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Abstract

Given a composite image, image harmonization aims
to adjust the foreground illumination to be consistent with
background. Previous methods have explored transforming
foreground features to achieve competitive performance.
In this work, we show that using global information to
guide foreground feature transformation could achieve sig-
nificant improvement. Besides, we propose to transfer the
foreground-background relation from real images to com-
posite images, which can provide intermediate supervision
for the transformed encoder features. Additionally, con-
sidering the drawbacks of existing harmonization datasets,
we also contribute a ccHarmony dataset which simulates
the natural illumination variation. Extensive experiments
on iHarmony4 and our contributed dataset demonstrate
the superiority of our method. Our ccHarmony dataset is
released at https://github.com/bcmi/Image-Harmonization-
Dataset-ccHarmony.

1. Introduction
Image composition [31, 6] is an essential editing oper-

ation to combine regions from different images to produce
composite images, which has a variety of vision applica-
tions like advertisement propaganda and digital entertain-
ment [34, 28]. Nevertheless, when pasting the foreground
extracted from one image on another background image, the
resultant composite image may have inconsistent illumina-
tion statistics. Image harmonization [10, 29] aims to adjust
the foreground illumination for visual consistency within
the composite image. In recent years, deep learning based
image harmonization methods [10, 36, 18, 29, 20, 15] have
sprouted out and achieved remarkable progress.

Existing methods [33, 49, 11, 34, 22] have developed
myriads of techniques to address the mismatch between
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foreground and background illumination. Among them,
some works [29, 11] revealed that specially transforming
the foreground features can enhance the performance, since
the main goal of image harmonization is adjusting the fore-
ground. For example, [29, 17] transfer the feature statis-
tics (e.g., mean, variance) from background to foreground.
[11, 36] process foreground and background features sep-
arately using different channel attentions. These methods
only leverage the information within the same feature map
to transform the foreground features, lacking the guidance
of global information. However, the global information of
the whole composite image is very likely to be beneficial
for foreground feature transformation.

In this work, we extract the bottleneck feature from en-
coder as the global feature, which is used to guide the trans-
formation of foreground features in each feature map. Re-
garding the transformation manner, we opt for modulated
convolution kernel proposed in [21], and other transfor-
mation manners are also applicable. In particular, we use
global feature to obtain the modulated convolution kernel,
which is applied to the foreground features. We name our
method as GiftNet (globally guided feature transformation).
It is worth noting that our method shares similar spirit with
CDTNet [9]. CDTNet uses global feature to predict color
transformation, while our GiftNet uses global feature to
predict feature transformation.

In practice, we observe that globally guided feature
transformation is effective for decoder features, but inef-
fective for encoder features. We conjecture that one rea-
son is the lack of intermediate supervision for encoder fea-
tures. Specifically, most of previous harmonization meth-
ods [33, 49, 11, 34, 22] only use the ground-truth image
as the final supervision, without any intermediate supervi-
sion. In the auto-encoder based network, the encoder fea-
tures may not be sufficiently harmonized, which could have
negative impact on the harmonization performance. To ad-
dress the above issue, we provide useful guidance for en-
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coder features, by distilling foreground-background relation
from the encoder feature maps of harmonious images to
those of composite images. In particular, we design a two-
branch network, in which the top branch reconstructs the
harmonious real images and the bottom branch harmonizes
the inharmonious composite image. We add a distillation
loss to pull close the foreground-background relation in en-
coder feature maps between two branches.

Another contribution of this work is a new harmoniza-
tion dataset. Training deep harmonization models requires
abundant pairs of composite images and harmonious im-
ages. Due to the high cost of manually harmonizing com-
posite images, the prevalent way to construct harmonization
dataset is the inverse approach [10, 34, 43], i.e., adjusting
the foreground of real images to create synthetic compos-
ite images. However, this manner may not faithfully reflect
natural illumination variation, that is, the same foreground
object captured under different illumination conditions. To
faithfully reflect natural illumination variation, we need to
capture a group of images for the same scene under varying
illumination conditions, as Hday2night subdataset in iHar-
mony4 [10]. However, such data collection process is ex-
tremely expensive. In this work, we propose a novel way
to construct harmonization dataset, aiming to simulate
natural illumination variation. Specifically, we utilize ex-
isting datasets [7, 12], in which each image is associated
with its illumination information recorded by color checker
(see Figure 2). Based on the recorded illumination infor-
mation, we can transfer each image across different illumi-
nation conditions to simulate natural illumination variation.
We name our dataset as color-checker harmonization (ccHa-
rmony) dataset, which offers a new perspective to construct
harmonization dataset.

