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Figure 1. Limitations of existing methods. (a) UDIS [41] (the SoTA of deep methods) deals with large parallax by blurring parallax regions

(highlighted by the red arrow). (b) LPC [19] (the SoTA of traditional methods) fails in low-texture scenes without sufficient geometric

features. Instead, our solution is free from these limitations, achieving promising results in both of the challenging circumstances.

Abstract
Traditional image stitching approaches tend to lever-

age increasingly complex geometric features (e.g., point,
line, edge, etc.) for better performance. However, these
hand-crafted features are only suitable for specific natu-
ral scenes with adequate geometric structures. In con-
trast, deep stitching schemes overcome adverse conditions
by adaptively learning robust semantic features, but they
cannot handle large-parallax cases.

To solve these issues, we propose a parallax-tolerant un-
supervised deep image stitching technique. First, we pro-
pose a robust and flexible warp to model the image regis-
tration from global homography to local thin-plate spline
motion. It provides accurate alignment for overlapping re-
gions and shape preservation for non-overlapping regions
by joint optimization concerning alignment and distortion.

*Corresponding author.

Subsequently, to improve the generalization capability, we
design a simple but effective iterative strategy to enhance
the warp adaption in cross-dataset and cross-resolution ap-
plications. Finally, to further eliminate the parallax arti-
facts, we propose to composite the stitched image seam-
lessly by unsupervised learning for seam-driven composi-
tion masks. Compared with existing methods, our solution
is parallax-tolerant and free from laborious designs of com-
plicated geometric features for specific scenes. Extensive
experiments show our superiority over the SoTA methods,
both quantitatively and qualitatively. The code is available
at https://github.com/nie-lang/UDIS2.

1. Introduction
Image stitching is a practical technology that aims to

construct a scene with a wide field-of-view (FoV) from dif-

ferent images with limited FoV. It is useful in a wide range

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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of fields, such as autonomous driving, medical imaging,

surveillance videos, virtual reality, etc.

Over the past decades, traditional stitching approaches

tend to adopt increasingly complicated geometric features

to achieve better content alignment and shape preservation.

In the beginning, SIFT [38] is widely used in various im-

age stitching algorithms [4, 13, 50, 5, 34, 25] to extract dis-

criminative key points and calculate adaptive warps. Then,

the line segment is proved to be another unique feature to

achieve better stitching quality and preserve linear struc-

tures [31, 49, 32, 19]. Recently, the large-scale edge is also

introduced in [10] to preserve the contour structures. Be-

sides, there is a great variety of other geometric features

that are leveraged to improve the stitching quality, such as

depth maps [33], semantic planar regions [26], etc.

Having calculated the warps, seam cutting is usually

used to remove parallax artifacts. To explore an invisible

seam, various energy functions are designed using colors

[22], edges [35, 8], salient maps [30], depth [6], etc.

From the broad usage of geometric features, a clear de-

veloping trend has been discovered: increasingly sophisti-

cated features are leveraged. We ask: are these complex

designs practical in real applications? We attempt to an-

swer this question from two perspectives. 1) These elabo-

rate algorithms with complicated geometric features poorly

adapt to scenes without sufficient geometric structures, such

as medical images, industrial images, and other natural im-

ages with low texture (Fig.1b), low light or low resolution.

2) When there exist abundant geometric structures, the run-

ning speed is intolerant (please refer to Table 2,3 for detail).

Such a trend seems to violate the “practical” original intent.

Recently, deep stitching technologies using convolu-

tional neural networks (CNNs) have aroused widespread

attention in the community. They abandon geometric fea-

tures and head for high-level semantic features that can be

adaptively learned in a data-driven pattern in a supervised

[24, 40, 44, 47, 23], weakly-supervised [46], or unsuper-

vised [41] manner. Although they are robust to various nat-

ural or unnatural conditions, they cannot handle large paral-

lax and demonstrate unsatisfactory generalization in cross-

dataset and cross-resolution conditions. A large-parallax

case is shown in Fig.1a, where the tree is in the middle of

the car in the reference image while it is on the left in the

target image. To deal with parallax, UDIS [41] reconstructs

stitched images from feature to pixel. However, the parallax

is so large that undesired blurs are produced as a side effect.

