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Abstract

Recent years have witnessed a remarkable success of
large deep learning models. However, training these mod-
els is challenging due to high computational costs, painfully
slow convergence, and overfitting issues. In this paper,
we present Deep Incubation, a novel approach that en-
ables the efficient and effective training of large models
by dividing them into smaller sub-modules which can be
trained separately and assembled seamlessly. A key chal-
lenge for implementing this idea is to ensure the compat-
ibility of the independently trained sub-modules. To ad-
dress this issue, we first introduce a global, shared meta
model, which is leveraged to implicitly link all the mod-
ules together, and can be designed as an extremely small
network with negligible computational overhead. Then
we propose a module incubation algorithm, which trains
each sub-module to replace the corresponding component
of the meta model and accomplish a given learning task.
Despite the simplicity, our approach effectively encour-
ages each sub-module to be aware of its role in the tar-
get large model, such that the finally-learned sub-modules
can collaborate with each other smoothly after being as-
sembled. Empirically, our method can outperform end-
to-end (E2E) training in well-established training setting
and shows transferable performance gain for downstream
tasks (e.g., object detection and image segmentation on
COCO and ADE20K). Our code is available at https:
//github.com/LeapLabTHU/Deep-Incubation.

1. Introduction

Large neural networks have achieved remarkable suc-
cess across various domains such as natural language under-
standing [37, 8], computer vision [9, 57] and reinforcement
learning [41, 6]. In particular, the foundation models [7, 56]
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Figure 1: An illustration of our idea. We first train the
sub-modules of a large model fully independently, and then
assemble the trained modules to obtain the target model.

heavily rely on large deep learning models to achieve state-
of-the-art performance. The research field has developed
a diverse set of strategies for efficient and adaptive infer-
ence of deep models [50, 48, 21, 18, 20, 36]. However, the
training of large models still remains challenging in several
aspects. On infrastructure side, centralized resources with
strong computational and memory capacities are often re-
quired [27, 12, 57, 13]. On optimization side, the training
process tends to be unstable, difficult to converge, and vul-
nerable to overfitting [27, 15].

In this paper, we propose a divide-and-conquer strategy
to improve the effectiveness (better generalization perfor-
mance) and the efficiency (lower training cost) for training
large models. In specific, we divide a large model into
smaller sub-modules, train these modules separately, and
then assemble them to obtain the final model. Compared
with directly training the whole large network from scratch,
starting the learning on top of smaller modules yields a
faster and more stable converge process and higher robust-
ness against overfitting. The independent nature also allows
the training of each module to be performed on different
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machines with no communication needed. We refer to this
paradigm as “modular training”, and illustrate it in Fig. 1.

Importantly, designing an effective modular training
mechanism is non-trivial, as there exists a dilemma be-
tween independency and compatibility: although training
sub-modules independently enjoys advantages in terms of
optimization efficiency and generalization performance, it
is challenging to make these modules compatible with each
other when assembling them together. Some preliminary
works alleviate this problem by leveraging approximated
gradients [26, 11, 25] or local objectives [3, 4, 51], at the
price of only achieving partial independency. However, the
modules are still highly entangled during forward propaga-
tion, and generally have not exhibited the ability to effec-
tively address the optimization issues faced by training the
recently proposed large models (e.g., ViTs, see Tab. 2).

In contrast, this paper proposes a Deep Incubation ap-
proach, which not only elegantly addresses this dilemma,
but also demonstrates that the training of modern large mod-
els can benefit from the divide-and-conquer paradigm (see
Tab. 1 and Fig. 4). Specifically, we first introduce a global,
shared meta model, under the goal of implicitly linking all
the modules together. On top of it, we propose a module
incubation algorithm that trains each sub-module to replace
the corresponding component of the meta model in terms of
accomplishing a given learning task (e.g., minimizing the
supervised training loss). This design effectively encour-
ages each sub-module to be aware of its role in the target
large model. As a consequence, even though all the mod-
ules are independently trained, we are able to obtain highly
compatible sub-modules which collaborate with each other
smoothly after being assembled. Notably, our approach
allows deploying an extremely shallow meta model, e.g.,
only one layer per module, with which the computational
overhead is negligible, while the performance of the target
model is not affected. An overview of Deep Incubation is
presented in Fig. 3.