Our contributions can be summarized as follows. 1) We
propose globally guided feature transformation to adjust the
foreground features, which demonstrates the importance of
global guidance for foreground feature transformation; 2)
We propose to distill foreground-background relation from
harmonious feature map to composite feature map, which
provides useful intermediate supervision for image harmo-
nization task. 3) We contribute a new dataset named ccHa-
rmony to approximate natural illumination variation, which
offers a new perspective for harmonization dataset construc-
tion. 4) Extensive experiments on the benchmark dataset
iHarmony4 [10] and our contributed dataset show that our
method significantly outperforms the existing methods.

2. Related Work

2.1. Image Harmonization

Image harmonization [10, 9, 5] aims to harmonize a
composite image by adjusting foreground illumination to
match background illumination. Early image harmoniza-

tion methods [37, 45, 38, 24] used traditional color match-
ing algorithms to match the low-level color statistics be-
tween foreground and background. In recent years, lots
of supervised deep harmonization methods [39, 20, 43, 33,
49, 40, 2, 4] have emerged. For example, [11, 18, 36]
proposed diverse attention modules to treat the foreground
and background separately, or establish the relation between
foreground and background. [10, 8, 29, 17] directed im-
age harmonization to domain translation or style transfer
by treating different illumination conditions as different do-
mains or styles. [15, 16, 14] introduced Retinex theory
[26, 25] to image harmonization task by decomposing an
image into reflectance map and illumination map. More re-
cently, [9, 22, 28, 44] used deep network to predict color
transformation, striking a good balance between efficiency
and effectiveness. Different from the above works, we ex-
plore global guidance for feature transformation and effec-
tive supervision for intermediate features.

2.2. Image Harmonization Datasets

Previous works have explored various ways to construct
image harmonization dataset. 1) [10] contributes iHar-
mony4 dataset by adjusting the foregrounds in real images
to generate synthetic composite images. However, such
color adjustment may not faithfully reflect natural illumi-
nation variation. 2) The Hday2night subdataset in [10] cap-
tures a group of images for the same scene under different
illumination conditions, which can reflect natural illumina-
tion variation. Nevertheless, such data collection process
is extremely expensive. 3) [20] constructed RealHM by
manually harmonizing the composite images, which is ex-
tremely expensive and not scalable. Moreover, the manually
harmonized images are subjective and may not be reliable.
4) Other works [16, 4, 2] use 3D render to render the same
3D scene or the same 3D foreground object with different il-
lumination conditions, resulting in a group of images. Then,
they swap foregrounds within the same group to construct
pairs of composite images and ground-truth images. How-
ever, rendered images have huge domain gap with real im-
ages, which may not be helpful when we have adequate real
training data [4]. In this work, we propose a novel way
to approximate natural illumination variation, based on the
images with recorded illumination information.

2.3. Knowledge Distillation

Knowledge distillation [19] targets at transferring knowl-
edge from teacher network to student network. Based on the
type of knowledge, knowledge distillation can be divided
into three groups [13]: response-based [19], feature-based
[27], and relation-based [46]. Response-based knowledge
distillation usually uses the neural response of the last
output layer of the teacher model to supervise the stu-
dent model [19, 47]. Feature-based knowledge distillation
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[35, 42, 41] targets at matching the feature activations be-
tween teacher network and student network. Relation-based
knowledge distillation [46, 32] pays more attention to the
relation between different model layers or data samples.
Our work belongs to relation distillation. Precisely, we
distill foreground-background relation from reconstruction
network to harmonization network.

