domain discrepancy occurs
within the target domain, which is firstly concerned and an-
alyzed by APE [8], where only unlabeled target samples are
aligned with the labeled target samples if they are located
nearby these labeled target samples, while other unlabeled
target samples located far from the labeled target samples
can be misaligned.

2.2. Pseudo labeling on SSDA

Recently, the pseudo-labeling techniques [10, 11, 14–16,
19, 25, 32] have shown a remarkable ability to improve
the target classification performance in the SSDA setting.
MAP-F [16], PAC [14], CDAC [10], and MCL [31] use
the pseudo labeling and consistency regularization for self-
training with a single classifier. Besides, Con2DA [19], and
CLDA [25] show outstanding classification performance on
the SSDA task by using contrastive learning integrated with
pseudo labeling. Furthermore, DECOTA [32] and MVCL
[15] significantly improve the target classification accuracy
with a divide-to-conquer strategy, in which they split the
SSDA task into subtasks; then, they use different mod-
els to handle different tasks. Finally, these models teach
each other by exchanging their pseudo labels via the pro-
posed co-training strategy. However, the quality and quan-
tity of generated pseudo labels from these abovementioned
approaches have an opportunity for improvement. That is
because they use the multilayer perceptron (MLP) classi-
fiers to extract pseudo labels, while the MLP classifier only
exploits information of each individual image; thus, it can
fail to explore the neighborhood structure. To solve this
problem, we take advantage of the GCN classifier for the
feature aggregation that effectively mines the data structure
to increase the number of generated pseudo labels with high
reliability.

3. The proposed method

Problem definitions. In the SSDA setting, we have a
large amount of labeled source data DS = {xi

S , y
i
S}

NS
i=1,
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Figure 2: The pipeline of our method TriCT (left) and the training strategy (right). We use three classifiers, including a
multilayer perceptron classifier Fmlp, an inter-view GCN Ginter

gcn and an intra-view GCN Gintra
gcn that share a feature extractor

E. TriCT consists of three pairs of classifiers {Fmlp, G
inter
gcn }, {Fmlp, G

intra
gcn }, and {Ginter

gcn , Gintra
gcn } which teach each other

by exchanging their generated pseudo labels to boost classification performance on the target domain.

with a few labeled target data DTl
= {xi

Tl
, yiTl

}NTl
i=1 , and

the unlabeled target data DTu
= {xi

Tu
}NTu
i=1 , where xS , xTl

,
and xTu

are the image sets of the source, labeled target, and
unlabeled target having NS , NTl

, and NTu samples, respec-
tively, where NTu ≫ NTl

. The source and target data share
the same label vector yS , yTl

∈ {1, ...,K}, where K is the
number of classes. We train the model on the labeled set
Dl = {DS ,DTl

} and the unlabeled set DTu
; and evaluate

the trained model on DTu .
Data preparation. We apply two different stochastic

data transformations: Augw(·) and Augstr(·) to a given
training input image x ∈ {DS ,DTl

,DTu
}, where Augw(·)

is the weak augmentation function that uses the light pertur-
bation such as random horizontal flipping and random crop-
ping, and Augstr(·) is the strong augmentation function that
utilizes the RandAugment [2] including 14 transformation
techniques. For example, a source image xi

S has two trans-
formations xi,w

S and xi,str
S with the same label yiS . Sim-

ilarly, xi,w
Tl

and xi,str
Tl

are weakly and strongly augmented
images of a labeled target image xi

Tl
corresponding to label

yiTl
. In contrast, an unlabeled target image xi

Tu
has two ver-

sions xi,w
Tu

and xi,str
Tu

without label information. We sample
the training set into multiple mini-batches with size B.

Feature extractor. We use a shared feature extractor
E(·; θE) : R3×w×h → Rd , parameterized by θE , to encode
the features of input images, where w and h are the width
and height of an input image; and d is the output feature
dimension.

MLP classifier. The classifier Fmlp(·; θmlp) : Rd →
RK is the non-linear network, parameterized by θmlp, con-
sisting of fully connected layers, with output logits dimen-
sion of a single image as RK .

GCN classifier. We use graph convolutional network
(GCN) classifier [12] to exploit the relation of all samples
in each mini-batch. The GCN classifier consists of an edge
network fE and a node network fN . Specifically, fE is
used to collect neighboring node information by estimating
the similarity among samples, while fN is used to aggregate
all neighbor features.