We validate the effectiveness of Deep Incubation on the
well-established DeiT training recipe [44]. Specifically, our
method is able to outperform E2E training at the same train-
ing cost or deliver similar performance at a reduced training
cost. Meanwhile, the performance gain is also transferable
to downstream tasks like object detection on COCO [33]
and semantic segmentation on ADE20K [59].

2. Related Work

Decoupled learning of neural networks is receiving more
and more attention due to its biological plausibility and its
potential in accelerating the model training process. Auxil-
iary variable methods [43, 58, 1, 31] achieve a certain level
of decoupling with strong convergence guarantees. Another
line of research [5, 32, 29, 35] uses biologically motivated
methods to achieve decoupled learning. Using auxiliary

networks [3, 4, 51] to achieve local supervision is also a
way to achieve decoupling. However, most above meth-
ods focus on decoupling modules during back-propagation,
while the modules are still highly entangled during forward
propagation. In contrast, our modular training process com-
pletely decouples the modules and optimizes each of them
independently.

Training configurations on ViTs have been extensively
studied recently. Different from works that aims at im-
proving the inference phase [49, 19], these works focus
on improving the training of ViTs. The first successful
training configuration on ViTs is proposed by the original
ViT paper [15]. However, their configuration was effective
mainly on ViTs pretrained on large datasets, e.g., ImageNet-
21K [14] and JFT-300M [42], while lagging behind convo-
lutional neural networks on smaller datasets like ImageNet-
1K [39]. The DeiT [44] paper proposes an improved
training recipe that improves the performance of ViTs on
ImageNet-1K and may be the most well-recognized con-
figuration for training vision transformers. After the well-
established DeiT training configuration, several other works
further conduct more thorough hyperparameter search, ar-
chitecture modifications or curriculum learning strategies to
improve the supervised training of ViTs [46, 22, 45, 52, 47,
17]. In this paper, we do not opt for achieving the state-of-
the-art performance on ImageNet-1K, but rather to validate
the effectiveness of our method in a most well-established
training setting. Hence, we adopt the DeiT training recipe
as our main configuration.

Model stitching [30, 2, 10] aims to build hybrid models
by “stitching” model parts from different pre-trained model
with stitch layers. The aim is usually to investigate the in-
ternal representation similarity of different neural networks.
A recent work [54] also applies model stitching to transfer
the knowledge of pre-trained models for downstream tasks.
However, the models obtained by stitching are limited by
the architecture and training dataset of the pre-trained mod-
els, while our method is a general training paradigm that
can be applied to any novel architectures and new datasets.

Knowledge distillation [24, 38, 40] trains a small student
model to mimic the behavior of a larger model, thus trans-
ferring knowledge from the teacher model to the student
model and achieves model compression. This imitative fea-
ture has some resemblance to a naïve variant of our method,
which is called Module Imitation (see Fig. 2 (b)). However,
they are essentially different. Specifically, the meta models
in our work are much smaller than the target models, while
in knowledge distillation the teacher networks are typically
larger and more powerful than the student networks. More-
over, our goal is not to compress a large model into a smaller
one, but to effectively train a large model with the help of a
small meta model.
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3. Deep Incubation
As aforementioned, training large models is typically

challenging, e.g., the learning process tends to be unsta-
ble, resource/data-hungry, and vulnerable to overfitting. To
tackle these challenges, we propose Deep Incubation, a
divide-and-conquer strategy that improves the effectiveness
and efficiency of large model training. In this section, we
introduce the concept of modular training. By discussing
the difficulties it faces, we present our Deep Incubation ap-
proach and summarize it in Alg. 1 and Fig. 3.

Modular training first divides a large model into smaller
modules, and then optimizes each module independently.
As modern neural networks are generally constituted by a
stack of layers, it is natural to divide the model along the
depth dimension. Formally, given a large target model M
with n layers, we can divide M into K(K ≤ n) modules:

M = MK ◦MK−1 ◦ · · · ◦M1, (1)

where ◦ represents function composition. Then, each mod-
ule Mi is trained independently in modular training.

In this way, the cumbersome task of directly training a
large model is decomposed into easier sub-tasks of train-
ing small modules. Moreover, these sub-tasks can be dis-
tributed to different machines and executed in full parallel,
with no communication needed. After this process, we can
simply assemble the trained modules, thus avoiding training
the large model directly from scratch.

Therefore, if implemented properly, modular training
can be a highly effective and efficient way for large model
training. However, designing a proper modular training
mechanism is a non-trivial task. In the following, we dis-
cuss in detail the challenges and present our solutions.

