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Abstract

The goal of image harmonization is adjusting the fore-
ground appearance in a composite image to make the
whole image harmonious. To construct paired training
images, existing datasets adopt different ways to adjust
the illumination statistics of foregrounds of real images
to produce synthetic composite images. However, differ-
ent datasets have considerable domain gap and the per-
formances on small-scale datasets are limited by insuffi-
cient training data. In this work, we explore learnable aug-
mentation to enrich the illumination diversity of small-scale
datasets for better harmonization performance. In particu-
lar, our designed SYthetic COmposite Network (SycoNet)
takes in a real image with foreground mask and a ran-
dom vector to learn suitable color transformation, which
is applied to the foreground of this real image to pro-
duce a synthetic composite image. Comprehensive exper-
iments demonstrate the effectiveness of our proposed learn-
able augmentation for image harmonization. The code
of SycoNet is released at https://github.com/bcmi/SycoNet-
Adaptive-Image-Harmonization.

1. Introduction

As a prevalent image editing operation, image compo-
sition [28] aims to cut the foreground from one image and
paste it on another background image, making a realistic-
looking composite image. Image composition plays a crit-
ical role in artistic creation, augmented reality, automatic
advertising, and so on [37, 44]. However, the illumina-
tion statistics of foreground and background could be in-
consistent due to distinct capture conditions or capture de-
vices (e.g., season, weather, time of the day, camera setting),
which makes the resultant composite image unrealistic. To
address this issue, image harmonization [5] targets at ad-
justing the illumination statistics of foreground to make it
compatible with the background, leading to a harmonious
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composite image.

Training data-hungry deep learning models for image
harmonization relies on abundant pairs of composite im-
ages and harmonious images. Nevertheless, it is extremely
difficult and expensive to manually adjust the foreground
of composite image to produce harmonious image. There-
fore, recent works turn to an inverse manner, that is, ad-
justing the foreground of real image to produce a synthetic
composite image, resulting in pairs of synthetic composite
images and ground-truth harmonious real images. In this
inverse manner, the work in [5] constructed four datasets
(HCOCO, HFlickr, HAdobe5k, and Hday2night), which are
collectively called iHarmony4. Despite similar construc-
tion pipeline, four datasets adopt different foreground ad-
justment approaches. In particular, HCOCO and HFlickr
adopt traditional color transfer methods [31, 38, 11, 30] to
adjust the foreground, while HAdobe5k (resp., Hday2night)
replaces the foreground with the counterpart retouched by
different experts (resp., captured at different times). Previ-
ous works usually train a deep image harmonization model
based on the union of training sets from four datasets. How-
ever, the data distributions of different datasets are consider-
ably different, which is caused by many factors (e.g., image
source, capture device, scene type, foreground adjustment
approach). Following the terminology of domain adapta-
tion [35, 29], we treat each dataset as one domain and
four datasets have large domain gap. We observe that
finetuning on different datasets can bring notable perfor-
mance gain (see Section 4.2), but the performance is still
limited by insufficient training data on small-scale datasets
(e.g., HFlickr, Hday2night).

In this work, we attempt to augment small-scale datasets
with more synthetic composite images to enrich the illumi-
nation diversity, which may not be easily achieved by us-
ing the original foreground adjustment approach. Specif-
ically, for HFlickr, we need to manually filter unqualified
synthetic composite images [5], otherwise the performance
would be significantly compromised (see Section 4.2). For
Hday2night, it is almost impossible to recapture the same
scene at different times. Therefore, we design an aug-
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Figure 1: In the left two columns, we show a pair of real image Ir and original synthetic composite image Ic from HFlickr
(resp., Hday2night) dataset in the top (resp., bottom) row, with the real foreground outlined in red. In the other columns, we
show K augmented synthetic composite images {Igk|Kk=1} generated by our SycoNet.

mentation network named SYthetic COmposite Network
(SycoNet) to produce synthetic composite images automat-
ically, which simulates the original foreground adjustment
approach.

Our SycoNet takes in a real image with foreground mask
and a random vector, generating a synthetic composite im-
age with adjusted foreground. By sampling multiple ran-
dom vectors, we can generate multiple synthetic compos-
ite images. As shown in Figure 2(a), we adopt a CNN
encoder to extract feature from real image and foreground
mask, which is concatenated with a random vector to pro-
duce suitable color transformation for the foreground. The
color transformation is realized by a linear combination of
basis LUTs [4]. The combined LUT is applied to the fore-
ground to produce a synthetic composite image. Moreover,
we establish a bijection between random vectors and origi-
nal synthetic composite images in the dataset to ensure the
quality and diversity of generated synthetic composite im-
ages. Concretely, we employ another CNN encoder to pro-
duce a latent code, which is expected to encode the neces-
sary information required to transfer from real foreground
to original composite foreground. Thus, when using this
latent code to predict color transformation, we hope that
the generated synthetic composite image can reconstruct the
original synthetic composite image in the dataset.