3. Our Method
We denote the composite image as I , which is composed

of foreground If and background Ib. The ground-truth real
image is Î . The goal of image harmonization task is adjust-
ing the composite foreground If and produce the harmo-
nized image Ĩ , which should be close to Î . Our method is
built upon the UNet-like network used in [36], which con-
sists of an encoder E with four encoder blocks, a decoder
G with three decoder blocks, and skip connections from
the first three encoder blocks to the corresponding decoder
blocks. We insert our designed globally guided feature
transformation (GIFT) module into the network, which will
be detailed in Section 3.1. Then, we introduce another re-
construction branch to distill the relation knowledge to the
harmonization branch, which will be detailed in Section 3.2.

3.1. Globally Guided Feature Transformation

We design a globally guided feature transformation
(GIFT) module, which transforms the foreground feature
map using global guidance. We use Fe,l (resp., Fd,l) to de-
note the output feature map from the l-th encoder (resp.,
decoder) block. There are four encoder blocks and thus
Fe,4 is the bottleneck feature map. We perform global
average pooling over Fe,4 and get the global feature vec-
tor fe, which encodes the global information beneficial for
image harmonization task. We use fe to guide the fea-
ture transformation for encoder/decoder feature maps. We
adopt the feature transformation technique proposed in [21],
which applies modulated convolution weights to the given
feature map. Other feature transformation techniques are
also applicable. In our task, we use global feature fe to
guide the modulation of convolution weights, which pro-
vides global guidance for feature transformation. Besides,
we only transform the foreground feature map, since image
harmonization aims to adjust the foreground to be compati-
ble with the background.

Without loss of generality, we take one encoder/decoder
feature map as an example. We have learnable base con-
volution weights W̄ , in which each entry W̄ (m,n, p) is
the weight for the m-th input channel, n-th output channel,
and the p-th spatial location. Then, we pass fe through an
Multi-Layer Perceptron (MLP) to predict the scale vector
s corresponding to input channels. Our used MLP con-
tains four fully-connected layers, in which the first three
are shared by all feature maps and the last one is specific

for each feature map. The predicted scale vector is used to
modulate the base convolution weights:

W̄ ′(m,n, p) = W̄ (m,n, p) · s(m), (1)

where s(m) is the m-th entry in s (the scale for the m-th
input channel), and W̄ ′(m,n, p) is the modulated weight.
Next, we normalize the modulated weights following [21]:

W̄ ′′(m,n, p) =
W̄ ′(m,n, p)√∑

m,p W̄
′(m,n, p)

2
+ ϵ

, (2)

in which ϵ is a small constant to avoid numerical error. For
more details of convolution weights modulation, please re-
fer to [21]. Assuming that the feature map to be transformed
is F , which consists of the foreground feature map F f and
background feature map F b. As illustrated in Figure 1(b),
we apply the modulated convolution weights W̄ ′′ to the
foreground feature map F f and produce the transformed
foreground feature map F f ′. Then, we combine F f ′ and
F b to obtain the transformed feature map F ′.

We try applying our designed GIFT module to the out-
put feature map from each encoder block or decoder block.
We observe that the last two decoder blocks can obviously
manifest the advantage of our designed GIFT, while the en-
coder blocks do not show clear advantage (see Section 5.3).
We conjecture that the whole network is only supervised
by the final ground-truth image and there is no intermediate
supervision for the encoder feature maps. Lack of interme-
diate supervision might hinder the potential of our designed
GIFT module. To provide intermediate supervision for the
encoder features, we borrow the idea from knowledge dis-
tillation, which will be introduced next.

3.2. Relation Distillation

The difficulty of supervising encoder feature maps lies
in the absence of ground-truth harmonized encoder fea-
ture maps. One intuitive thought is that the harmonized
encoder feature maps should be close to the encoder fea-
ture maps of ground-truth real images. Therefore, besides
the harmonization branch, we introduce another reconstruc-
tion branch which reconstructs the ground-truth real image
Î . The reconstruction branch shares similar UNet network
structure (encoder Ê and decoder Ĝ) with the harmoniza-
tion branch. We denote the l-th encoder feature map in the
reconstruction branch as F̂e,l. Note that we perform distil-
lation on the encoder feature maps F ′

e,l transformed by our
GIFT module.