Dilemma I: independency vs. compatibility. At the core
of modular training is the requirement of independency.
However, if the modules are trained completely unaware of
other modules, they may have low compatibility between
each other, hence negatively affecting the performance of
the assembled model.

Solution: meta model. We argue the root of the above
dilemma is that, the requirement of independency prevents
the explicit information exchange between modules. Con-
sequently, the modules cannot adapt to each other during
training, causing the incompatible issue. Driven by this
analysis, we propose to address the dilemma by introducing
a global, shared meta-model M̂∗ to enable implicit infor-
mation exchange between the modules. Notably, the meta
model M̂∗ is designed to have the same number of modules
as the target model M:

M̂∗ = M̂∗
K ◦ M̂∗

K−1 ◦ · · · ◦ M̂∗
1 , (2)

and is pre-trained on the training dataset.

(c) Module Incubation

Forward

Loss

ℒ!"!

(b) Module Imitation (Practical)

Meta Model

ℒ

(a) Module Imitation (Oracle)

ℒ

Basic Idea

Module
II 🔥

Machine II

Backward

Figure 2: Comparison of 3 implementations of modular
training when training Module II in the target model (K =
3). In each implementation, the model above is the meta
model M̂∗, and the model below is the target model M. L
is any measure of distance in feature space, i.e., L1 distance.
LE2E is the original E2E training loss. Modules not involved
in the training pipeline are greyed out.

With the help of the meta model M̂∗, we can easily ob-
tain compatible modules. For example, we can let each tar-
get module Mi imitate the behavior of meta module M̂∗

i by
feeding it the same input as M̂∗

i , and optimize it to produce
feature similar to the output of M̂∗

i . In this way, we can ob-
tain compatible target modules due to the inherent compati-
bility between the pre-trained meta modules, thus resolving
the first dilemma. We refer to this process of modular train-
ing as “Module Imitation”. In an oracle case where M̂∗ has
the same architecture as M (Fig. 2 (a)), this process can di-
rectly produce a good approximate of a well-learned target
model when the trained modules are assembled.

Dilemma II: efficiency vs. effectiveness. Nevertheless, the
solution in Fig. 2 (a) may be impractical. Since our moti-
vation is to train M, it is unreasonable to assume a well-
learned meta model M̂∗ of the same size as M is already
available. More importantly, adopting a large M̂∗ to facil-
itate modular training can incur unaffordable overhead and
make the training process extremely inefficient. Therefore,
in practice, a small meta model needs to be adopted for ef-
ficiency, as illustrated in Fig. 2 (b). However, small meta
models may have insufficient representation learning abil-
ity, and thus may limit the performance of the final model.
From this perspective, the meta model should not be too
small for the effectiveness of modular training.

Solution: module incubation. We argue that the above
dilemma comes from the inappropriate optimization objec-
tive for the target module Mi, which is to strictly imitate the
meta module M̂∗

i . This objective makes the representation
learning ability of Mi bounded by M̂∗

i . Therefore, we pro-
pose a “Module Incubation” mechanism to better leverage
the meta model for modular training. In specific, instead of
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Figure 3: The overall pipeline of Deep Incubation (K = 3) . Here, we take a target model with 12 layers as an example,
and design a meta model with only one layer per module. The meta model is end-to-end pre-trained on the training dataset.
When training the i-th target module (denoted as Mi), we simply replace the i-th meta layer in the meta model with Mi, and
train the resulting hybrid network in an end-to-end manner with all meta layers fixed. Then, we assemble the trained modules
together to obtain the target model.

letting Mi strictly imitate M̂∗
i , we encourage Mi to cooper-

ate with the meta model M̂∗ to attain a task-oriented learn-
ing goal. Formally, we replace the i-th module in the meta
model M̂∗ with Mi, obtaining a hybrid network M̃(i):

M̃(i) = M̂∗
K ◦ · · · ◦ M̂∗

i+1 ◦Mi ◦ M̂∗
i−1 ◦ · · · ◦ M̂∗

1 . (3)

Then we fix M̂∗
j (j ̸= i), and thus the outputs of M̃(i) cor-

responding to the input x can be defined as a function of
Mi, namely:

x → M̃(i)(x;Mi). (4)

Finally, we can directly minimize an end-to-end loss
LE2E(·) with respect to M̃(i)(x;Mi):

minimize
Mi

LE2E

(
y, M̃(i)(x;Mi)

)
, (5)

where y is the label of the input x. Here, LE2E(·) can be
defined conditioned on the task of interest. In this paper, we
mainly consider the standard cross-entropy loss in the con-
text of classification problems. The above process can be
seen as using the pre-trained meta model M̂∗ to “incubate”
the target module Mi, and thus we call this way of modular
training “Module Incubation”.