In this paper, we propose a parallax-tolerant unsuper-

vised deep image stitching technique, addressing the robust-

ness issue in traditional stitching and the large-parallax is-

sue in deep stitching simultaneously. Actually, the proposed

deep learning-based solution is naturally robust to various

scenes due to effective semantic feature extraction. Then,

it overcomes the large parallax via two stages: warp and

composition. In the first stage, we propose a robust and

flexible warp to model the image registration. Particularly,

we simultaneously parameterize homography transforma-

tion and thin-plate spline (TPS) transformation as unified

representations in a compact framework. The former offers

a global linear transformation, while the latter produces lo-

cal nonlinear deformation, allowing our warp to align im-

ages with parallax. Besides, this warp contributes to both

content alignment and shape preservation simultaneously

via combined optimization of alignment and distortion. In

the second stage, the existing reconstruction-based method

[41] treats artifact elimination as a reconstruction process

from feature to pixel, leading to inevitable blurs around the

parallax regions. To overcome this drawback, we cooper-

ate the motivation of seam-cutting into deep composition

and implicitly find a “seam” through unsupervised learn-

ing for seam-driven composition masks. To this end, we

design boundary and smoothness constraints to restrict the

endpoints and route of a “seam”, compositing the stitched

image seamlessly. In addition to the two stages, we de-

sign a simple iterative strategy to enhance the generaliza-

tion, rapidly improving the registration performance of our

warp in different datasets and resolutions.

Furthermore, we conduct extensive experiments about

the warp and composition, demonstrating our superiority to

other SoTA solutions. The contributions center around:

• We propose a robust and flexible warp by parameteriz-

ing the homography and thin-plate spline into unified

representations, realizing unsupervised content align-

ment and shape preservation in various scenes.

• A new composition approach is proposed to generate

seamless stitched images via unsupervised learning for

composition masks. Compared with the reconstruc-

tion [41], our composition eliminates parallax artifacts

without introducing undesirable blurs.

• We design a simple iterative strategy to enhance warp

adaption in different datasets and resolutions.

2. Related Work
2.1. Traditional Image Stitching

Adaptive warp. AutoStitch [4] leveraged SIFT [38] to

extract discriminative keypoints to construct a global ho-

mography transformation. After that, SIFT becomes an in-

dispensable feature to calculate various flexible warps, such

as DHW [13], SVA [36] APAP [50], ELA [28], TFA [27]

for better alignment, SPHP [5], AANAP [34], GSP [7] for

better shape preservation. Then, DFW [13] adopted line

segments extracted by LSD [48] with keypoints together to

enrich structural information in artificial environments. Fur-

thermore, line-guided mesh deformation [49] is designed

by optimizing an energy function of various line-preserving

terms [32, 19]. To preserve the nonlinear structures, the
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edge features are used in GES-GSP [10] to achieve a smooth

transition between local alignment and structural preserva-

tion. In addition to these basic geometric features (point,

line, and edge), the depth maps and semantic planes are

also used to assist the feature matching using extra depth

consistency [33] and planar consensus [26].

Seam cutting. The seam cutting is usually used as

a post-processing operation to composite stitched images,

which introduces an optimization problem of label assign-

ment along the seam. To obtain a plausible stitched result,

an extensive range of energy terms are defined by penal-

izing photometric differences, such as the Euclidean-metric

color difference [22], gradient difference [1, 8], motion- and

exposure-aware difference [11], salient difference [30], etc.

Then these energy functions are minimized via graph-cut

optimization [22]. Besides that, seam cutting is also ap-

plied in image alignment to find the best alignment warp

with minimal seam-based cost [14, 51, 35, 29].

These complex geometric features are beneficial in nat-

ural scenes with adequate geometric structures. However,

there are two drawbacks: 1) Without sufficient geomet-

ric structures, the strict feature requirements yield inferior

stitching quality, even failure. 2) With excessive geometric

structures, the computational cost leaps dramatically.

2.2. Deep Image Stitching
In contrast, deep stitching schemes are free from end-

less designs of geometric features. They learn to capture

high-level semantic features from extensive data automati-

cally in a supervised [24, 40, 44, 47, 23], weakly-supervised

[46], or unsupervised [41] fashion, making them robust to

various challenging scenes. Among them, the unsupervised

one [41] is more popular due to the unavailability of real

stitched labels. However, it cannot handle large parallax

due to the limitation of the homography-based alignment

model. The subsequent reconstruction would bring unde-

sirable blurs around parallax regions.

