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Abstract

Domain generalization person re-identification (DG-
ReID) aims to train a model on source domains and gen-
eralize well on unseen domains. Vision Transformer usu-
ally yields better generalization ability than common CNN
networks under distribution shifts. However, Transformer-
based ReID models inevitably over-fit to domain-specific bi-
ases due to the supervised learning strategy on the source
domain. We observe that while the global images of differ-
ent IDs should have different features, their similar local
parts (e.g., black backpack) are not bounded by this con-
straint. Motivated by this, we propose a pure Transformer
model (termed Part-aware Transformer) for DG-ReID by
designing a proxy task, named Cross-ID Similarity Learn-
ing (CSL), to mine local visual information shared by differ-
ent IDs. This proxy task allows the model to learn generic
features because it only cares about the visual similarity of
the parts regardless of the ID labels, thus alleviating the
side effect of domain-specific biases. Based on the local
similarity obtained in CSL, a Part-guided Self-Distillation
(PSD) is proposed to further improve the generalization
of global features. Our method achieves state-of-the-art
performance under most DG ReID settings. The code is
available at https://github.com/liyuke65535/
Part-Aware-Transformer.

1. Introduction
Person Re-Identification (ReID) [35, 2, 38, 37] aims to

find persons with the same identity from multiple disjoint
cameras. Thanks to the great success of Convolutional Neu-
ral Network (CNN) in the field of computer vision [11, 24],
supervised, unsupervised person ReID has made significant
progress. However, a more challenging task, domain gen-
eralization (DG) ReID [31] which trains a model on source
domains yet generalizes well on unseen target domains, still
lags far behind the performance of the supervised ReID.

*Jingkuan Song is the corresponding author.
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Figure 1. (a) We applied different Transformers to DG ReID. Mod-
els are trained on Market and tested on MSMT. Results show Vi-
sion transformers (blue bars) are better than CNNs (orange bars)
even with fewer parameters. (b) Visualization of attention maps of
“class token” on source domain (MSMT) and target domain (Mar-
ket). We use ViT [4] as the backbone and fuse the attention results
of the shallow layers. However, the attention to discriminative in-
formation is still limited on target domain.

Thus, many DG methods are proposed to learn generic
features. These methods explore the generalization of CNN
based on disentanglement [10, 19] or meta-learning [3, 18].
Recently, Transformer has gained increasing attention in
computer vision. It is a neural network based on atten-
tion mechanisms [26]. Vision Transformer usually yields
better generalization ability than common CNN networks
under distribution shift[32, 17]. However, existing pure
transformer-based ReID models are only used in supervised
and pre-trained ReID [16, 8]. The generalization of Trans-
former is still unknown in DG ReID.

To investigate the performance of Transformer in DG
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Figure 2. Local similarity among parts with different IDs. It comes
from the visual data themselves, not from ID labels.

ReID, we use different Transformers and CNNs as back-
bones to test their cross-domain performance from Market
to MSMT. The results show that Vision Transformers are
much better than common CNNs, as shown in Figure 1 (a).
Even with fewer parameters, Transformers still outperform
CNNs. For instance, DeiT-tiny [25] with 5.9M parameters
is much better than ResNet18 with 21.7M parameters. De-
spite the great performance of ViT [4], we still experimen-
tally find that the attention to discriminative information
is limited to the unseen target domain. As shown in Fig-
ure 1(b), some discriminative information on the target do-
main is ignored, such as the black backpack and grey coat.

The above phenomenon shows that Transformer- based
ReID models inevitably overfit to domain-specific biases
due to the supervised learning strategy on the source do-
main. It is manifested in the insufficient learning of local in-
formation on unseen target domains. We observe that while
the global images of different IDs should have different fea-
tures, their similar local parts (e.g., White skirt, red T-shirt)
are not bounded by this constraint, as shown in Figure 2.
And these ID-independent local similarities can provide ex-
tra visual knowledge from the images themselves. Ignoring
this similarity leads the Transformer to focus on the ReID
task instead of learning generic features, resulting in more
over-fitting to domain-specific biases.