Unlike Module Imitation, here we enforce Mi to cooper-
ate with M̂∗

j (j ̸= i) to accomplish the final task. Therefore,
Mi is encouraged to take full advantage of its potential.
Since Mi is often larger than M̂∗

i , it can acquire stronger
ability than M̂∗

i in terms of representation learning. In con-
trast, the ability of Mi is generally limited by the insuffi-
cient meta module M̂∗

i in Module Imitation. Empirical evi-
dence is also provided in Fig. 9 to support this point.

Interestingly, we find that smaller meta models actually
bring better performance in Module Incubation (see Fig. 8).

Algorithm 1 The Deep Incubation Algorithm
Require: Initialize the target model M = MK◦MK−1◦· · ·◦M1;

Training dataset D
1: Initialize a meta model M̂ with K modules.
2: Pre-train M̂ on D to obtain M̂∗

3: for i = 1 to K do ▷ Can be executed in parallel
4: Construct M̃(i) by replacing M̂∗

i in M̂∗ with Mi

5: Minimize LE2E

(
y, M̃(i)(x;Mi)

)
on D to obtain M∗

i

6: end for
7: Assemble the target model Massm = M∗

K ◦M∗
K−1 ◦ · · · ◦M∗

1

8: Fine-tune Massm on D to obtain the final model M∗

This intriguing phenomenon provides a favorable solution
to the second dilemma, i.e., we can directly use the shallow-
est meta model to incubate the modules. In our implemen-
tation, to get both efficiency and effectiveness, we simply
design the meta model to have only one layer1 per module.

Assemble the target model. After all the modules Mi(i ∈
{1, . . . ,K}) are trained, we obtain the target model by as-
sembling them:

Massm = M∗
K ◦M∗

K−1 ◦ · · · ◦M∗
1 , (6)

where M∗
i denotes the modular-trained target module. Then

we fine-tune Massm to obtain the final model M∗. Impor-
tantly, this fine-tuning process does not downplay the im-
portance of modular training. To demonstrate this issue, we
can consider E2E training as a special case of Deep Incuba-
tion where the proportion of fine-tuning is 100%. However,
such 100% fine-tuning significantly degrades the test accu-

1Following [15], we use ‘layer’ in a general sense to represent the basic
building block of a model , e.g., a transformer encoder layer in ViT.
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model
image
size FLOPs #param

E2E-ViT
[15]

E2E
[22]

E2E-DeiT
[44]

DeiT
+ ours ∆

ViT-B
2242 17.6G

87M
- 82.3 81.8 82.4 +0.6

3842 55.5G 77.9 - 83.1 84.2 +1.1

ViT-L
2242 61.6G

304M
- 82.6 81.4† 83.9 +2.5

3842 191.1G 76.5 - 83.3† 85.3 +2.0

ViT-H
2242 167.4G

632M
- 83.1 81.6† 84.3 +2.7

3922 545.3G - - 83.4† 85.6 +2.2

Table 1: Training large ViT models on ImageNet-1K. For wall time
training efficiency comparison, see Fig. 4. †: Our reproduced baseline.

dataset model E2E DGL [4] InfoPro [51] ours

C100
ResNet-110 71.1 69.2 71.2 73.0
DeiT-T-32 72.8 72.0 73.3 75.3

DeiT-T-128 69.4 70.9 73.2 77.2
IN-1K ViT-B 81.8 - 81.0 82.4

Table 2: Comparison with decoupled learn-
ing methods. The results on InfoPro [51] and
DGL [4] are based on our implementation. C100:
CIFAR-100, IN-1K: ImageNet-1K.

79.8

82.7
83.9

79.4

81.4
3.4× Training Speedup

72.8

77.2 78.0

63.3

69.4

71.9

ViT-Large DeiT-T-128

83.4 84.3

81.6

79.2

80.5

ViT-Huge

82.6
83.1

4.1× Training Speedup3.2× Training Speedup

Figure 4: Training efficiency (accuracy vs. training wall-time) of ViT-L (left), ViT-H (middle) on ImageNet-1K and DeiT-
T-128 on CIFAR-100 (right). Different points correspond to different training budgets (i.e., with varying numbers of epochs).
The training cost is measured in A100 GPU Hours. We also present detailed convergence curves of ViT-Huge in Fig. 5.

racy (see: Tab. 1). Only when the modular training stage
is introduced, a dramatically improved generalization per-
formance can be achieved (see: Fig. 7). This demonstrates
that the major gain of our method comes from the modular
training algorithm rather than the fine-tuning process.