3. Methodology
The overview of our method is shown in Fig.2, where the

proposed framework is composed of two stages: warp and

composition. In the first stage, our method takes a reference

image (Ir) and a target image (It) with overlapping regions

as input, and regresses a robust and flexible warp. Then the

warped images (Iwr, Iwt) are input to the second stage to

predict composition masks (Mcr,Mct). The stitched image

(S) can be seamlessly composited as follows:

S = Mcr × Iwr +Mct × Iwt. (1)

3.1. Unsupervised Warp Construction

3.1.1 Warp Parameterization
The homography transformation is an invertible mapping

from one image to another with 8 degrees of freedom: each

two for translation, rotation, scale, and lines at infinity. To

guarantee the non-singularity [39] in a regression network,

it is commonly parameterized as the motions of four ver-

tices [9], which is solved as a 3× 3 matrix using DLT [15].

However, if a non-planar scene is captured by cameras

with different shooting centers, the homography fails to

achieve accurate alignment. To solve it, the mesh-based

multi-homography scheme [50] is usually used in tradi-

tional stitching algorithms. But it cannot be efficiently par-

allel accelerated, which means it fails to be used in a deep

learning framework [43, 42]. Please refer to Section 2.3 of
the supplementary material for specific analysis. To over-

come this issue, we propose to leverage TPS transformation

[3, 18] to achieve efficient local deformation.

TPS transformation is a nonlinear, flexible transforma-

tion that is usually used to approximate the deformation of

non-rigid objects using a thin plate. It is determined by two

sets of control points, with a one-to-one correspondence be-

tween a flat image and a warped image. Denote N con-

trol points on a flat image as P = [p1, ..., pN ]T and corre-

sponding points on the warped image as P ′ = [p′1, ..., p
′
N ]T

(pi, p
′
i ∈ R

2×1). By minimizing an energy function con-

sisting of a data term and a distortion term [20] (refer to
Section 2.1 of the supplementary material for more details),

the TPS transformation can be parameterized as Eq.2:

p′ = T (p) = C +Mp+

N∑
i=1

wiO(‖ p− pi ‖2), (2)

where p is an arbitrary point on the flat image and p′ is

the corresponding point on the warped image. C ∈ R
2×1,

M ∈ R
2×2, and wi ∈ R

2×1 are the transformation pa-

rameters. O(r) = r2logr2 is a radial basis function that

indicates the impact of each control point on p. To solve

these parameters, we formulate N data constraints using N
pairs of control points according to Eq.2, and impose extra

dimensional constraints [20] as described in Eq.3:

N∑
i=1

wi = 0 and
N∑
i=1

piw
T
i = 0. (3)

Then, these constraints can be rewritten in the form of ma-

trix calculation and the parameters can be solved as follows:

⎡
⎣
C
M
W

⎤
⎦ =

⎡
⎣
� P K
0 0 �

T

0 0 PT

⎤
⎦
−1 ⎡

⎣
P ′

0
0

⎤
⎦ , (4)

where � is a N × 1 all-one matrix. Each element kij in

K ∈ R
N×N is determined by O(‖ pi − pj ‖2), and W =

[wi, ..., wN ]T .

Similar to the 4-pt parameterization of the homography,

TPS transformation can also be parameterized as the mo-

tions of control points. In this work, we define (U + 1) ×
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Figure 2. An overview of the proposed parallax-tolerant unsupervised deep image stitching network. Our unsupervised framework consists

of two stages: warp and composition. The first stage predicts a robust and flexible warp to align images with shape preservation. The

second stage composites the seamless stitched image by generating composition masks corresponding to warped images.

(V +1) control points being evenly distributed on the target

image, and then predict the motions of each control point.

To bridge the global homography warp with the local TPS

warp, we regress the homography transformation first to

provide initial motions of control points. Then we can pre-

dict the residual motions for further flexible deformation.