To this end, we design a proxy task, named Cross-ID
Similarity Learning (CSL), to mine local similarities shared
by different IDs and learn generic features without using
ID labels. CSL is based on part-aware attention to learn
discriminative information across different IDs. The part-
aware attention concatenates the “part token” and the “im-
age tokens” in the region of interest to learn local represen-
tations. In each mini-batch, we use a memory bank to cal-
culate the distance between the current local features and
the samples of the entire dataset to mine apparent local sim-
ilarity. The apparent similarity is learned not from ID an-
notations, but from the visual data themselves [30]. Thus
it allows the model to learn generic features because it only

cares about the visual similarity of the parts regardless of the
ID labels, thus alleviating the side effect of domain-specific
biases.

Part-guided Self-Distillation (PSD) is proposed to fur-
ther improve the generalization of the global representa-
tion. Self-distillation has been proven effective in DG im-
age classification [27, 33]. It can learn visual similarities
beyond hard labels and make the model converges easier to
the flat minima. However, we experimentally find that the
traditional self-distillation method would reduce the gener-
alization in DG ReID. The reason is that ReID is a fine-
grained retrieval task, and the difference between different
categories is not significant. It is difficult to mine useful
information from the classification results. Therefore, PSD
uses the results of CSL to construct soft labels for global
representation. In general, the motivation of self-distillation
is similar to CSL, which is to learn generic features by data
themselves regardless of the ID labels.

Extensive experiments have proved that CSL and PSD
can improve the generalization of the model. Specifi-
cally, our method achieves state-of-the-art performance un-
der most DG ReID settings, especially when using small
source datasets. Under the Market→CUHK-NP setting, our
method exceeds state-of-the-art by 3.2% and 4.6% in Rank1
and mAP, respectively. The contributions of this work are
three-fold:

a) We propose a pure Transformer-based framework for
DG ReID for the first time. Specifically, we design a proxy
task, named Cross-ID Similarity Learning module (CSL),
to learn generic features.

b) We design part-guided self-distillation (PSD) for DG
ReID, which learns visual similarities beyond hard labels to
further improve the generalization.

c) Extensive experiments have proved that our Part-
aware Transformer achieves state-of-the-art of DG ReID.

2. Related Work

2.1. Domain Generalizable Person ReID.

Supervised and unsupervised domain adaptation person
ReID have achieved great success. But DG ReID is still
a challenging task. It requires the model to train a model
on source domains yet generalize to unseen target domains.
Due to its huge practical value, it has been widely studied
in recent years. The concept of DG ReID was first proposed
in [31]. [22, 9] applied meta-learning to learn domain-
invariant features. [10] proposed to disentangle identity-
irrelevant information. Last but not the least, [21] proposed
IBN-net to explore the effect of combining instance and
batch normalization, which was widely used in later DG
ReID methods due to its good transferability and effective-
ness. However, pure Transformer does use batch normal-
ization, so IBN cannot bring gain to our model. But even
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without using IBN, our method still outperforms the exist-
ing CNN-based state-of-the-art in DG ReID.

2.2. Transformer-related Person ReID.

The original Transformer is proposed in [26] for natural
language processing (NLP) tasks. Based on ViT [4], [8] ap-
plies pure Transformer to supervised ReID for the first time,
which introduces side information to improve the robust-
ness of features. [16] further proposed self-supervised pre-
training for Transformer-based person ReID, which miti-
gates the gap between the pre-training and ReID datasets
from the perspective of data and model structure.

Recently, some work investigate the generalization of vi-
sion Transformers [32]. In DG ReID, TransMatcher [14]
employs hard attention to cross-matching similarity com-
puting, which is more efficient for image matching. How-
ever, it still uses CNN as the main feature extractor, and the
role of the Transformer is mainly reflected in image match-
ing. Our method is the first to investigate the generalization
ability of pure Transformer in DG ReID.

2.3. Proxy Task and Self-Distillation.

Proxy Task and Self-Distillation have been extensively
studied, and we only discuss their contribution to general-
ization here.