The overall pipeline of Deep Incubation is summarized
in Alg. 1 and Fig. 3.

4. Experiments

This section presents a comprehensive experimen-
tal evaluation on ImageNet-1K [39], COCO [33],
ADE20K [59] and CIFAR [28] to validate the effectiveness
of Deep Incubation.

Setups. We adopt the widely used training recipe of
DeiT [44] as our default training configuration, with small
modifications: for large models like ViT-L and ViT-H, we
adapt the stochastic depth rate accordingly following [46]
by setting it to 0.5 (ViT-L) and 0.6 (ViT-H) for both our fine-
tuning phase and E2E baselines, and extend the warmup
epochs to 20 following [34]. We additionally verify the
complementarity of our method with more advanced train-
ing configurations [45], please see Appendix for more de-
tails. The E2E baselines trained with default configuration
serve as our main baseline, which is denoted as E2E-DeiT.
For the simplicity of our method, we intentionally adopt the
same hyper-parameters for both our modular training and
the fine-tuning phase as E2E-DeiT, except that we disable

warmup in the fine-tuning phase. Therefore, we refer to our
method as DeiT + Ours.

We keep K = 4 for modular training and evenly di-
vide the target models. The depth of meta models is set
to 4, which is the shallowest possible meta model. We
simply perform modular training for 100 epochs and fine-
tuning for 100 epochs. This configuration is selected for an
optimal overall performance. Notably, shorter fine-tuning
still produces favorable results (see Fig. 10). We pre-train
meta models for 300 epochs with the same configurations
as E2E-DeiT. Note that the pre-training cost of meta mod-
els is cheap compared to the overall training cost due to the
shallowness of meta models (see Fig. 5). The schedules of
the E2E baselines are the same as their original papers.

4.1. Main Results

Training large models on ImageNet-1K. Since the results
of ViT-L and ViT-H are not reported in DeiT [46], and di-
rectly adopting the original training configurations results
in optimization issues (i.e. NaN loss), we report our repro-
duced baselines. Besides the re-adjusted stochastic depth
rates, we also adopt the LAMB [55] optimizer and a uni-
form stochastic depth rate following [46] to further improve
E2E training.

As shown in Tab. 1, our method consistently improves
model performance on the top of E2E-DeiT for all three ViT
variants. The advantage is more pronounced for larger mod-
els. On ViT-H, our method outperforms E2E-DeiT by 2.7%.
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E2E Training

81.6
83.4 84.3

Meta Model Pre-training

DeiT + Ours
E2E-DeiTAssembled Models

80.5

Figure 5: Training curves of ViT-H. Our method (with dif-
ferent training budgets) is compared with E2E-DeiT [44].

The advantage continues when the models are fine-tuned
at higher resolution, where our method outperforms E2E-
DeiT by 2.0% and 2.2% for ViT-L and ViT-H, respectively.
We also compare Deep Incubation with the recently pro-
posed improved E2E baselines in [22], where a systemati-
cally hyper-parameter search is performed on training con-
figurations. Notably, this comparison places our method at
a disadvantage since we directly adopt the configurations of
E2E-DeiT, which may be sub-optimal for our method. Even
so, Deep Incubation still performs better.

Comparison with decoupled training methods. We com-
pare our method with two strong decoupled training meth-
ods: InfoPro [51] and DGL [4] with both ViTs and CNNs.
We adopt two DeiT-Tiny [44] models with a depth of 32
and 128 and a ResNet-110 (K = 3) on CIFAR and ViT-
B on ImageNet-1K. For models on CIFAR, we train our
method for 200 (modular training) + 100 (fine-tuning) and
other baselines for 400 epochs. The results are presented
in Tab. 2. Our method consistently outperforms the other
state-of-the-art decoupled training methods.

Higher computational efficiency for training. In Fig. 4,
we present a more comprehensive comparison of the train-
ing efficiency between our method and the E2E baselines.
We adjust the training cost budget by varying the number
of epochs. One can observe that our method shows a better
efficiency-accuracy trade-off than all E2E baselines, includ-
ing the recently proposed improved E2E baselines [22].