Following [12], all images in each mini-batch can be
formed as an undirected graph G = {V, E}, where V is the
node set, E is the edge set. The feature vector of each image
in source and target domains extracted by the shared feature
extractor E is represented as a node vi ∈ V . ei,j ∈ E de-
notes an edge between nodes vi and vj that measures the
node affinity represented by the similarity score âi,j as fol-
lows:

â
(l)
i,j = σ

(
f
(l)
E

(
∥v(l−1)

i − v(l−1)
j ∥; θ(l)edge

))
, (1)

where σ is the sigmoid function, v(l−1)
i and v

(l−1)
j are fea-

ture vectors of samples xi and xj at (l − 1)-th layer, where
features v

(0)
i and v

(0)
j at the initial layer are extracted by

the shared feature extractor E, respectively. f (l)
E is parame-

terized by θ
(l)
edge at the l-th layer and is used to estimate the

similarity of nodes vi and vj at layer (l − 1). The simi-
larity score âi,j of a pair (xi, xj) in each mini-batch is an
element of the unnormalized affinity matrix Â. Then, the
self-connections of nodes are added to this matrix, and it is
normalized as follows:

A(l) = D− 1
2 (Â(l) + I)D− 1

2 , (2)

where D is the degree matrix of Â(l) + I , I is the identity
matrix used to compute self-connections, and A(l) is the
normalized affinity matrix.
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Based on the information provided by the given affinity
matrix A(l−1), the node features are updated at the l-th layer
as follows:

v(l)i = f
(l)
N

([
v(l−1)
i ;

∑
j∈B

a
(l−1)
i,j · v(l−1)

j

]
; θ

(l)
node

)
, (3)

where f
(l)
N is parameterized by θ

(l)
node at the l-th layer.

a
(l−1)
i,j ∈ A(l−1) is utilized in f

(l)
N to consider the relation-

ship between nodes vi and vj . [·; ·] indicates the concate-
nation function for aggregating features. B is the number
of samples in a mini-batch. In Eq. (3), the inputs of fN
consisting of the node feature extracted from the shared fea-
ture extractor E, v(0)

i = E(xi), and the neighbour features
calculated by using the information from fE . The output
dimension of fN is RK .

Without loss of generality, we explain the training pro-
cedure of the proposed method at the initial step t0 with
the first mini-batch B0 as an example. The operation of
our method performed on all mini-batches is the same. We
use two GCN classifiers to exploit information from the
source and labeled target datasets separately. The first inter-
view GCN classifier Ginter

gcn is trained on the source data
B0
S = {xi,w

S , xi,str
S }Bi=1 with {yiS}Bi=1. Similarly, we use the

labeled target data B0
Tl

= {xi,w
Tl

, xi,str
Tl

}Bi=1 with {yiTl
}Bi=1

to train the second intra-view GCN classifier Gintra
gcn . The

labeled set integrated from the source and labeled target
samples B0

l = {xi,w
l , xi,str

l }2Bi=1 = {xi,w
S , xi,str

S }Bi=1 ∪
{xi,w

Tl
, xi,str

Tl
}Bi=1 with {yil}2Bi=1 = {yiS}Bi=1 ∪ {yiTl

}Bi=1, is
used to train the MLP classifier Fmlp. Finally, Fmlp, Ginter

gcn ,
and Gintra

gcn generate pseudo labels on the unlabeled target
data B0

Tu
= {xi,w

Tu
, xi,str

Tu
}Bi=1. The data preparation and the

pipeline of the training operation are illustrated in Figure 2.

3.1. Supervised training on labeled samples

MLP classifier. Both weak and strong augmentation
versions of labeled source and target data are fed into E to
extract corresponding features. We obtain the predictions of
these features by passing them through the classifier Fmlp.
Then, we use the standard cross-entropy loss on the labeled
samples with ground-truth labels as follows:

Lmlp
ce = −

2B∑
i=1

(
yil log p

(
xi,w
l

)
+ yil log p

(
xi,str
l

))
, (4)

where p(xi,w
l ) = softmax(Fmlp(E(xi,w

l ))) and
p(xi,str

l ) = softmax(Fmlp(E(xi,str
l ))) are the pre-

dictions of two augmentation versions, respectively, with
(xi,w

l , yil), (x
i,str
l , yil) ∈ B0

l .
GCN classifier. The training procedures for both Ginter

gcn

and Gintra
gcn are the same. Specifically, we use the standard

cross-entropy loss to update the node network fN as fol-
lows:

LN
ce = −

B∑
i=1

(
yi log p

(
xi,w

)
+ yi log p

(
xi,str

))
, (5)

where p(xi,w) = softmax(fN (E(xi,w))) and p(xi,str) =
softmax(fN (E(xi,str))) are the output predictions of fN .
We set xi,w = xi,w

S , xi,str = xi,str
S , and yi = yiS for

training the inter-node network fN = finterN in Ginter
gcn

using the loss function LN
ce = LinterN

ce . Likely, we set
xi,w = xi,w

Tl
, xi,str = xi,str

Tl
, and yi = yiTl

for training
the intra-node network fN = fintraN in Gintra

gcn associated
to the loss function LN

ce = LintraN
ce .