Proxy Task is referred to as learning with free labels
generated from the data itself, such as solving Jigsaw puz-
zles [20], predicting rotations [6] or reconstruction [5].
Since these tasks are not related to the target task (such
as image classification), they can guide the model to learn
generic features, which leads to less over-fitting to domain-
specific biases [1]. CSL picks similar parts from the entire
dataset without using ID labels, thus encouraging the model
to learn the discriminative information shared by different
IDs.

Self-Distillation (SD) uses soft labels containing “richer
dark knowledge”, which can reduce the difficulty of learn-
ing the mapping and further improve the generalization abil-
ity of the model [27]. Besides, [33] found that SD can help
models converge to flat minima, improving the generaliza-
tion of features. However, traditional SD methods are not
suitable for ReID. Because it is a fine-grained retrieval task.
So we propose PSD to replace traditional methods.

3. Methodology
We proposed a pure Transformer-based framework,

named Part-aware Transformer (PAT), to learn generaliz-
able features, as shown in Figure 3. In the following, we
describe the main components of our method. First, we in-
troduce our Transformer encoder composed of L blocks,
which simultaneously extracts global and local features
(Sec. 3.1). Next, we design a proxy task, named Cross-
ID Similarity Learning (CSL), to learn the generic features

(3.2). It mines local similarity shared by different IDs and
encourages model to learn generic features, thereby reduc-
ing over-fitting on source datasets. Finally, a Part-guided
Self-Distillation module (PSD) is proposed to further im-
prove the generalization of global features (Sec. 3.3). It
constructs soft labels based on the similarity of local fea-
tures, which solves the problems existing in traditional self-
distillation methods on ReID. CSL and PSD are jointly
trained in an end-to-end manner (Sec. 3.4).

3.1. Transformer Encoder

Our Transformer encoder f consists of L blocks. Each
block contains global attention, part-aware attention and a
feed-forward network. Global/Part-aware attention is used
to extract global/local features.

Input of Transformer Encoder. We split an input image
x ∈ RH×W×C into non-overlapping N patches by a patch
embedding module. Each patch is treated as an “image to-
ken” {xi|i = 1, 2, . . . , N}. Besides, a learnable “class to-
ken” xcls and three “part tokens”{xpi

|i = 1, 2, 3} are con-
catenated with all “image tokens”. Then, the input to the
Transformer encoder can be expressed as:

Z = [xcls, xp1
, xp2

, xp3
, x1, . . . , xN ] + P (1)

where Z represents input sequence embeddings, P ∈
R(N+4)×D is position embedding. D is the number of chan-
nels.

The attention mechanism is based on a trainable asso-
ciative memory with query Q, key K, and value V . They
are all computed from the vector sequence Z , which can be
formulated as:

Q = ZWQ = [qcls, qp1
, qp2

, qp3
, q1, . . . , qN ]

K = ZWK = [kcls, kp1
, kp2

, kp3
, k1, . . . , kN ]

V = ZWV = [vcls, vp1
, vp2

, vp3
, v1, . . . , vN ]

(2)

where WQ,WK ,WV are different linear transformations.

Global Attention. To extract global features, we use
“class token” and all “image tokens” to perform global at-
tention. The output matrix of global attention can be ob-
tained by:

Attention(Qcls,Kcls,Vcls)=Softmax(
QclsK

T
cls√

D
)Vcls (3)

where Qcls = [qcls, q1, . . . , qN ], Kcls = [kcls, k1, . . . , kN ]
and Vcls = [qcls, q1, . . . , qN ]. Then the outputs of global
attention are sent to FFN network. Repeat this process L
times and we get a global feature f(xcls).
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Figure 3. Illustration of our proposed method. FFN is a feed-forward network. We split an input image into N non-overlapping patches
as “image tokens”. The input of the model includes a “class token” (xcls), three “part tokens” ({xpi |i ∈ 1, 2, 3}) and N “image tokens”.
The “class token” concatenates all “image tokens” to get a global feature through global attention. For each “part token”, it concatenates
“image tokens” of the region of interest to obtain the local feature belonging to this region. The output of the L Transformer block includes
a global feature f(xcls) and three local features {f(xpi)|i ∈ 1, 2, 3}. We use three local representations and samples in the memory
bank to solve a proxy task, named Cross-ID Similarity Learning (CSL). The results of the CSL guide the global representation to perform
Part-guided Self-Distillation (PSD).