After training SycoNet, we freeze the model parameters
and integrate it with an existing image harmonization net-
work, as shown in Figure 2(b). When training the image
harmonization network, besides the original training pairs
of synthetic composite images and real images, SycoNet
produces extra synthetic composite images as augmented
data. Both original and augmented synthetic composite
images (see Figure 1) should be harmonized to approach
ground-truth real images.

Our proposed learnable augmentation is helpful for

adapting a pretrained image harmonization model to a
new domain with limited data. Given a test image which
we do not know which domain it belongs to, we can
apply our learnable augmentation in the following two
ways. 1) We use learnable augmentation to enhance the
harmonization model of each domain. Given a test image,
we can first predict its domain label using a domain classi-
fier and apply the model of the corresponding domain (see
Section 4.6). 2) We use learnable augmentation to enhance
one unified harmonization model for all domains (see Sec-
tion 4.7). The second option is more compact, at the cost of
performance degradation.

We conduct experiments on iHarmony4, which demon-
strates that our proposed learnable augmentation can sig-
nificantly boost the harmonization performance. Our major
contributions are summarized as follows: 1) We propose
learnable augmentation to enrich the illumination diversity
for image harmonization; 2) We design a novel augmen-
tation network named SycoNet, which can automatically
generate synthetic composite images by simulating the fore-
ground adjustment in the original dataset; 3) Extensive ex-
periments prove the effectiveness of our proposed learnable
augmentation.

2. Related Work

2.1. Image Harmonization

Traditional image harmonization methods [2, 23, 40, 33]
mainly leveraged traditional color transfer methods (e.g.,
shifting and scaling, histogram matching) to align the color
information between foreground and background. In [46],
they designed a model to learn the color shifting matrix by
using a discriminator to push the transformed image to be
realistic. Recently, lots of deep image harmonization meth-
ods [5, 32, 16, 26, 19, 13, 1] have emerged, which usually
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Figure 2: (a) Illustration of our augmentation network SycoNet. In the generation (resp., reconstruction) branch indicated
by red (resp., green) arrows, we predict the color transformation LUT ϕ̄g (resp., ϕ̄c) to adjust the real foreground in Ir,
resulting in the synthetic composite image Ig (resp., Ĩc). (b) Image harmonization with augmented synthetic composite
images Ig generated by fixed SycoNet (only generation branch). Both original Ic and augmented Ig are harmonized by the
harmonization network G.

learn a mapping network from composite image to harmo-
nized image. To name a few, [36] supplemented basic im-
age harmonization network with extra semantic informa-
tion. By treating different capture conditions as different
domains, [5] proposed to pull close foreground domain and
background domain via domain verification, while [3] used
background domain code to guide the translation of fore-
ground. [7] developed various types of attention blocks
embedded in the image harmonization network. [26] bor-
rowed the idea of adaptive instance normalization from
style transfer to image harmonization, which is further ex-
tended in [15] by considering local style transfer. [14] de-
composed a composite image to reflectance map and illu-
mination map, followed by modulating the foreground il-
lumination map. [19] constructed training pairs based on
two crops from the same image and designed an image har-
monization model requiring complete background image.
[4, 20, 24, 39] merged color transformation into deep learn-
ing networks for efficient image harmonization.

Different from the above works, we explore learnable
augmentation for image harmonization, which has never
been studied before. Our designed augmentation network
can be integrated with any image harmonization network.

2.2. Data Augmentation

Data augmentation targets at augmenting training set
with new samples. Traditional data augmentation tech-
niques (e.g., crop, flip, affine transformation, cutout [8])
have been widely used in myriads of computer vision tasks.
There are also some more advanced augmentation tech-
niques [43, 41] which mix up training images and their la-
bels. However, all the above augmentation techniques are

non-learnable augmentation without learnable parameters.
Our proposed learnable augmentation shares some simi-
lar thoughts with a research line called auto-augmentation.
Specifically, AutoAugment [6] proposed to search the best
data augmentation policy for a target dataset via reinforce-
ment learning, which is accelerated by subsequent works
[25, 34, 27] using different techniques (e.g., efficient density
matching, weight sharing strategy, bilevel optimization).
PBA [18] proposed to learn augmentation policy schedule
rather than a fixed policy. Instead of searching the optimal
augmentation policy, we predict proper color transforma-
tion to generate augmented data.