We use the binary cross-entropy loss to train the edge
network fE as follows:

LE
bce = ei,j log ai,j +

(
1− ei,j

)
log

(
1− ai,j

)
, (6)

where ei,j denotes the ground-truth edge between samples
xi and xj . ei,j = 1 if only if yi = yj that means xi and xj

belong to the same category, and ei,j = 0 otherwise. ai,j
is the output prediction of fE that indicates the similarity
score between xi and xj .

We set xi = xi
S , xj = xj

S , and ei,j = eSi,j correspond-
ing to LE

bce = LinterE
bce for training the inter-edge network

fE = finterE in Ginter
gcn . Similarly, we set ei,j = eTl

i,j ,
xi = xi

Tl
and xj = xj

Tl
corresponding to LE

bce = LintraE
bce

for training the intra-edge network fE = fintraE in Gintra
gcn .

The output of fE is used as the input of fN for neighbor
feature aggregation as in Eq. (3).

The cost functions used to train Ginter
gcn and Gintra

gcn are
calculated as follows:

Linter
gcn = αLinterN

ce + βLinterE
bce , (7)

Lintra
gcn = αLintraN

ce + βLintraE
bce , (8)

where α and β are the weights to control the influence of
the node and edge networks. Ginter

gcn can obtain the trans-
ferable knowledge from the source domain by adopting Eq.
(7), while Gintra

gcn can preserve the discriminative represen-
tations within the target domain by minimizing Eq. (8).

Feature extractor. The objective cost function to train
the shared feature extractor on labeled samples is calculated
as follows:

LE
cls = Lmlp

ce + Linter
gcn + Lintra

gcn . (9)

3.2. Trico-training strategy on unlabeled samples

The first co-training between Fmlp − Ginter
gcn for min-

imizing the inter-domain discrepancy. In this training
process, we use the reliable pseudo labels (PSs) generated
from finterN in Ginter

gcn to train Fmlp to encourage the trans-
ferrable knowledge from the source domain to the target do-
main which can minimize the inter-domain discrepancy.
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Firstly, the pseudo label created by finterN is calculated
as follows:

ŷiinterPS = argmax
(
pi,w
interN

)
, if max

(
pi,w
interN

)
> τ,

(10)
where τ is the predefined threshold value, pi,w

interN =

p(xi,w
Tu

) = softmax(finterN (E(xi,w
Tu

))) is the prediction
vector of finterN on xi,w

Tu
; it then is converted to the one-

hot hard label ŷiinterPS = argmax(pi,w
interN ) to train Fmlp

by using the cross-entropy loss as follows:

LinterN→mlp
ce =

−
B∑
i=1

1
[
max

(
pi,w
interN

)
> τ

]
.ŷiinterPS log

(
qi,str
mlp

)
,

(11)
where qi,str

mlp = p(xi,str
Tu

) = softmax(Fmlp(E(xi,str
Tu

))) is
the prediction vector of xi,str

Tu
.

In Ginter
gcn , the output of finterE is used as the input of

finterN , which means the quality and quantity of PS gener-
ated by finterN rely much on finterE . As mentioned in Eq.
(6), finterE is trained by using the ground-truth edges that
are determined by the information from the labeled data.
However, we cannot access the label information in the un-
labeled target data.

To solve this problem, we introduce a novel concept
named ‘pseudo-edge’ using Fmlp back to train finterE that
encourages finterE to explore the correlation of all unla-
beled target samples effectively. Firstly, Fmlp generates its
pseudo label as follows:

ŷimlp = argmax
(
pi
mlp

)
, if max

(
pi
mlp

)
> τ, (12)

where pi
mlp = p(xi

Tu
) = softmax(Fmlp(E(xi

Tu
))) with

xi
Tu

∈ B0
Tu

. Then, similar to Eq. (6), it is assumed that
two unlabeled samples xi

Tu
and xj

Tu
have a high similarity

score if their PSs belong to the same class (ŷimlp = ŷjmlp)

associated with eTu
i,j = 1, and eTu

i,j = 0 otherwise, where
eTu
i,j is called ‘pseudo-edge’. Finally, we can use eTu

i,j as the
ground truth of the edge map indicating the relationship be-
tween two unlabeled target samples xi

Tu
and xj

Tu
. Then, the

training process to update finterE is conducted similar to
Eq. (6) as follows:

Lmlp→interE
bce = eTu

i,j log
(
ãTu
i,j

)
+ (1− eTu

i,j ) log
(
1− ãTu

i,j

)
,

(13)
where ãTu

i,j is the output prediction of finterE that estimates
the similarity score between two unlabeled target samples
xi
Tu

and xj
Tu

.
Finally, the loss function of the first co-training is calcu-

lated as follows:

Linter
Co = LinterN→mlp

ce + Lmlp→interE
bce . (14)

The second co-training between Fmlp − Gintra
gcn for

minimizing the intra-domain discrepancy. This co-
training strategy is conducted similarly to the first co-
training Fmlp−Ginter

gcn by exploiting the interaction between
Fmlp and Gintra

gcn = {fintraN , fintraE}, which is calculated
as follows:

Lintra
Co = LintraN→mlp

ce + Lmlp→intraE
bce . (15)

To improve the reliability of PS generated by the clas-
sifier Fmlp, we use a cost function that is inspired by [7]
to minimize class confusion (MCC) to increase the distin-
guishability of Fmlp on unlabeled target features as follows:

Lmlp
mcc =

1

K

K∑
k=1

K∑
k ̸=k′

∣∣∣C̃kk′

∣∣∣, (16)

where |C̃kk′ | is a normalized softened probability that mea-
sures the confusion level between classes k and k′.

The third co-training between Ginter
gcn −Gintra

gcn for al-
leviating imbalanced classification accuracy. Ginter

gcn is
trained on a large amount of data, while Gintra

gcn is trained
on a small amount of data. Thus, an imbalance in the
classification accuracy can occur between these classifiers.
To solve this problem, we propose the third co-training
strategy, in which the inter-pseudo label set PSinter =

{xi,w
Tu

, ŷiinterPS}
NPS

inter
i=1 , having NPS

inter pseudo labels gener-
ated by the inter-node network finterN in Ginter

gcn , is added
into the labeled target set DTl

to train the classifier Gintra
gcn

as follows:

Dq+1
Tl

= DTl
∪ PSq

inter, with D0
Tl

= DTl
, (17)

where q is the training interval. Similarly, we train Ginter
gcn

with the new labeled set as follows:

Dq+1
S = DS ∪ PSq

intra, with D0
S = DS , (18)

where PSintra = {xi,w
Tu

, ŷiintraPS}
NPS

intra
i=1 is the intra-

pseudo label set, having NPS
intra pseudo labels generated by

the intra-node network fintraN in Gintra
gcn . Finally, PSinter

and PSintra are combined to add into the labeled set Dl for
training the classifier Fmlp as follows:

Dq+1
l = Dl ∪ PSq

inter ∪ PSq
intra, with D0

l = Dl. (19)

These new labeled datasets are used to update the loss
functions of the supervised training in Section 3.1.

4. Experiments
Datasets. We used three standard SSDA benchmark

datasets to evaluate the effectiveness of the proposed ap-
proach TriCT including Office-31 [30], Office-Home [22],
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R→C R→P P→C C→S S→P R→S P→R MeanMethod 1-shot 3-shot 1-shot 3-shot 1-shot 3-shot 1-shot 3-shot 1-shot 3-shot 1-shot 3-shot 1-shot 3-shot 1-shot 3-shot
MME 70.0 72.2 67.7 69.7 69.0 71.7 56.3 61.8 64.8 66.8 61.0 61.9 76.1 78.5 66.4 68.9
BiAT 73.0 74.9 68.0 68.8 71.6 74.6 57.9 61.5 63.9 67.5 58.5 62.1 77.0 78.6 67.1 69.7

UODA 72.7 75.4 70.3 71.5 69.8 73.2 60.5 64.1 66.4 69.4 62.7 64.2 77.3 80.8 68.5 71.2
Con2DA 71.3 74.2 71.8 72.1 71.1 75.0 60.0 65.7 63.5 67.1 65.2 67.1 75.7 78.6 68.4 71.4

APE 70.4 76.6 70.8 72.1 72.9 76.7 56.7 63.1 64.5 66.1 63.0 67.8 76.6 79.4 67.6 71.7
S3D 73.3 75.9 68.9 72.1 73.4 75.1 60.8 64.4 68.2 70.0 65.1 66.7 79.5 80.3 69.9 72.1
STar 74.1 77.1 71.3 73.2 71.0 75.8 63.5 67.8 66.1 69.2 64.1 67.9 80.0 81.2 70.0 73.2
PAC 74.9 78.6 73.0 74.3 72.6 76.0 65.8 69.6 67.9 69.4 68.7 70.2 76.7 79.3 71.4 73.9