Part-aware Attention. To learn local similarity from data
themselves, we need to extract local features using part-
aware attention. For each “part token” xpi

, we use xpi

and “image tokens” belonging to a special region to per-
form part-aware attention. the output matrix of part-ware
attention can be obtained by:

Attention(Qpi
,Kpi

, Vpi
)=Softmax(

Qpi
KT

pi√
D

)Vpi
(4)

where Qpi
= [qpi

, qki
, . . . , qki+m] and {ki, . . . , ki + m}

represent the serial number of (m + 1) “image tokens” as-
sociated with the part token xpi

. Qpi
and Kpi

are handled in
the same way. That is, “part tokens” will only interact with
“image tokens” in the region of interest. In this work, We
take three overlapping square areas along the vertical direc-
tion, as shown in the figure 3. The outputs of part-ware at-
tention are sent to the FFN network. Repeating this process
L times we get three local features {f(xpi

)|i = 1, 2, 3}.

3.2. Cross-ID Similarity Learning

Existing Transformer-based ReID models perform rep-
resentation learning based on global attention with anno-
tated images, which leads the models to focus too much on
domain-specific information, thus models get over-fitted on
source domains. Besides, transformer-based ReID models
ignore local similarities between different IDs, which can
be helpful for generic representation learning. Specifically,

cross-ID local similarities are ID-irrelevant, they offer vi-
sual knowledge to the models regardless of labels. Just like
self-supervised learning, it provides the model with addi-
tional visual knowledge from the images themselves, not
their labels.

To learn generic features, we propose a proxy task named
Cross-ID Similarity Learning (CSL). Our method is based
on the observation that although the entire images of dif-
ferent IDs are quite different, the local regions of some IDs
are similar, such as red short sleeves, white skirts, and many
more (see Figure 2). The above information is not enough
to discriminate ID on the source domain, but it is helpful to
learn generic features. Just like other self-supervised learn-
ing methods in DG, such as solving jigsaw puzzles and pre-
dicting rotations, solving proxy tasks allow our model to
learn generic features regardless of ReID task, and hence
less over-fitting to domain-specific biases.

Since it is difficult to find local similarities shared by
different IDs in a mini-batch, we need to compare as many
samples as possible in one gradient descent. To this end,
we maintain a momentum-updated memory bank {wpi |i =
1, 2, 3} for each part token xpi

during learning, which can
be expressed as:

wj
pi

=

{
f
(
xj
pi

)
t = 0,

(1−m)× wj
pi

+m× f
(
xj
pi

)
t > 0

(5)

where t is the training epoch, m is the momentum and j =
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1, . . . ,K. K is the number of samples in the source dataset.
For each local feature f(xj

pi
) in current mini-batch, we

compare it with the entire memory bank. We select k lo-
cal features closest to f(xj

pi
) from {wpi

}K to form a set
{Kj

pi
}kj=1 of positive samples. Then, the distance between

positive samples and f(xj
pi
) is minimized by softmax-

clustering loss , which can be formulated as:

Lj
pi

= −log

∑
wm

pi
∈{Kj

pi
}k
j=1

exp(
f(xj

pi
)wm

pi

τ )∑K
n=1 exp(

f(xj
pi

)wn
pi

τ )
(6)

where τ is a temperature coefficient. Minimizing Lpi

encourages the model to pull similar patches {Kj
pi
}kj=1

close to f(xj
pi
) while pushing dissimilar patches away from

f(xj
pi
) in feature space. In this way, the model can learn

those visually similar patches in different IDs and make the
Transformer notice the regions where this useful informa-
tion is located.