3.1.2 Pipeline of Warp

As shown in Fig.2, given Ir, It, we adopt ResNet50 [17]

with pretrained parameters as our backbone to extract se-

mantic features first. It maps a 3-channel image to the high-

dimensional semantic features with a resolution scaled to

1/16 of the original. Then the correlation between these

feature maps (F
1/16
r and F

1/16
t ) can be aggregated into 2-

channel feature flows using the contextual correlation layer

[43]. Subsequently, a regression network is used to esti-

mate the 4-pt parameterization of the homography warp.

This global warp also generates the initial motions of con-

trol points.

Next, we warp the feature maps with higher resolution

(F
1/8
t ) to embed the homographic prior into the following

workflow. After another contextual correlation layer and

regression network, the residual motions of control points

are predicted, contributing to a robust flexible TPS warp.

3.1.3 Optimization of Warp

To achieve content alignment and shape preservation simul-

taneously, we design our objective function Lw concerning

two aspects: alignment and distortion.

Lw = Lw
alignment + ωLw

distortion. (5)

For the alignment, we encourage the overlapping regions

to keep consistent at the pixel level. Denoting ϕ(·, ·) is the

warping operation and 1 an all-one matrix with the same

resolution as Ir, the alignment loss can be defined as fol-

lows:

Lw
alignment =λ‖Ir · ϕ(1,H)− ϕ(It,H)‖1+

λ‖It · ϕ(1,H−1)− ϕ(Ir,H−1)‖1+
‖Ir · ϕ(1, T PS)− ϕ(It, T PS)‖1,

(6)

where H and T PS are warp parameters, and λ is a hyperpa-

rameter to balance the impacts of different transformations.

For the distortion, we link adjacent control points in

the warped target image to form a mesh and introduce

an inter-grid constraint �inter and an intra-grid constraint

�intra. The former preserves geometric structures for non-

overlapping regions, while the latter reduces projective dis-

tortions. In the beginning, we approximate a similar trans-

formation by DLT for every grid in non-overlapping regions

and take the 4-pt projective error as the loss. But this con-

straint that is commonly used in traditional methods [16, 37]

does not work in deep learning schemes. Instead, we re-

explore the constraints from a more intuitive perspective —

the grid edge.

Similar to [42], we penalize the grid edge �e with the mag-

nitude exceeding a threshold. Denoting {�ehor} and {�ever}
are the collections of horizontal and vertical edges, we de-

scribe the intra-grid constraint as follows:

�intra =
1

(U+1)×V

∑
{�ehor}

σ(〈�e,�i〉 − 2W

V
)+

1

U×(V+1)

∑
{�ever}

σ(〈�e,�j〉 − 2H

U
),

(7)

where�i / �j is the horizontal/vertical unit vector, and σ(·) is

the RELU function. The projective distortions are reduced

by preventing the grid shape from dramatic scaling.

By encouraging the edge pairs (successive edges in hor-

izontal or vertical directions, denoted as �es1, �es2) to be co-
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linear, we formulate the inter-grid constraint as:

�inter =
1

Q

∑
{�es1,�es2}

Ss1,s2 · (1−
〈�es1, �es2〉

‖ �es1 ‖ · ‖ �es2 ‖ ), (8)

where Q is the number of edge pairs and Ss1,s2 is a 0-1 label

that is set to 1 if this edge pair locates on non-overlapping

regions. We only preserve the structures in non-overlapping

regions, preventing adverse effects on the alignment.

3.2. Unsupervised Seamless Composition

3.2.1 Motivation
UDIS [41] composites a stitched image via unsupervised

reconstruction from feature to pixel, but it cannot deal with

large parallax. Traditional seam cutting eliminates artifacts

by finding a seamless cutting path using dynamic program-

ming [2] or graph-cut optimization [22], but it shows over-

reliance on photometric differences.

An intuitive idea is to cooperate the motivation of seam

cutting into a learning framework. Nevertheless, how to

make our unsupervised deep stitching approach work with

seam cutting and be effective is a major difficulty. For ex-

ample, dynamic programming is not differential; graph-cut

optimization assigns absolute integers to the labels, which

truncates gradients in the backpropagation. In this stage,

we propose to relax the hard label to a soft mask with float

numbers, innovatively supervising the generation of seam-

inspired masks via the balancing effect of two constraints

with special designs.