MAP-F 75.3 77.0 74.0 75.0 74.3 77.0 65.8 69.5 73.0 73.3 67.5 69.2 81.7 83.3 73.1 74.9
CLDA 76.1 77.7 75.1 75.7 71.0 76.4 63.7 69.7 70.2 73.7 67.1 71.1 80.1 82.9 71.9 75.3

DECOTA 79.1 80.4 74.9 75.2 76.9 78.7 65.1 68.6 72.0 72.7 69.7 71.9 79.6 81.5 73.9 75.6
CDAC 77.4 79.6 74.2 75.1 75.5 79.3 67.6 69.9 71.0 73.4 69.2 72.5 80.4 81.9 73.6 76.0

ECACL 75.3 79.0 74.1 77.3 75.3 79.4 65.0 70.6 72.1 74.6 68.1 71.6 79.7 82.4 72.8 76.4
MCL 77.4 79.4 74.6 76.3 75.5 78.8 66.4 70.9 74.0 74.7 70.7 72.3 82.0 83.3 74.4 76.5

MVCL 78.8 79.8 76.0 77.4 78.0 80.3 70.8 73.0 75.1 76.7 72.4 74.4 82.4 85.1 76.2 78.1
DEEM 79.7 80.5 78.1 79.0 77.0 77.5 71.9 74.9 77.7 80.0 76.7 75.9 85.4 88.5 78.1 79.5
TriCT 86.5 89.1 85.3 86.6 80.4 86.3 71.0 79.9 80.3 84.5 78.9 82.1 82.2 90.1 80.7 85.5

Table 1: Accuracy (%) on DomainNet under 1-shot and 3-shot settings extracted by the ResNet-34 backbone network.

and DomainNet [18]. Office-31 is a small dataset having
three different domains such as DSLR (D), Webcam (W),
and Amazon (A) with 31 classes in each domain. Office-
Home is a moderate-size dataset consisting of four domains:
Real-World (R), Clipart (C), Product (P), and Art (A), with
65 classes in each domain. Following [8, 10, 11, 23, 32], we
selected four domains such Real (R), Clipart (C), Sketch
(S), and Painting (P) on the DomainNet dataset with 126
classes in each domain to extract the results of seven differ-
ent domain adaptation tasks.

Implementation details. We used Pytorch [17] as the
platform to implement the proposed method. For the fea-
ture extractor, we utilized ResNet-34 [5] and AlexNet [9]
as the backbone networks that are pre-trained on the Ima-
geNet [3] dataset. Following [8, 10, 11, 23, 32], we used the
MLP classifier with two fully connected layers for ResNet-
34 and a single fully connected layer for AlexNet with a
normalization layer, while we selected the GCN classifier as
in [12]. We used a Stochastic Gradient Descent (SGD) as an
optimizer with an initial learning rate of 0.0005, a momen-
tum of 0.9, and a weight decay of 0.0005. The size of the
mini-batch was set to B = 24 for ResNet-34 and B = 32
for AlexNet. The weight factors in Eqs. (7) and (8) were
set to α = 0.3 and β = 1.0, and the threshold value for
pseudo-label selection was set to τ = 0.8. We conducted
all experiments on a GeForce RTX3090 GPU.

We have noticed that the GCN classifier required a mini-
batch for extracting classification results; therefore, for a
fair comparison to previous works, we only utilized GCN
classifiers as the auxiliary models to support the MLP clas-
sifier, and then we used the MLP classifier to extract the
final experimental results.

State-of-the-art (SOTA) methods. We compared TriCT
with the previous SOTA SSDA methods: MME [23], BiAT
[6], UODA [20], Con2DA [19], APE [8], S3D [33], STar
[26], PAC [14], MAP-F [16], CLDA [25], DECOTA [32],

CDAC [10], ECACL [11], MCL [31], MVCL [15], and
DEEM [13].

4.1. Comparison with SOTA methods

For a fair comparison, we used ResNet-34 and AlexNet
as the backbone networks to extract results on DomainNet,
Office-Home, and Office-31 under 1-shot and 3-shot set-
tings. The experimental results were reported in Tables 1,
2, and 3. Due to the limited space, we included other details
of the experimental results in the supplementary material.

Comparisons on DomainNet. Following the standard
evaluation protocol [10, 15, 23, 25], we reported classifica-
tion performance on the target domain over seven SSDA
scenarios in Table 1. As shown in this table, the pro-
posed method outperformed the second-best method DEEM
[13] by 2.6% and 6.0% on the average results of Domain-
Net under the 1-shot and 3-shot settings using ResNet-
34 as the backbone network, respectively. Similar to our
method, CLDA [25] and CDAC [10] were proposed to min-
imize inter-domain and intra-domain discrepancies simulta-
neously. Compared to these approaches, the average classi-
fication accuracy of our method surpassed CLDA by 8.4%
and 10.2% under 1-shot and 3-shot settings, while it im-
proved over CDAC by 6.7% and 9.5% in 1-shot and 3-shot
settings, respectively.