3.3. Part-guided Self-Distillation

Self-distillation has been shown to help improve gener-
alization. For example, it can learn visual similarities be-
yond hard labels and make the model converges easier to the
flat minima [27, 33, 23]. However, our experiments found
that the traditional self-distillation method could not im-
prove the generalization of ReID. Because traditional self-
distillation method relies on the output of the classifier to
get the similarity between different categories. This is ef-
fective in image classification because of the large visual
differences between different classes. For example, cats and
dogs are visually similar, but cats and tables are very dissim-
ilar. Such information can be utilized to facilitate learning.
However, ReID is a fine-grained retrieval task, and the dif-
ferences between different IDs are insignificant. So there is
no useful information in the classification results.

To this end, we propose Part-guided Self-Distillation
(PSD), which uses the visual similarity of local parts to im-
plement self-distillation. In Section 3.2, each local repre-
sentation f(xj

pi
) gets k positive samples, and an image in-

cludes three part. Therefore, there are 3k positive samples
in total for the global representation. We regard the IDs
{Ii}3ki=1 corresponding to these 3k part as similar IDs. Soft
labels Y j

s of f(xj
cls) are constructed as follows:

Y j
s |i =


1− α i = yjs
α
3kni i ∈ {Ii}3ki=1,

0 i /∈ {Ii}3ki=1 ∪ {yjs}
(7)

where α is the weight of similar categories, ni is the number
of the i-th ID in {Ii}3ki=1 and yjs is ground truth of f(xj

cls).
That is, the more similar parts, the greater the probability of
the ID to which these parts belong.

Then, the part-guided self-distillation loss can be formu-
lated as:

Lj
s=−λY j

s logP
(
f(xj

cls)
)
−(1−λ)Y j logP

(
f(xj

cls)
)

(8)

where Y j is the one-hot hard label, λ is the coefficient to
balance soft label and P is the classifier that predicts proba-
bility distribution on source dataset. Since the apparent sim-
ilarity is obtained by comparing the local representations of
the current sample with the entire dataset. Therefore, it re-
flects the similarity between IDs better than the classifica-
tion result of the classifier.

3.4. Loss Function and Discussion

Loss function. In addition to the softmax-clustering loss
and part-guided self-distillation loss used in 3.2 and 3.3, we
also use the triplet loss with soft-margin to constrain the
distance between positive and negative sample pairs. it can
be formulated as follows:

Ltri = log[1 + exp(||fa − fp||22 − ||fa − fn||22)] (9)

where {fa, fp, fn} are the features of a triplet set.
For a mini-batch with Nb samples, our entire loss func-

tion can be expressed as:

L = Ltri +

Nb∑
j=1

(

M∑
i=1

Lj
pi

+ Lj
s) (10)

Discussion about occlusion and cloth-changing. Since
CSL and PSD mine the local similarity shared by different
IDs, it may aggravate the negative impact of occlusion or
cloth-changing. Below we briefly explain why our method
is still valid. (1) We do not fuse local features (cascaded
or weighted with global features) during inference, so local
features with only occlusion information would not degrade
performance. See Section 1 of the Appendix for details. (2)
Since there is still a large gap between DG ReID and super-
vised ReID, the impact of cloth-changing can be ignored
compared to improving generalization.

4. Experiments
4.1. Datasets and Evaluation Metrics

As shown in Table 2, we conduct experiments
on four large-scale person re-identification datasets:
Market1501[36], RandPerson[28], MSMT17[29] and
CUHK03-NP[39]. For simplicity, we denote the datasets
above as M, RP, MS, and C, respectively. We adopt the
detected subset of the new protocol of CUHK03[12] (767
IDs for training and 700 IDs for evaluation), which is more
challenging than the original CUHK03 protocol.
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Table 1. Performance comparisons between ours and the state-of-the-art in single-source DG ReID on Market1501, RandPerson, MSMT17,
and CUHK03-NP. Our results are highlighted in bold. The subscripts 50 and 152 denote using IBNNet50 and IBNNet152 as backbone,
respectively.