3.2.2 Pipeline of Composition
At first, we concatenate warped images as input and exploit

the UNet-like network [45] as our composition network.

But this pattern coarsely mixes the features from different

images. It is challenging for such a network to perceive the

semantic difference between warped images.

To overcome it, we use the encoder of the network to

extract semantic features from Iwr and Iwt separately with

shared weights. For skip connections, we replace them by

subtracting the features of Iwt from that of Iwr and deliver-

ing the residuals at each resolution to the decoder. We set

the filter number and activation function of the last layer to

1 and sigmoid to predict Mcr for the warped reference im-

age. The other mask Mct for the warped target image can

be easily obtained by simple post-processing.

3.2.3 Optimization of Composition

The optimization goal of our unsupervised composition in-

cludes a boundary term and a smoothness term as follows:

Lc = αLc
boundary + βLc

smoothness. (9)

The former indicates the start point and end point of the

“seam” while the latter constrains the route.

We expect the endpoints to be the intersections of the

boundaries of warped images. To achieve it, we leverage

0-1 boundary masks Mbr, Mbt to indicate the boundary po-

sitions of overlapping regions on both sides of the “seam”.

More details are available in Section 3.1 of the supplemen-
tary material. Then, we formulate the boundary loss as fol-

lows:

Lc
boundary =‖ (S− Iwr) ·Mbr ‖1 + ‖ (S− Iwt) ·Mbt ‖1 .

(10)

This loss constrains boundary pixels of overlapping regions

in S from either Iwr or Iwt. However, Mbr and Mbt share

common intersections, which produces ambiguity for the

belongs of intersections. But it is the ambiguity that fixes

the endpoints of a “seam” to the intersections.

To measure the smoothness of a seam, traditional seam-

cutting approaches define various energy functions with dif-

ferent photometric differences. In this work, we adopt the

simplest photometric difference as D = (Iwr − Iwt)
2 to

demonstrate our effectiveness. Then we define the smooth-

ness on the difference map as follows:

�D =
∑
i,j

|M i,j
cr −M i+1,j

cr |(Di,j +Di+1,j)+

∑
i,j

|M i,j
cr −M i,j+1

cr |(Di,j +Di,j+1),
(11)

where i, j are the Cartesian coordinates. To produce a

smooth transition between both sides of the “seam”, we also

define the smoothness of the stitched image as follows:

�S =
∑
i,j

|M i,j
cr −M i+1,j

cr | · |Si,j − Si+1,j |+

∑
i,j

|M i,j
cr −M i,j+1

cr | · |Si,j − Si,j+1|.
(12)

By adding �D and �S , we formulate the complete

smoothness term Lc
smoothness. Note that, our network is

trained to facilitate the capability to extract semantic differ-

ences. In the inference process, the proposed method no

longer relies on photometric differences.

3.3. Iterative Warp Adaption

To transfer a pretrained model to other datasets (cross-

scene and cross-resolution), the most common way is to

fine-tune on the new dataset. However, it usually requires

labels to assist the adaption process. In this work, we ad-

dress this limitation by setting an unsupervised optimization

goal as follows:

Lw
adaption = ‖Ir · ϕ(1, T PS)− ϕ(It, T PS)‖1. (13)

Compared with Eq. 5, we remove the homography align-

ment loss and distortion loss. Because these constraints
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0-th iteration 10-th iteration

20-th iteration 30-th iteration
Figure 3. We demonstrate the process of iterative warp adaption on

“railtrack” dataset [50] (cross-dataset and cross-resolution). As the

increase of iteration number, the artifacts are removed gradually.

have been well learned by the pretrained model, what we

do is adjust the local alignment on different data.

Furthermore, we consider a special case that the new

dataset only contains one sample. Experiments exhibit that

our model can also be optimized stably for adapting to only

sample in an iterative fashion. In particular, we set a thresh-

old τ and a maximum iteration number T . The adaption

process stops when the iteration number reaches T or con-

secutive optimization errors (Eq. 13) are lower than τ .

We show an iterative adaption example in Fig. 3, where

the artifacts are significantly reduced with the increase of

iteration number. It takes about 0.1s to finish an iteration.