One naive approach is feature distillation, which en-
forces the encoder feature maps between two branches to
be close, that is, F̂e,l is close to F ′

e,l for l = 1, . . . , 4.
However, the performance using feature distillation is un-
satisfactory (see Section 5.3). One possible reason is that
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Figure 1. (a) Our network which consists of a reconstruction branch (Ê, Ĝ) and a harmonization branch (E,G). The reconstruction branch
is pretrained and fixed. In the harmonization branch, we use global feature fe to guide feature transformation using our GIFT module. We
also distill foreground-background relation from reconstruction branch to harmonization branch. (b) The detailed architecture of our GIFT
module. We use global feature fe to predict scale vector s and obtain the modulated convolution weights W̄ ′′, which are used to adjust
the foreground feature map while the background feature map remains unchanged.

the encoder feature maps contain lots of redundant informa-
tion and distilling the entire feature maps increases the diffi-
culty of network training. Therefore, we turn to only distill
the key information: foreground-background relation. Dis-
tilling foreground-background relation can ensure that the
foreground feature map is compatible with the background
feature map in F ′

e,l, as in F̂e,l.
There could be many possible ways to characterize

foreground-background relation. To avoid the heavy com-
putational cost of pixel-to-pixel relation, we first calculate
the averaged foreground feature and then calculate the sim-
ilarity between it and pixel-wise features. By taking F ′

e,l as
an example, we calculate the averaged foreground feature
f ′
e,l by performing average pooling within the foreground

region. Then, we calculate the similarity between f ′
e,l and

the i-th pixel-wise feature in F ′
e,l as follows,

R′
l[i] =

exp(−γ∥f ′
e,l − F ′

e,l[i]∥2)∑
j exp(−γ∥f ′

e,l − F ′
e,l[j]∥2)

, (3)

in which γ is a hyper-parameter. The similarities R′
l[i] of

all pixels form a similarity map R′
l, in which the values in

the background region represent the relation between fore-
ground and background. The background regions with sim-
ilar appearance to the foreground should have higher val-
ues. The similarity map R̂l for F̂e,l could be calculated in
a similar way. Then, we distill foreground-background re-
lation from F̂e,l to F ′

e,l using the distillation loss Ll
dis =

∥R′
l − R̂l∥2, which pushes the foreground-background re-

lation in the harmonized feature map towards that in the
real feature map, so that foreground is compatible with the
background in the harmonized feature map.

During training, we first train and fix the reconstruc-
tion branch. Then, we train the harmonization branch.
In addition to the distillation loss, we enforce the harmo-

nized image Ĩ to be close to the ground-truth image Î by
Lhar = ∥Ĩ − Î∥1.

After summing up the distillation losses for four encoder
blocks, the total loss for the harmonization branch is

Lall = Lhar + λ

4∑
l=1

Ll
dis, (4)

in which λ is a hyper-parameter.

4. Our ccHarmony Dataset
In this work, we explore a novel transitive way to con-

struct image harmonization dataset, aiming to simulate the
natural illumination variation. Specifically, based on the ex-
isting datasets with recorded illumination information, we
first convert the foreground in a real image to the standard
illumination condition, and then convert it to another illumi-
nation condition, which is combined with the original back-
ground to produce a synthetic composite image.

We build our dataset upon two publicly datasets with
recorded illumination information: NUS dataset [7] and
Gehler dataset [12], which were originally constructed for
the research on color constancy. In these two datasets, each
image is captured with a color checker placed in the scene
that provides ground-truth reference for illumination esti-
mation. Given a 24-patch Macbeth color checker, we have
the original colors of 24 patches in standard illumination
condition (see Figure 2(a)), which is referred to as standard
patch color. Given an image with color checker, we can ex-
tract the colors of 24 patches, which is referred to as image
patch color.