Comparisons on Office-Home and Office-31. The
classification results on the Office-Home and Office-31 were
reported in Tables 2 and 3. As shown in these tables,
the classification results on the target domain of the pro-
posed method achieved the highest accuracy in all domain
adaptation scenarios. As shown in Table 2, the average
classification result of our approach on the Office-Home
dataset under the 3-shot setting recorded extensive improve-
ments: 6.7% compared to ECACL [11] using AlexNet, and
9.6% compared to MCL [31] using ResNet-34. Similarly,
as listed in Table 3, the average classification accuracy of
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Net Method R→C R→P R→A P→R P→C P→A A→P A→C A→R C→R C→A C→P Mean

AlexNet

PAC 58.9 72.4 47.5 61.9 53.2 39.6 63.8 49.9 60.0 54.5 36.3 64.8 55.2
APE 51.9 74.6 51.2 61.6 47.9 42.1 65.5 44.5 60.9 58.1 44.3 64.8 55.6

Con2DA 52.3 73.5 49.1 64.4 49.3 38.2 66.4 47.7 62.4 59.9 39.9 66.1 55.8
CDAC 54.9 75.8 51.8 64.3 51.3 43.6 65.1 47.5 63.1 63.0 44.9 65.6 56.8
MVCL 55.4 73.1 54.6 65.6 49.9 44.7 66.0 47.9 64.5 59.7 42.9 63.3 57.3
CLDA 51.5 74.1 54.3 67.0 47.9 47.0 65.8 47.4 66.6 64.1 46.8 67.5 58.3

ECACL 55.4 75.7 56.0 67.0 52.5 46.4 67.4 48.5 66.3 60.8 45.9 67.3 59.1
TriCT 59.9 84.2 61.8 76.6 55.4 50.6 75.3 55.4 74.4 69.6 49.6 76.3 65.8

ResNet-34

MME 64.6 85.5 71.3 80.1 64.6 65.5 79.0 63.6 79.7 76.6 67.2 79.3 73.1
APE 66.4 86.2 73.4 82.0 65.2 66.1 81.1 63.9 80.2 76.8 66.6 79.9 74.0

CDAC 67.8 85.6 72.2 81.9 67.0 67.5 80.3 65.9 80.6 80.2 67.4 81.4 74.2
CLDA 66.0 87.6 76.7 82.2 63.9 72.4 81.4 63.4 81.3 80.3 70.5 80.9 75.5
MVCL 69.6 88.1 76.4 80.9 66.0 71.2 82.0 66.0 79.6 79.6 67.4 80.7 75.6

DECOTA 70.4 87.7 74.0 82.1 68.0 69.9 81.8 64.0 80.5 79.0 68.0 83.2 75.7
MCL 70.1 88.1 75.3 83.0 68.0 69.9 83.9 67.5 82.4 81.6 71.4 84.3 77.1
TriCT 81.9 94.1 86.3 92.3 78.7 83.4 91.1 76.9 91.3 91.8 80.5 92.5 86.7

Table 2: Accuracy (%) on Office-Home under 3-shot setting extracted by AlexNet and ResNet-34 backbone networks.

W→A D→A MeanNet Method 1-shot 3-shot 1-shot 3-shot 1-shot 3-shot

AlexNet

PAC 53.6 65.1 54.7 66.3 54.2 65.7
MME 57.2 67.3 55.8 67.8 56.5 67.6
BiAT 57.9 68.2 54.6 68.5 56.3 68.4
STar 59.8 69.1 56.8 69.0 58.3 69.1

Con2DA 58.3 69.8 56.2 69.7 57.3 69.8
CDAC 63.4 70.1 62.8 70.0 63.1 70.1
CLDA 64.6 70.5 62.7 72.5 63.6 71.5
TriCT 67.8 78.6 63.8 77.7 65.8 78.2

Table 3: Accuracy (%) on Office-31 under 1-shot and 3-shot
settings extracted by the AlexNet backbone network.

Components Domain adaptation tasks Mean
Lmlp
ce Lmlp

mcc Lintra
Co Linter

Co Ginter
gcn −Gintra

gcn R→P C→S S→P

✓ 63.7 56.5 62.7 61.0
✓ ✓ 70.3 63.5 68.7 67.5
✓ ✓ ✓ 83.9 77.8 80.5 80.7
✓ ✓ ✓ 82.2 71.8 78.3 77.4
✓ ✓ ✓ ✓ ✓ 86.6 79.9 84.5 83.6
✓ ✓ ✓ ✓ 85.3 77.8 81.4 81.5

Table 4: Ablation study on the DomainNet dataset with
three domain adaptation tasks R→P , C→S and S→P un-
der 3-shot settings using ResNet-34 as a backbone network.

our method using AlexNet outperformed the second-best
method CLDA [25] by 2.2% and 6.7% on Office-31 under
1-shot and 3-shot settings, respectively.