Method Reference Training
Market MSMT CUHK03-NP

R1 mAP R1 mAP R1 mAP

SNR [10] CVPR2020

Source:

55.1 33.6 - - - -
CBN [41] ECCV2020 91.3 77.3 25.3 9.2 - -

OSNet-AIN [40] TPAMI2021 94.2 84.4 23.5 8.2 - -
QAConv [13] ECCV2020

Market
- - 22.6 7.0 9.9 8.6

TransMatcher [14] NeurIPS2021 - - 47.3 18.4 22.2 21.4
QAConv+GS [15] CVPR2022 91.6 75.5 45.9 17.2 19.1 18.1

MDA [18] CVPR2022 - - 33.5 11.8 - -
PAT Ours 92.4 81.5 42.8 18.2 25.4 26.0

SNR[10] CVPR2020 70.1 41.4 - - - -
CBN[41] ECCV2020 73.7 45.0 72.8 42.9 - -

QAConv [13] ECCV2020
Source:

72.6 43.1 - - 25.3 22.6
TransMatcher [14] NeurIPS2021

MSMT
80.1 52.0 - - 23.7 22.5

QAConv+GS [15] CVPR2022 79.1 49.5 79.2 50.9 20.9 20.6
MDA CVPR2022 79.7 53.0 - - - -
PAT Ours 72.2 47.3 75.9 52.0 24.2 25.1

QACONV50* [13]
Source:

68.6 39.5 29.9 10.0 22.9 19.2
M3L [34]

Multi
74.5 48.1 33.0 12.9 30.7 29.9

M3LIBN [34] 75.9 50.2 36.9 14.7 33.1 32.1

RP Baseline [28] ACMMM 20
Source:

55.6 28.8 20.1 6.3 13.4 10.8
CBN [41] ECCV2020

RandPerson
64.7 39.3 20.0 6.8 - -

QAConv+GS [15] CVPR2022 76.7 46.7 45.1 15.5 18.4 16.1
PAT ours 73.7 46.9 45.5 19.4 20.2 20.1

Table 2. Statistics of Person ReID Datasets.

Dataset # IDs # images # cameras

Market1501[36] 1,501 32,217 6
RandPerson[28] 8,000 1,801,816 -
MSMT17[29] 4,101 126,441 15

CUHK03-NP[39] 1,467 28,192 2

To evaluate the generalization of our models, we adopt
a single-source protocol [13] and list the results of a multi-
source protocol [34]. Under the setting of single-source, we
use one dataset mentioned above for training (only the train-
ing set) and another one for testing (only the testing set).
Under the multi-source protocol, one domain from multiple
datasets is used for testing(only the testing set in this do-
main) and all the remaining domains are for training (only
the training set). For evaluation metrics, the performance is
evaluated quantitatively by mean average precision (mAP)
and cumulative matching characteristic (CMC) at Rank-1
(R1), Rank-5 (R5), Rank-10 (R10).

4.2. Implementation Details

We use ViT-base with stride = 16 [4] pre-trained
on ImageNet as our backbone (denoted as ViT-B/16 for
short). The batch size is set to 64 and images are re-
sized to 256 × 128. We adopt random flipping and local
grayscale transformation [7] for data augmentation. To op-
timize the model, we use SGD optimizer with a weight de-
cay of 10−4. The learning rate increases linearly from 0 to
10−3 in the first 10 epochs then it decays in the following 50
epochs. The total training stage takes 60 epochs. For hyper-
parameters, we conduct comprehensive experiments on the
temperature parameter τ in section 4.4. Unless otherwise
specified, we set α (the weight of similar categories), λ (the
coefficient to balance soft label and hard label), and k (the
number of clusters) to 0.5, 0.5, and 10, respectively. Be-
sides, the label-smoothing parameter is 0.1. As for baseline,
we use TransReID-B/16 [8] without SIE and JPM for a fair
comparison. The training process contains 3 stages: (1) Ex-
tracting global and local features. (2) Performing CSL using
local features (computing Lp). (3) Performing PSD using
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Table 3. Improvements of our method (PAT) on different Trans-
formers. The training set is Market.