For fair comparisons, we further discuss the benefits of
our method on training efficiency by comparing it with
E2E-DeiT since they adopt the same training configura-
tions. On ViT-L and ViT-H, our method requires 3.2× and
4.1× less training cost, respectively, while achieving sim-
ilar performance compared to E2E-DeiT. We also present
detailed convergence curves of ViT-H in Fig. 5. For our
method, we plot the convergence curve starting from the as-
sembled models. Notably, the starting points of our conver-
gence curves are higher than the convergence curve of E2E
training. This demonstrates the high compatibility between
the modules trained by our method.

Mask R-CNN, 1× schedule
APb APb

50 APb
75 APm APm

50 APm
75

E2E 44.1 67.7 48.5 40.4 64.2 43.1
Ours 45.7(+1.6) 69.6(+1.9) 50.3(+1.8) 41.8(+1.4) 66.1(+1.9) 44.7(+1.6)

Mask R-CNN, 3× schedule
APb APb

50 APb
75 APm APm

50 APm
75

E2E 47.0 69.3 51.3 42.1 66.2 45.2
Ours 48.6(+1.6) 71.2(+1.9) 52.9(+1.6) 43.8(+1.7) 68.1(+1.9) 47.2(+2.0)

Table 3: Object detection and instance segmentation on
COCO val2017. Here, we adopt ViT-L as backbone to
compare our Deep Incubation pre-training with E2E [44]
and use Mask R-CNN [23] as detector. For the pre-training
cost of ViT-L, see Tab. 4.

model method
pt. cost

(GPU hours)
UperNet, 80k training steps

mAcc. mIoU mIoU†

ViT-L
E2E 1.09K 58.5 47.0 47.8
Ours 0.89K 60.8(+2.3) 49.2(+2.2) 50.0(+2.2)

ViT-H
E2E 4.79K 58.2 46.5 47.2
Ours 2.72K 61.0(+2.8) 49.9(+3.4) 50.6(+3.4)

Table 4: Semantic segmentation on ADE20K. Here, we
test our pre-trained models compared to the E2E trained
ones [44] with UperNet [53]. † denotes the multi-scale test
setting with flip augmentation.

Downstream tasks. To further demonstrate the effective-
ness of our method, we evaluate our ImageNet-1K pre-
trained models on 2 common downstream tasks: COCO
object detection & instance segmentation and ADE20K se-
mantic segmentation. COCO [33] object detection and in-
stance segmentation dataset has 118K training images and
5K validation images. We employ our pre-trained models
on the commonly used Mask R-CNN [23] framework with
1× and 3× training schedule. ADE20K [59] is a popular
dataset for semantic segmentation with 20K training images
and 2K validation images. We employ our pre-trained back-
bone on the widely used segmentation model UperNet [53]
and train it for 80k steps. For ViT-Huge, we interpolate the
patch embedding filters from 14×14×3 to 16×16×3 to fit
the input image sizes of downstream tasks. As shown in
Tab. 3 and 4, our pre-trained backbones achieve consistent
improvement over E2E trained counterparts with a lower
pre-training cost.

Higher data efficiency. Another important advantage of
our method is its higher data efficiency, i.e., it is able to
dramatically outperform the E2E baselines when training
data are relatively scarce. To demonstrate this, we sam-
ple two class-balanced subsets of ImageNet-1K, containing
25% and 50% of the training data, and train ViT-B on them.
The training cost is kept the same as full-set training by us-
ing the same number of training iterations. Besides Top-1
accuracy, we also report the training loss in the last epoch.
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training top-1 acc. training loss
data E2E-DeiT [44] DeiT + Ours E2E-DeiT [44] DeiT + Ours

100% IN-1K 81.8 82.4 (+0.6) 2.63 2.69
50% IN-1K 74.7 78.6 (+3.9) 2.34 2.55
25% IN-1K 65.7 72.9 (+7.2) 2.09 2.41

Table 5: Training ViT-B with fewer training samples (IN-
1K: ImageNet-1K). Here, we sample 2 class-balanced sub-
sets from ImageNet-1K. The training loss in the last epoch
is also reported.