4.2. Analysis

Ablation studies. We conducted ablation studies to eval-
uate the effectiveness of each model in the proposed method
over three domain adaptation tasks R→P , C→S and S→P
on DomainNet under 3-shot settings using ResNet-34, as
shown in Table 4. Firstly, the baseline model, including
the shared feature extractor E and Fmlp, was trained on the
labeled source and target samples using Lmlp

ce in Eq. (4)
and then tested on the unlabeled target data. Obviously, the

(a) (b)

Figure 3: (a) The quantity and quality of the pseudo labels
generated by TriCT on DomainNet under the 3-shot setting
of P→R using ResNet-34. (b) The classification accuracy
of P→R on DomainNet using ResNet-34 under the 1-shot
and 3-shot settings.

average classification accuracy of this case was the lowest,
with 61.0%. Secondly, the classification performance was
improved by 6.5%, when we added the MCC loss function,
Lmlp
mcc in Eq. (16), to train with the baseline model. Thirdly,

we investigated the effectiveness of inter-view GCN and
intra-view GCN classifier models with Linter

Co and Lintra
Co

in Eq. (14) and Eq. (15), respectively. The average classi-
fication results were significantly increased by 19.7% (with
inter-view GCN), and 16.4% (with intra-view GCN) com-
pared to the baseline model. However, the average classi-
fication performance on the target domain only reached the
optimal result of 83.6% when both GCN classifiers were
used with the third co-training Ginter

gcn − Gintra
gcn . The fi-

nal experiment was implemented to emphasis that the MCC
loss function Lmlp

mcc is necessary in the proposed method for
minimizing the class confusion. The average classification
was degraded by 2.1% when Lmlp

mcc was removed.
Effectiveness of Trico-training. We used the extracted

classification results of the domain adaptation task P→R
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Figure 4: t-SNE [29] visualization of the feature embeddings extracted by TriCT using ResNet-34. We selected 10 classes of
the domain adaptation task R→S on DomainNet under the 3-shot setting. (a) and (b) illustrated the features of the unlabeled
target data before and after adaptation, respectively. (c) and (d) displayed domain alignment between source and target
domains before and after adaptation, respectively.

on DomainNet using ResNet-34 under 1-shot and 3-shot
settings to analyze the effectiveness of TriCT. As shown in
Figure 3a, GCN classifiers showed the impressive accuracy
of generated pseudo labels up to 93.76% and 94.28% ex-
tracted by inter-view GCN and intra-view GCN classifiers
under the 3-shot setting, respectively, where the accuracy of
pseudo labels was calculated by the ratio of correct pseudo
labels to total pseudo labels.

In the 1-shot setting, the intra-view GCN classifier
worked as the MLP classifier because there was no neigh-
bor in each mini-batch. However, as shown in Figures 3a
and 3b, the number of PSs and the classification results pro-
vided by both intra-view GCN and inter-view GCN classi-
fiers were almost similar, which demonstrated that the pro-
posed method successfully alleviated the imbalance in clas-
sification accuracy between these GCN classifiers caused
by the bias of the labeled samples for training. Besides, the
classification results of the intra-view GCN classifier un-
der the 3-shot setting were slightly higher than that of the
inter-view GCN classifier, which revealed that the proposed
method effectively exploited a few labeled target samples
to generalize on the unlabeled target data. Furthermore, the
difference in classification results between the MLP classi-
fier and GCN classifiers was reduced following the increase
in training steps that highlighted the effectiveness of the
proposed Trico-training strategy, as shown in Figure 3b.

Feature visualization. We used t-SNE [29] to visual-
ize the feature embeddings of 10 classes for the domain
adaptation scenario R→S on DomainNet using ResNet-34
with the 3-shot setting. The visualization results of Figures
4a and 4b illustrated representations of the unlabeled tar-
get data corresponding to before and after applying adap-
tation extracted by the baseline model and TriCT, respec-
tively. As shown in these figures, the representations among
different classes of unlabeled target data extracted by TriCT
were more discriminative compared to the baseline model.