Inspired by previous works [48, 30, 1], we use polyno-
mial matching to characterize the color transformation be-
tween standard patch colors and image patch colors. For-
mally, we denote the standard patch colors of 24 patches
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Figure 2. (a) A color checker in standard illumination condition and an image captured with color checker (see the yellow bounding box).
(b) We first convert Ia to Io in standard illumination condition, and then convert Io to other illumination conditions. (c) The construction
process of our dataset. Given a real image Ia, we convert its foreground If

a to If
o in standard illumination condition using polynomial

matching matrix Ta. Then, we convert If
o to If

b in the illumination condition of reference image Ib using the inverse polynomial matching
matrix T ′

b . Finally, If
b is combined with the background of Ia to produce a synthetic composite image Ia→b.

as Co = {co1, co2, . . . , co24} and image patch colors of 24
patches in image Ia as Ca = {ca1 , ca2 , . . . , ca24}. We can
learn a polynomial matching matrix Ta which converts Ca
to Co. Ta could convert Ia to Io in standard illumination
condition. We can also learn an inverse polynomial match-
ing matrix T ′

a which converts Co to Ca. Provided with in-
verse polynomial matching matrices from other images, we
can convert Io to the illumination conditions of other im-
ages. As shown in Figure 2(b), with standard illumination
condition being the transitional state, we can transfer across
different illumination conditions to simulate natural illumi-
nation variation.

Next, we briefly describe our way of creating synthetic
composite images. As depicted in Figure 2(c), given an im-
age Ia with foreground mask, we convert its foreground
If
a to the one If

o in standard illumination condition using
polynomial matching matrix Ta. Next, by using the inverse
polynomial matching matrix T ′

b of another reference image
Ib, we convert If

o to If
b in the illumination condition of Ib.

Finally, we replace the foreground If
a in Ia with its counter-

part If
b , yielding a synthetic composite image Ia→b. In this

manner, we can acquire adequate pairs of synthetic compos-
ite images and real images like {Ia→b, Ia}. Because our
dataset is constructed based on images with color checker
(cc), we name our dataset as ccHarmony. The details of our
dataset construction are left to supplementary due to space
limitation.

5. Experiments

5.1. Datasets and Implementation Details

We conduct experiments on the benchmark iHarmony4
[10] and our constructed ccHarmony dataset. iHarmony4
[10] is composed of four sub-datasets: HCOCO, HFlickr,

HAdobe5K, Hday2night, which contains totally 65, 742
(resp., 7, 404) pairs of composite images and ground-truth
real images in the training (resp., test) set. Following pre-
vious works [10, 36], we merge the training sets of four
subdatasets as the whole training set and evaluate on each
subdataset. Our constructed ccHarmony dataset has 3, 080
(resp., 1, 180) pairs of composite images and ground-truth
real images in the training (resp., test) set. For the experi-
ments on ccHarmony, we first pretrain the model on iHar-
mony4 [10] and then finetune the model on ccHarmony, in
which the input image size is set as 256× 256.

For evaluation metrics, following previous works [10,
36, 16, 9], we adopt PSNR, MSE, fMSE, fSSIM, in which
fMSE (resp., fSSIM) means MSE (resp., SSIM) within the
foreground region. Our model is implemented using Py-
torch 1.10.1 and trained using Adam optimizer with learn-
ing rate being 1e−3 on ubuntu 20.04 operation system, In-
tel(R) Xeon(R) Silver 4116 CPU, and RTX 3090 GPUs with
24GB memory. We empirically set γ as 0.01 and λ as 0.001.

5.2. Comparison with Baselines

On iHarmony4, we compare with following image har-
monization methods: DoveNet [36], RainNet [29], IIH [16],
IHT [15], iSSAM [36], CDTNet [9], Harmonizer [22],
DCCF [44]. In Table 1, we report the results on four
sub test sets and the whole test set, which are copied
from original papers or reproduced with the released mod-
els. For the overall results on the whole test set, our
method outperforms the SOTA method by a large margin,
e.g., 10.61% relative improvement over CDTNet on fMSE
and 11.75% relative improvement over DCCF on MSE.
Our method achieves the best results on HCOCO, HFlickr,
HAdobe5k. Our method does not achieve satisfactory re-
sults on Hday2night, probably due to the limited training
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Method
All HCOCO HFlickr HAdobe5k Hday2night