Method
CUHK MSMT

R1 mAP R1 mAP

DeiT-Tiny[25] 9.1 9.5 14.2 4.5
PAT 13.5 14.2 19.2 7.0

DeiT-Small[25] 14.1 14.5 23.5 8.4
PAT 18.4 18.2 27.1 10.0

ViT-Small[4] 12.9 14.0 24.8 9.2
PAT 15.1 15.2 26.9 10.0

DeiT-base[25] 18.1 18.8 32.9 12.8
PAT 20.3 21.0 36.2 14.9

ViT-Base[4] 23.1 23.6 38.6 16.2
PAT 25.4 26.0 42.8 18.2

global features and soft labels generated by CSL (comput-
ing Ltri and Ls). The entire training process is end-to-end.

4.3. Comparison with State-of-the-art Methods

Single-source DG ReID To validate the performance of
our model, we evaluate our framework on the single-source
generalization ReID benchmark. Specifically, we use
Market-train, MSMT-train, and RandPerson as the training
sets, and use Market-test, MSMT-test, and CUHK03-test as
the testing sets. Only the training set of the source datasets
is used.

The experimental results are shown in Table 1. Our
model outperforms the SOTA model under most settings
and achieves a comparable performance with the SOTA
model under the rest settings. In particular, under M→MS
and M→C settings, our model’s mAPs outperform the state-
of-the-art model by 7.2% on average. When trained on
Market, our model surpasses the SOTA model by 3.2% and
4.6% (test on CUHK03-NP) in R1 and mAP. When trained
on MSMT, our model outperforms the SOTA by 1.6% and
7.2% (test on Market), 4.1% and 5.6% (test on MSMT) for
R1 and mAP, respectively. This demonstrates the superior-
ity of our model.

When trained on MSMT, our model still achieves SOTA
on CUHK03-NP. Although TransMatcher [14] surpasses
our method on Market, we experimentally found that the
IBN [21, 9] trick greatly improved it, and our model could
still surpass it if TransMatcher used a normal CNN as the
backbone. This result is shown in the Appendix.

Large-scale DG ReID To further validate the generaliza-
tion of our model, we also list the results under the multi-
source protocol. The ”Source: Multi” is the protocol pro-
posed in M3L [34] which we have introduced in section 4.1.
Three of Market1501 , DukeMTMC-reID, MSMT17 and

Table 4. Ablation studies on the effectiveness of CSL and PSD.
All methods are trained on Market and evaluated on MSMT.

Method
Market→MSMT

Rank1 Rank5 Rank10 mAP

Baseline (B) 38.6 52.1 58.1 16.2

B+SD [23] 35.6 49.7 56.4 14.6
B+CSL 40.2 53.7 59.6 17.0

B+CSL+PSD (ours) 42.8 56.4 62.2 18.2

CUHK03-NP are used as source domains, and the rest as
target domain under the multi-source protocol. Note that,
since DukeMTMC-reID has been retracted, we utilize the
large-scale publicly available dataset RandPerson as a sub-
stitute for multiple source domains in our training set.

As shown in Table 1, our method outperforms the SOTA
model on RandPerson. Specifically, our model’s mAP is
4.0% higher than the current best model (QAConv+GS) un-
der the RP→C setting and reaches 56.9% under the RP→M
setting. It’s worth mentioning that when testing on MSMT,
our method only requires a small dataset (such as Market)
to outperform the results achieved by multiple source do-
mains. This indicates that our method exhibits greater po-
tential on small datasets.

4.4. Ablation Study

Improvement on Transformer. To investigate the im-
provement of our method on original Transformers (base-
line), we conduct extensive experiments on different Trans-
formers. As shown in Tab 3, our approach can improve
the generalization of various Transformers on ReID task,
especially when the model size is small. For example,
our method surpasses baseline by 4.4% and 4.7% in R1
and mAP (Market → CUHK) when using DeiT-Tiny as the
backbone.