Moreover, as shown in Figures 4a and 4b, it was obvious
that TriCT was successful in solving the intra-domain dis-
crepancy when the representations of unlabeled target sam-
ples belonging to the same class were well clustered, which
was indicated by the dashed lines and bidirectional arrows.
Figures 4c and 4d displayed domain alignment results be-
fore and after applying adaptation extracted by the base-
line model and TriCT, respectively. As shown in Figure
4d, the representations of source and target data were well
aligned across domains when the distance between source
and target domains was significantly reduced, revealing that
the proposed method effectively alleviated the inter-domain
discrepancy.

5. Conclusion

This paper introduced a novel method called TriCT to
overcome both inter-domain and intra-domain discrepan-
cies in SSDA. TriCT utilized two graph convolutional net-
works as the auxiliary models to exploit the training data
structure with three co-training strategies that encouraged
the different classifier models to share their knowledge.
Therefore, the training model not only provided robustness
classification results but converged quickly. Our method
showed outstanding classification performance on the target
domain compared to previous state-of-the-art SSDA meth-
ods on several standard SSDA benchmark datasets.
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[19] Manuel Pérez-Carrasco, Pavlos Protopapas, and Guillermo
Cabrera-Vives. Con2DA: Simplifying semi-supervised do-
main adaptation by learning consistent and contrastive fea-
ture representations. In Proc. NeurIPS, 2021. 1, 2, 6

[20] Can Qin, Lichen Wang, Qianqian Ma, Yu Yin, Huan Wang,
and Yun Fu. Contradictory structure learning for semi-
supervised domain adaptation. In Proceedings of the 2021
SIAM International Conference on Data Mining (SDM),
pages 576–584, 2021. 2, 6

[21] Can Qin, Lichen Wang, Qianqian Ma, Yu Yin, Huan Wang,
and Yun Fu. Semi-supervised domain adaptive structure
learning. arXiv preprint arXiv:2112.06161, 2021. 2

[22] Kate Saenko, Brian Kulis, Mario Fritz, and Trevor Darrell.
Deep hashing network for unsupervised domain adaptation.
In Proc. CVPR, 2017. 5

[23] Kuniaki Saito, Donghyun Kim, Stan Sclaroff, Trevor Darrell,
and Kate Saenko. Semi-supervised domain adaptation via
minimax entropy. In Proc. ICCV, pages 8050–8058, 2019.
2, 6

[24] Kuniaki Saito, Kohei Watanabe, Yoshitaka Ushiku, and Tat-
suya Harada. Maximum classifier discrepancy for unsuper-
vised domain adaptation. In Proc. CVPR, page 3723–3732,
2018. 1

[25] Ankit Singh. Clda: Contrastive learning for semi-supervised
domain adaptation. In Proc. NeurIPS, pages 5089–5101,
2021. 1, 2, 6, 7

[26] Anurag Singh, Naren Doraiswamy, Sawa Takamuku, Megh
Bhalerao, Titir Dutta, Soma Biswas, Aditya Chepuri, Bal-
asubramanian Vengatesan, and Naotake Natori. Improving
semi-supervised domain adaptation using effective target se-
lection and semantics. In Proc. CVPR, pages 2709–2718,
2021. 6

[27] Eric Tzeng, Judy Hoffman, Kate Saenko, and Trevor Dar-
rell. Adversarial discriminative domain adaptation. In Proc.
CVPR, page 2962–2971, 2017. 1

[28] Eric Tzeng, Judy Hoffman, Kate Saenko, and Trevor Dar-
rell. Adversarial discriminative domain adaptation. In Proc.
CVPR, 2017. 1

[29] Laurens van der Maaten and Geoffrey Hinton. Visualizing
data using t-sne. Journal of machine learning research, vol-
ume 9:770–778, 2008. 8

[30] Hemanth Venkateswara, Jose Eusebio, Shayok Chakraborty,
and Sethuraman Panchanathan. Adapting visual category
models to new domains. In Proc. CVPR, 2017. 5

[31] Zizheng Yan, Yushuang Wu, Guanbin Li, Yipeng Qin, Xi-
aoguang Han, and Shuguang Cui. Multi-level consistency
learning for semi-supervised domain adaptation. In Proc. IJ-
CAI, 2022. 2, 6

19222



[32] Luyu Yang, Yan Wang, Mingfei Gao, Abhinav Shrivas-
tava, Kilian Q. Weinberger, Wei-Lun Chao, and Ser-Nam
Lim. Deep co-training with task decomposition for semi-
supervised domain adaptation. In Proc. ICCV, pages 8906–
8916, 2021. 2, 6

[33] Jeongbeen Yoon, Dahyun Kang, and Minsu Cho. Semi-
supervised domain adaptation via sample-to-sample self-
distillation. In Proc. WACV, pages 1978–1987, 2022. 6

[34] Han Zhao, Shanghang Zhang, Guanhang Wu, José M. F.
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