The results are reported in Tab. 5. It can be seen that
the gain of our method is more pronounced in lower data
regimes, since our method is less prone to overfitting. As
data become scarce, we can observe that the training loss
of E2E training quickly decreases, while the validation ac-
curacy also drops, showing a clear trend of overfitting. In
contrast, our method counters this trend with a much slower
decrease in training loss, and achieves significantly higher
validation accuracy than E2E training. For example, when
only 25% of ImageNet-1K is available, it outperforms the
DeiT baseline by 7.2%.

4.2. Designing Deeper Models

With our proposed method, we can further explore an
interesting question: in current transformer models, is the
ratio of depth vs. width optimal? The answer may be true
in the context of E2E learning. Previous work [16, 60] con-
jecture that deeper ViTs trained in an end-to-end manner
may have the over-smoothing problem, hindering their per-
formance and hence it is not suggested to make ViTs deeper
than their current design.

+ 4.9% + 7.8%

75.3

73.6

76.3
77.2

71.6

72.8

71.4

69.4

Figure 6: Increasing depth of DeiT-Tiny. Our method is
able to train deeper ViTs without optimization issues.

To investigate this problem, we progressively increase
the depth of a DeiT-Tiny in Fig. 6, and train them on
CIFAR-100 to evaluate their performance. One can ob-
serve that the performance of E2E learning quickly satu-
rates when depth increases to 32 and then starts to decrease
as the model depth further increases. However, the same
phenomenon does not occur with our method. The models
trained by our method show no sign of saturation in per-
formance and outperform E2E counterparts by increasingly

model FLOPs #param depth width
top-1 acc.

E2E-DeiT [44] DeiT + Ours
ViT-B 17.6G 87M 12 768 81.8 82.4
ViT-B-DN 17.7G 85M 24 540 78.7 82.7

Table 6: Training deep-narrow models. Here, a deep-
narrow version of ViT-B is designed (denoted as ‘ViT-B-
DN’) by doubling the depth of ViT-B with the FLOPs un-
changed.

larger margins as the model gets deeper. In other words, our
method is able to train deeper ViTs more effectively.

Intrigued by this observation, we conjecture that our pro-
posed method may allow the designing of more efficient
ViTs by further increasing the model depth. Therefore, we
create a deep-narrow version of ViT-Base model (denoted
ViT-B-DN) by doubling the depth and adjusting the width
accordingly to keep the inference cost (i.e., FLOPs) un-
changed. As shown in Tab. 6, the deep-narrow version of
ViT-B performs significantly worse than its original config-
uration when trained in an E2E manner. However, when
trained by our method, the deep-narrow version actually
outperforms the original one, giving an additional 0.3% im-
provement in the final performance. This provides an alter-
native solution for scaling up transformer models.

4.3. Discussion

In this section, we provide a more comprehensive anal-
ysis of our method. Unless mentioned otherwise, we use
DeiT-T-128 as our target model and conduct experiments
on CIFAR-100 dataset.

Ablation on modular training. We first try directly re-
placing modular training in our method with E2E training,
and keep the fine-tuning stage unchanged (denoted as ‘E2E
training + tuning’). This results in a staged E2E training
process that adopts a cosine annealing schedule with restart.
The results are shown below:

modular training + tuning (ours) E2E training + tuning E2E
77.2 67.9 69.4

This indicates that the gain of our method does not come
from the staged training process itself, which even under-
performs the E2E baseline.

We further study the importance of modular training by
varying its proportion in the whole process, while keeping
the overall training cost unchanged. As shown in Fig. 7,
starting from E2E training (the proportion of modular train-
ing is zero), the overall performance considerably improves
as more computation is allocated to modular training. Fur-
thermore, Deep Incubation outperforms E2E training within
a wide range of the proportions, which also demonstrates its
robustness.

Ablation on meta model. In our module incubation for-
mulation, we pre-train and fix the meta model for incubat-
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Cost=2.7h Cost=3.6h Cost=5.4h

Proportion of Modular Training

63.3

74.7

59.0
57.4

70.3

63.0

68.0

77.1
74.1

E2E Training

76.8

Figure 7: Proportion of modular training. The propor-
tion is measured by the wall-clock time of modular training
in the whole pipeline of Deep Incubation. When the pro-
portion of modular training is zero, our method reduces to
E2E training.

ing modules. The table below shows the effect of the pre-
training and the fixing operation on the final performance:

pre-trained, fixed (ours) pre-trained, tunable random init., tunable
77.2 76.4 70.9

Thus, pre-training and fixing are both beneficial to the over-
all performance, with pre-training being more important.
This is reasonable since the meta model is to facilitate the
compatibility between independently trained modules, and
thus needs to be: 1) pre-trained to ensure its own layers’
compatibility and 2) fixed to be consistent when incubat-
ing different modules. Note the gain from meta model pre-
training does not comes from the pre-trained meta model
itself, which only has an accuracy of 64.9%.