4. Experiments
4.1. Dataset and Implement Details

Dataset: To make an intuitive and fair comparison with

deep stitching methods, we also train our model on UDIS-

D [41] dataset. The evaluation is conducted on UDIS-D

dataset and other traditional datasets [50, 13, 34, 28, 35].

Details: We train our warp and composition networks for

100 and 50 epochs using Adam [21] with an exponentially

decaying learning rate with an initial value of 10−4. For

the warp stage, ω and λ are set to 10 and 3, and we adopt

(12 + 1) × (12 + 1) control points to provide the flexible

TPS transformation. For the second stage, we set α and β
to 10,000 and 1,000. As for the warp adaption, τ and T are

assigned as 10−4 and 50. All implementations are based on

PyTorch using a single GPU with NVIDIA RTX 3090 Ti.

4.2. Comparative Experiments
To demonstrate our effectiveness comprehensively, we

conduct extensive experiments on warp, composition, and

the complete stitching framework, respectively.

4.2.1 Comparisons of Warp

We compare our warp with SIFT [38]+RANSAC [12] (the

pipeline of AutoStitch [4]), APAP [50], ELA [28], SPW

[32], LPC [19], and UDIS’s warp [41]. We implement

SIFT+RANSAC by ourselves and adopt the official codes

for other methods with default parameters such as mesh res-

olutions. All the methods, including ours, use the average

fusion as the post-processing operation. Because this sim-

ple fusion is fast and can better highlight the misalignments.

Quantitative comparison: We first carry on quantitative

comparisons with the same metrics as UDIS [41] on UDIS-

D dataset [41] that has 1,106 samples for the evaluation.

The results are shown in Table 1, where I3×3 takes the iden-

tity matrix as a “no-warping” transformation for reference.

The results are divided into three parts according to the per-

formance as [41, 43]. The programs of traditional methods

might crash in some challenging samples due to the lack of

geometric features. When that happens, we use I3×3 as an

alternative transformation for the evaluation.

Qualitative comparison: Qualitative results are shown in

Fig. 4, where we zoom in on two regions at different depth

surfaces to highlight parallax artifacts. From this figure, our

warp outperforms the other solutions by a large margin on

UDIS-D dataset [41].

Cross-dataset comparison: We use the pretrained model

to evaluate our performance on other datasets, as illustrated

in Fig. 5. The iterative adaption strategy is used to further

improve the alignment performance.

Speed comparison: To evaluate the speed objectively, we

test it on three traditional public datasets [50, 34, 13] with

three different resolutions. As reported in Table 2, our warp

has a speed far exceeding the others with GPU acceleration,

while traditional warps cannot be accelerated by GPU. For

traditional mesh-based warps, the runtime does not vary lin-

early with the resolution, and in scenes with rich geometric

features (e.g., “railTrack”), the speed becomes a disaster.

4.2.2 Comparisons of Composition

We compare our composition with the perception-

based seam-cutting approach [30] and reconstruction-based

method [41]. To show the parallax artifacts more intuitively,

we warp the images by SIFT+RANSAC and give the results

of average fusion for reference.

Qualitative comparison: Traditional seam-cutting meth-

ods find the seam by dynamic programming [2] or graph-

cut optimization [22]. The values in traditional masks are

integers while that in ours are float. Therefore, we cannot

evaluate our composition quantitatively with traditional in-

dicators. Instead, we show qualitative results in Fig. 6. Be-

sides, we promise to release all subjective results, including

1,106 images in UDIS-D and others in traditional datasets.

Speed comparison: Here, we warp the inputs with the

proposed warp first. Then these warped images are used

for speed evaluation on different composition methods. As

illustrated in Table. 3, our composition shows significant

speed superiority over the others with GPU acceleration.
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Table 1. Quantitative comparison of warp on UDIS-D dataset [41]. The best is marked in red and the second best is in blue.