This work makes the first attempt at learnable augmenta-
tion for the image harmonization task, in which we generate
more synthetic composite images for a real image to con-
struct more training pairs. Our augmentation strategy fo-
cuses on enriching the illumination diversity of training
set, which is complementary with other data augmenta-
tion techniques (e.g., crop, flip, more foregrounds). We
show that enriching the illumination diversity of training set
can greatly enhance the image harmonization performance.

3. Our Method

We suppose that the training set of an image harmoniza-
tion dataset contains N pairs of synthetic composite im-
ages and real images, i.e., S = {(Icn, Irn)|Nn=1}, in which Icn
(resp., Irn) is the n-th synthetic composite image (resp., real
image). In the first stage, we train an augmentation network
on the training set, which can generate multiple synthetic
composite images {Ign,k|k} for a real image Irn. In the sec-
ond stage, we integrate the augmentation network into an
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existing image harmonization network G and fix the model
parameters of augmentation network. When training the
image harmonization network, the augmentation network
dynamically generates augmented synthetic composite im-
ages {Ign,k|Nn=1,k} to supplement the original training set S,
aiming to train a better image harmonization model. Next,
we will introduce the first stage in Section 3.1 and the sec-
ond stage in Section 3.2.

3.1. Synthetic Composite Network

We refer to our augmentation network as SYnthetic
COmposite Network (SycoNet), which can generate mul-
tiple synthetic composite images given a real image. Our
SycoNet consists of a generation branch and a reconstruc-
tion branch, which will be detailed separately. In this sec-
tion, we omit the subscript n for brevity. Besides, the fore-
ground of Ir (resp., Ic, Ig) is denoted as Fr (resp., Fc, Fg).

3.1.1 Generation Branch

In the generation branch, we produce suitable color trans-
formation function h(·) for the foreground Fr of real im-
age Ir, in which h(·) could convert the source color value
vsrc in Fr to a target color value vtgt = h(vsrc). The
color transformation function h(·) can be realized in vari-
ous forms. In this work, we opt for look-up table (LUT),
which has been widely used in a variety of computer vision
tasks [9, 12, 10, 42, 4]. Briefly speaking, a look-up table
(LUT) is a 3D lattice in the RGB color space with each di-
mension corresponding to one color channel (e.g., red). An
LUT has (B + 1)3 entries by uniformly slicing the color
space into B bins in each dimension, where B is set as 16
following [42, 4]. Each entry in the LUT has an indexing
color and its output color. Given a source color value vsrc,
its target color value vtgt could be obtained by looking up
its eight nearest indexing colors in the LUT and performing
trilinear interpolation based on their output colors. More
technical details of LUT can be found in [42, 4].

Following [42, 4], we learn a group of L basis LUTs
{ϕl|Ll=1} shared among all images and predict image-
specific combination coefficients of basis LUTs for each
image. In this way, shared basis LUTs are combined adap-
tively to form image-specific LUT. In [42, 4], L basis LUTs
are initialized as one identity map and L−1 zero maps. Be-
sides, there is no constraint for the combination coefficients,
that is, the coefficient can be either positive or negative. The
L−1 LUTs initialized with zero maps actually function as
residual LUTs [4]. However, during our experiments, we
observe that the learnt residual LUTs are prone to be simi-
lar with each other, which severely limits the representation
ability of combined LUT. Therefore, we modify the LUT
initialization and combination strategy. Precisely, we ini-
tialize L basis LUTs with one identity LUT and L−1 rep-

resentative LUTs (we collect 100 LUTs from Internet and
perform clustering to get L−1 cluster centers). All L basis
LUTs are updated during training. Moreover, the combi-
nation coefficients are softmax normalized, so that all co-
efficients are positive and sum up to one. The comparison
results demonstrate the advantage of our LUT initialization
and combination strategy (see Table 2).

After introducing the color transformation function h(·)
realized in the form of LUT, we describe the network archi-
tecture of generation branch. Given a real image Ir and its
foreground mask M, we concatenate them and feed into an
encoder Er (e.g., ResNet18 [17]) to produce a feature vec-
tor fr. For each real image, we hope to generate multiple
synthetic composite images instead of a single determinis-
tic one. As a common approach to support stochastic sam-
pling, we sample a random vector zg from unit Gaussian
distribution N (0,1) and concatenate it with fr. Then, the
concatenation [fr, zg] passes through one fully-connected
(FC) layer followed by softmax normalization to produce
the combination coefficients αg . Given the learnt basis
LUTs {ϕl|Ll=1}, the combined LUT is ϕ̄g =

∑L
l=1 α

g
l ϕl,

in which αg
l is the l-th element in αg . Finally, we apply

ϕ̄g to Fr and get the transformed foreground Fg , which is
combined with original background to compose a synthetic
composite image Ig .