MSE fMSE PSNR MSE fMSE PSNR MSE fMSE PSNR MSE fMSE PSNR MSE fMSE PSNR
DoveNet [10] 52.36 549.96 34.75 36.72 554.55 35.83 133.14 832.64 30.21 52.32 383.91 34.34 54.05 1075.42 35.18
RainNet [29] 40.29 469.60 36.12 31.12 535.40 37.08 117.59 751.12 31.64 42.85 320.43 36.22 47.24 852.12 34.83

IIH [16] 38.71 400.29 35.90 24.92 416.38 37.16 105.13 716.60 31.34 43.02 284.21 35.20 55.53 797.04 35.96
IHT [15] 27.89 295.56 37.94 14.98 274.67 39.22 67.88 471.04 33.55 36.83 242.57 37.17 49.67 736.55 36.38

iSSAM [36] 24.64 262.67 37.95 16.48 266.14 39.16 69.68 443.63 33.56 22.59 166.19 37.24 40.59 591.07 37.72
CDTNet [9] 23.75 252.05 38.23 16.25 261.29 39.15 68.61 423.03 33.55 20.62 149.88 38.24 36.72 549.47 37.95

Harmonizer [22] 24.26 280.51 37.84 17.34 298.42 38.77 64.81 434.06 33.63 21.89 170.05 37.64 33.14 542.07 37.56
DCCF [44] 22.05 266.49 38.50 14.87 272.09 39.52 60.41 411.53 33.94 19.90 175.82 38.27 49.32 655.43 37.88

GiftNet 19.46 225.30 38.92 12.70 229.68 39.91 54.33 360.08 34.44 18.35 143.96 38.76 38.28 566.47 37.81

Table 1. Quantitative comparison on iHarmony4 [10] dataset. The best results are denoted in boldface.

Method MSE↓ fMSE↓ PSNR↑ fSSIM ↑
DoveNet [10] 110.84 880.94 31.61 0.8231
RainNet [29] 58.11 519.32 34.78 0.8665

IIH [16] 83.72 636.28 33.64 0.7640
IHT [15] 55.73 514.47 35.07 0.8203

iSSAM [36] 28.83 264.84 36.05 0.9096
CDTNet [9] 27.87 264.51 36.62 0.9225

Harmonizer [22] 43.31 402.09 34.68 0.8951
DCCF [44] 29.25 259.83 36.62 0.9094

GiftNet 24.55 235.20 37.59 0.9322
Table 2. Quantitative comparison on our ccHarmony dataset. The
best results are denoted in boldface.

Row
GIFT Distill Evaluation

Layer Op Layer Op MSE fMSE PSNR
1 24.64 262.67 37.95
2 D3 * 21.39 243.23 38.71
3 D2,3 * 20.82 238.89 38.76
4 D1,2,3 * 20.79 237.06 38.78
5 D2,3, E * 20.50 236.22 38.77
6 D3 w/o g 24.33 263.22 38.18
7 D3 D3→g 24.21 261.15 38.28
8 D2,3, E * E * 19.46 225.30 38.92
9 D2,3, E * D2,3, E * 21.31 242.58 38.73

10 D2,3, E * E FD 21.58 240.18 38.67
Table 3. Ablation studies on iHarmony4 [10] dataset. * means the
default operation. Dk means the k-th decoder block. E means
all encoder blocks. “FD” is short for feature distillation. “w/o g”
means without guidance. “D3 →g” means using D3 feature map
as guidance. The best results are denoted in boldface.

set (only 311 images).
On ccHarmony, we also report the results of our method

and baselines in Table 2. Again, our method outperforms
the baselines and achieves significant improvement.

For the competitive baselines [36, 9, 22, 44] and our
method, we show the harmonized results on iHarmony4 in
Figure 3 and the results on ccHarmony in Figure 4. Our
method can usually produce visually pleasant results which
are closer to the ground-truth real images. More visualiza-
tion results can be found in the supplementary.