Ablation study of main components of our model. To
ensure that all components promote our model, we con-
duct an ablation study. All models are trained on Market
and then tested on MSMT and CUHK03-NP, respectively.
We choose the following models: (1) Baseline, namely
TransReID-B/16 without SIE and JPM which is introduced
in 4.1; (2) Baseline with conventional self-distillation (B +
SD). We follow the self-distillation way designed for do-
main generalization [23]; (3) our model without PSD (B +
CSL); (4) our model with all components, including CSL
and PSD.

As shown in Table 4, Baseline + SD (self-distillation)
results in a descent, which means that traditional self-
distillation fails to improve the generalization of ReID.
Since ReID is a fine-grained retrieval task, it is not suitable
to use conventional self-distillation which usually requires
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Image CLS Part 1 Part 2 Part 3 Image CLS Part 1 Part 2 Part 3

Figure 4. Attention map visualization. Original images are se-
lected from the target domain (Market). We exhibit the visual-
izations of the class token and three part tokens.

Table 5. Ablation study for the number of parts.

Number of parts
M→C M→MS

mAP R1 mAP R1
2 24.5 23.6 16.7 39.3
3 26.0 25.4 18.2 42.8
4 25.1 25.1 18.1 41.7
5 25.0 25.6 17.0 40.5

large inter-class distances. The results of (3) and (4) demon-
strate our contribution. Firstly, our CSL module brings sig-
nificant improvement. Secondly, PSD using the visual sim-
ilarity of local parts to construct soft labels is effective.

Visualization of attention maps. To better understand
the part tokens, we visualize the attention maps. The size
of attention maps in each head is N×N (N is the number
of patches). The attention maps of the class token and part
tokens are resized to H×W (H and W denote the height and
width of the input), then we turn them into heat maps with
the original image. We fuse the attention results of the shal-
low layers, which contain more visual information than the
deep ones. As shown in Figure 4, the class token mainly
focuses on the whole images, while the “part tokens” pay
attention to local areas like the upper body, legs, and back-
packs. It shows that “part tokens” broaden the scope of at-
tention, and provide more comprehensive multi-view infor-
mation to the class token. Therefore, our model learns a
more generic representation by utilizing local similarities.

Ablation study on the number of parts. In order to ef-
fectively capture visual similarity between different IDs in
CSL, it’s important to find the right balance in the number
of partitions. If there are too few partitions (e.g., just one
or two), it becomes difficult for different parts to exhibit vi-
sual similarity. Conversely, if there are too many partitions,
there’s a risk of clustering segments that lack semantic vi-
sual connections, leading to more noise. As shown in Table
5, dividing into three parts yields the best results, which is
also intuitive.

ID:517 ID:68
3

ID:1325

Part token 1

ID:1303 ID:2

ID: 1467 ID: 1017ID: 88 ID: 1334 ID: 1489

ID:1303

ID:1437 ID:222 ID:254ID:1100 ID:1126 ID:1126

ID: 1254

Part token 2

Part token 3

Figure 5. Visualization of local features’ ranking list in CSL.

Visualization of local features’ ranking list. To verify
whether CSL has mined local similarities, we show those
samples that are closest to the current local feature, that
is, the samples belonging to {Kj

pi
}kj=1 in Section 3.2. The

training set is Market. The red boxes represent randomly se-
lected image tokens. As shown in Figure 5, the model can
find samples with apparent similarity to the current sam-
ple in a specific area. For example, in the area attended by
part token 1, not only people wearing dark red shirts but
also backpacks were found. The above similarity is not de-
pendent on the labels but completely derived from the data
itself, which guides the model to learn generic features.

5. Conclusion
In this paper, we propose a pure Transformer-based

framework (termed Part-aware transformer) for DG ReID
for the first time. Specifically, we design a proxy task,
named Cross-ID Similarity Learning (CSL), to mine local
visual information shared by different IDs. This proxy task
allows the model to learn generic features because it only
cares about the visual similarity of the parts regardless of
the ID labels, thus alleviating the side effect of domain-
specific biases. Furthermore, we propose a part-guided self-
distillation module to further improve the generalization of
the global representation. Experimental results show that
our method achieves state-of-the-art in DG ReID.
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