PSNR ↑ SSIM ↑
Easy Moderate Hard Average Easy Moderate Hard Average

I3×3 15.87 12.76 10.68 12.86 0.530 0.286 0.146 0.303

SIFT[38]+RANSAC[12] 28.75 24.08 18.55 23.27 0.916 0.833 0.636 0.779

APAP[50] 27.96 24.39 20.21 23.79 0.901 0.837 0.682 0.794

ELA[28] 29.36 25.10 19.19 24.01 0.917 0.855 0.691 0.808
SPW[32] 26.98 22.67 16.77 21.60 0.880 0.758 0.490 0.687

LPC[19] 26.94 22.63 19.31 22.59 0.878 0.764 0.610 0.736

UDIS’s warp[41] 25.16 20.96 18.36 21.17 0.834 0.669 0.495 0.648

Our warp 30.19 25.84 21.57 25.43 0.933 0.875 0.739 0.838

Our warp

ELA SPW

UDIS's warp

APAP

LPC
Figure 4. Qualitative comparison of warp on UDIS-D dataset [41]. We zoom in on a near region and a far region to show the alignment

performance. For clarity, we show the inputs and more comparative results in the supplementary material.

APAP robust ELA SPW

LPC Our warp Our warp + iterative adaption

Figure 5. Qualitative comparison of warp on “boardingBridge” dataset [28] with a resolution of 1440 × 2160 for inputs. The yellow and

red arrows highlight projective and structural distortions. For clarity, we show more comparative results in the supplementary material.
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Warped images Learned masks and visualization Our compotision Average fusion Seam cutting Reconstruction
Figure 6. The comparison of composition. For clarity, more results are reported in the supplementary material.

w/o ℓintra & ℓinter w/o ℓintra w/o ℓinter Our warp

w/o ℓD & ℓS w/o ℓD w/o ℓS Our Composition
Figure 7. Ablation studies on our warp and composition. Top: the red and yellow arrows highlight the structural and projective distortions,

respectively. Bottom: the rectangles indicate the discontinuous regions. The cases are from UDIS-D [41].

Table 2. Comparison of warp on elapsed time (s). 1: tested with In-

tel i7-9750H 2.60GHz CPU; 2: tested with NVIDIA RTX 3090Ti

GPU.

Dataset Railtrack [50] Fence [34] Carpark [13]

Resolution 1500× 2000 1088× 816 490× 653

APAP [50]1 20.921 4.427 2.005

ELA [28]1 18.982 4.739 2.179

SPW [32]1 227.762 4.787 6.583

LPC [19]1 2805.3 9.115 40.443

Our warp1 12.073 5.025 3.486

Our warp2 0.731 0.210 0.117

Table 3. Comparison of composition on elapsed time (s). 1: tested

with Intel i7-9750H 2.60GHz CPU; 2: tested with NVIDIA RTX

3090Ti GPU.

Dataset Railtrack [50] Fence [34] Carpark [13]

Resolution

(after warping)
1831× 3193 1298× 1320 718× 1186

Seam cutting [30]1 46.657 4.058 0.873

Reconstruction [41]1 304.963 80.837 10.734

Our composition1 22.778 6.666 3.286

Our composition2 0.532 0.143 0.071

4.2.3 More Comparisons
Here, we evaluate the performance of our complete stitch-

ing framework with other SoTA methods. The results are il-

lustrated in Fig. 1, where LPC [19] and UDIS [41] adopt the

perception-based seam cutting [30] and reconstruction [41]

for the post-processing operations. For clarity, more experi-
mental results including qualitative comparisons, user stud-
ies, challenging cases, and cross-dataset evaluations are
depicted in the supplementary material.

4.3. Ablation studies
We first conduct ablation studies on different warp con-

straints. As shown in Fig. 7(top), the inter-gird constraint

preserves the structures whiles the intra-grid one reduces

projective distortions. Moreover, these constraints bring lit-

tle adverse impact on alignment. Quantitative results are
reported in the supplementary material.

Then we study the impacts of smoothness term in our

composition. The results are shown in Fig. 7(bottom),

where we highlight the discontinuous regions by rectangles.

With the smoothness constraints on the difference map and

stitched image, the discontinuity is significantly improved.
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5. Conclusion
In this paper, we propose a parallax-tolerant unsuper-

vised deep stitching solution. First, a robust flexible

warp is adaptively learned for both content alignment and

shape preservation. We also present the seam-inspired

composition to further reduce artifacts. Besides, a sim-

ple iterative warp adaption strategy is designed to effec-

tively enhance the generalization in cross-dataset and cross-

resolution cases. Compared with existing solutions, our

method can address both challenging scenes and large-

parallax cases. With increasingly popular GPUs, our so-

lution exhibits incredible efficiency.
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