5.3. Ablation Studies

We conduct ablation studies and report the results in Ta-
ble 3. After removing GIFT module and relation distilla-
tion, our network reduces to [36], so we include the results
of [36] in row 1 as the performance of basic model.
GIFT Module: We first investigate the effectiveness of our
GIFT module. Recall that we have four encoder blocks and
three decoder blocks. We first append GIFT module to each
encoder block or decoder block. We observe that appending
GIFT module to the last decoder block achieves the largest
improvement. For brevity, we only report the performance
of appending to the last decoder block (D3 in row 2) in Ta-
ble 3. Based on row 2, we further append GIFT module to
the penultimate decoder block (D2,3 in row 3) and the per-
formance gain is relatively small. Then, we further append
GIFT module to the first decoder block (D1,2,3 in row 4) or
the encoder blocks (E in row 5), but the performance gains
are very marginal.

Based on row 2, we compare with other types of guid-
ance information for modulating convolution weights. The
first type is no guidance information, that is, we use the
same learnable input channel scales for all images. The per-
formance is only comparable with row 1, which shows that
simply adding more convolution layers does not work. The
second type is using the feature map to be transformed to
predict the input channel scales. In the case of D3, we per-
form average pooling over the last decoder feature map and
pass the averaged feature vector through an MLP to predict
the input channel scales. Again, there is no obvious im-
provement over row 1, demonstrating the necessity of using
global information to guide feature transformation.
Relation Distillation: Based on row 5, we add relation dis-
tillation to encoder feature maps and observe slight perfor-
mance improvement (row 8 v.s. row 5). We also try adding
relation distillation to decoder feature maps, but the perfor-
mance becomes worse (row 9 v.s. row 8). One possible rea-
son is that the supervision from the final ground-truth image
is sufficient to learn effective decoder features, whereas the
relation distillation may disturb the learning of decoder fea-
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Figure 3. From left to right, we show the composite image (foreground outlined in red), the harmonized results of iSSAM [36], CDTNet [9],
Harmonizer [22], DCCF [44], our GiftNet, and the ground-truth on iHarmony4 [10] dataset.

tures. Therefore, we only employ relation distillation on
encoder feature maps. We also compare relation distillation
with feature distillation. In particular, we replace relation
distillation loss with feature distillation loss. The obtained
performance in row 10 is not satisfactory, which demon-
strates the superiority of relation distillation. As explained
in Section 1, the whole feature maps contain much redun-
dant and noisy information, which may enlarge the training
difficulty of network. In contrast, relation distillation solely
distills the key information for image harmonization task.

5.4. Real Composite Images

We additionally compare different methods on 100 real
composite images provided by [9]. Since there are no

ground-truth for these real composite images, we conduct
user study to compare with competitive baselines [36, 9, 22,
44]. Following [9], given each composite image and its 5
harmonized results from different methods (4 baselines and
our method), we can create image pairs by randomly choos-
ing 2 images from 6 images (5 harmonized results and one
composite image). Thus, we can construct 1500 image pairs
based on 100 real composite images. We ask 50 users to
watch an image pair each time and choose the more harmo-
nious image, leading to 75, 000 pairwise results. Then, we
use the Bradley-Terry (B-T) model [3, 23] to calculate the
global ranking of all methods, as reported in Table 4. Our
method achieves the highest B-T score, which demonstrates
the effectiveness of globally guided feature transformation
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Figure 4. From left to right, we show the composite image (foreground outlined in red), the harmonized results of iSSAM [36], CDTNet [9],
Harmonizer [22], DCCF [44], our GiftNet, and the ground-truth on our ccHarmony dataset.

Method Composite iSSAM [36] CDTNet [9] Harmonizer [22] DCCF [44] GiftNet
B-T score -1.075 0.0755 0.212 0.117 0.235 0.436

Table 4. B-T scores of different methods on 100 real composite images [9].

and relation distillation. The visualization results on real
composite images are left to the supplementary due to space
limitation.

6. Conclusion

In this work, we have proposed globally guided feature
transformation and relation distillation for image harmo-
nization. We have also contributed a new dataset named
ccHarmony, which provides a new perspective for harmo-

nization dataset construction. Comprehensive experiments
have demonstrated the superiority of our method.
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