We further study the effect of meta model depth in Fig. 8.
The accuracy of our method is depicted in a red line, where
the horizontal axis denotes the number of layers of the meta
model An intriguing observation can be obtained, i.e., our
method achieves high accuracy even with a surprisingly
shallow meta model (e.g., 4 layers, one for each module).
One possible explanation for this phenomenon is that, dur-
ing the module incubation process, adopting shallower meta
models makes the supervision information flow more easily
toward the target module, and thus the target modules can
be trained more thoroughly and converge faster.

Comparison with module imitation. Fig. 8 also presents
the results of Module Imitation (Fig. 2 (b)), where we adopt
L1 distance as the loss function in feature space. It can be
seen that our method consistently outperforms Module Im-
itation, especially when the meta model is small. This is
aligned with our intuition in Sec. 3 that the cooperative na-
ture of Module Incubation prevents the representation learn-
ing power of Mi from being limited by an insufficient meta
model.

We also explicitly measure how well a trained target
module M∗

i supports a meta model to learn representations
by replacing the meta module M̂∗

i in the meta model with

68.1

77.2 77.0 75.9

74.174.9

74.4

59.3

Our Choice

E2E Training

Figure 8: Depth of the meta model. We perform modular
training with meta models of varying depths. Two ways of
implementation, i.e., Module Imitation (Fig. 2b) and Mod-
ule Incubation (ours, Fig. 2c), are compared.

+5.0

+8.8
+8.0

+3.3

-0.3 -0.1 -0.1-0.0

Figure 9: Accuracy gain when replacing a meta module
M̂∗

i in the meta model with target module M∗
i trained by

different methods.

M∗
i . The accuracy gain of this hybrid model over the orig-

inal meta model, which is DeiT-T-4, is evaluated. As the
results in Fig. 9 show, the modules trained by Module Incu-
bation (ours) do provide better support for the meta model
by leveraging its stronger ability in representation learning.

Sensitivity test. We further conduct a sensitivity test on
the hyper-parameters for fine-tuning the assembled model,
namely, the epochs and the learning rate for fine-tuning.
The results are shown in Fig. 10, where we use DeiT-T-
128 as the target model. Three important observations can
be obtained. First, our method can outperform E2E train-
ing even if the model is only fine-tuned for one epoch
(71.2% for ours vs. 69.4% for E2E), which clearly demon-
strates the necessity of our modular training process. Sec-
ond, the majority of the performance gain can be obtained
by fine-tuning the assembled model for a short period (e.g.,
20 epochs), and further prolonging the fine-tuning phase
gives diminishing returns. Third, the performance of our
method is generally robust to the choice of the learning rate
of fine-tuning. For a moderate period of fine-tuning, di-
rectly choosing the default learning rate is enough. There-
fore, for all the experiments, we do not tune this learning
rate to keep the simplicity of our method.
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Our Choice
Ours

(200+100 ep)

E2E
(400 ep)

Figure 10: Sensitivity test on the hyper-parameters of
fine-tuning on CIFAR-100. The default learning rate is
underlined.

Number of modules K. Finally, we also present our study
on K, which is the number of modules when we divide a
target model. The results are presented below:

model K = 2 K = 4 K = 8 K = 16 E2E
DeiT-T-32 72.3 76.1 75.6 75.6 72.8
DeiT-T-256 70.9 76.7 77.2 75.0 66.9

It can be seen that the optimal value of K differs for models
of different depths, and the deeper model prefers a larger
K. This is reasonable since gradient vanishing and other
optimization problems get more severe for deeper models,
and thus a finer division of the model is needed.

5. Conclusion
This paper presented Deep Incubation, which trains a

large model in a divide-and-conquer manner. We leveraged
a shared, lightweight meta model to implicitly link all mod-
ules together. By “incubating” the modules with the meta
model, we effectively encouraged each module to be aware
of its role in the target large model, and thus the trained
modules can collaborate smoothly after they are assembled.
Empirically, we demonstrated that Deep Incubation can out-
perform end-to-end (E2E) training in a fair setting, and the
performance gain is also transferable to downstream tasks.
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