3.1.2 Reconstruction Branch

Note that the generation branch ignores the original syn-
thetic composite images Ic in the training set S and lacks
supervision for the generated synthetic composite images
Ig . Hence, there is no guarantee for the plausibility of gen-
erated synthetic composite images. In the reconstruction
branch, we aim to ensure the quality and diversity of gener-
ated synthetic composite images, by reconstructing original
synthetic composite image Ic from real image Ir.

Given the original synthetic composite image Ic for real
image Ir, we deliver the concatenation of Ic, Ir, and M
to an encoder Ez (e.g., ResNet18 [17]). Ez produces µz

and σz , based on which the latent code zc could be sam-
pled from Gaussian distribution N (µz,σ

2
z). By using repa-

rameterization trick [21], we obtain zc = µz + ϵ ⊙ σz ,
where ϵ is a random vector sampled from N (0,1) and
⊙ means element-wise product. zc is expected to en-
code the requisite information to generate Ic conditioned
on Ir. Analogous to the generation branch, we concate-
nate zc with fr, and use the same FC layer to produce
the combination coefficients αc of basis LUTs. Then, we
apply the combined LUT ϕ̄c =

∑L
l=1 α

c
lϕl to the real

foreground Fr and get a synthetic composite image Ĩc,
which is pushed towards Ic using the reconstruction loss
Lrec = ∥Ĩc − Ic∥1. In the meanwhile, we use KL diver-
gence loss [22] Lkl = KL[N (µz,σ

2
z)||N (0,1)] to enforce
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N (µz,σ
2
z) to approach N (0,1).

The above reconstruction process establishes a bijection
between latent code and synthetic composite image con-
ditioned on real image, which enables generating quali-
fied and diverse synthetic composite images by sampling
zg ∼ N (0,1). The reasons are explained as follows. In
terms of quality, Ir and zc can produce one plausible color
transformation (i.e., from Ir to Ic) due to the bijection. We
assume that such knowledge can be transferred across the
joint space of real image and latent code, so that Ir and
other sampled zg can produce other plausible color trans-
formations. More specifically, we denote that Iri and zci can
reconstruct plausible composite image Ici for i = 1, . . . , N .
Assuming that {zci |Ni=1} are transferrable across real im-
ages {Iri |Ni=1}, Iri and zcj for j ̸= i could also produce
plausible composite images. Besides, {zci |Ni=1} are sam-
pled from Gaussian distributions close to N (0,1), so Iri
and zg ∼ N (0,1) could also produce plausible compos-
ite images. In terms of diversity, the bijection can prevent
two latent codes from producing the same synthetic com-
posite image. If two latent codes produce the same synthetic
composite image, one synthetic composite image cannot be
mapped back to two different latent codes, which would vi-
olate the bijection. The experiments in Table 2 verify that
the reconstruction branch can effectively promote the qual-
ity and diversity of generated synthetic composite images.

So far, the total loss function can be summarized as

Lsyco = Lkl + Lrec. (1)

After training the augmentation network on the training set
S using Eqn. (1), the obtained augmentation network could
generate more synthetic composite images to augment the
original training set. Formally, given the n-th real training
image Irn, we can produce K synthetic composite images
{Ign,k|Kk=1} by sampling K random vectors {zgk|Kk=1}. Re-
call that different datasets can be treated as different do-
mains with different data distributions, it would be benefi-
cial to train the augmentation network on each dataset sepa-
rately (see Section 4.2). When training on a specific dataset,
the reconstruction branch could simulate the foreground ad-
justment process of this dataset, and the generation branch
could produce synthetic composite images with close data
distribution to the original ones in this dataset.

3.2. Dynamic Augmentation

With the trained SycoNet in Section 3.1, we can inte-
grate its generation branch with any existing image har-
monization network G for dynamic augmentation, as illus-
trated in Figure 2. Normally, G is trained on the training
set S = {(Icn, Irn)|Nn=1}, by harmonizing Icn to be close to
Irn. In our training process, for the n-th real training im-
age Irn in the t-th training iteration, we use fixed SycoNet
to produce a synthetic composite image Ign,t with sampled

zgt ∼ N (0,1). We denote the harmonization results of Icn
and Ign,t as Ĩcn and Ĩgn,t respectively, both of which should
be close to Irn. The loss function used in original image har-
monization network G is represented by Lhar and may be
different in various image harmonization methods. So we
omit the details of Lhar here. Then, the training loss can be
written as

Lhar =

N∑
n=1

T∑
t=1

Lhar(Ĩ
c
n, I

r
n) + Lhar(Ĩ

g
n,t, I

r
n), (2)

in which T is the number of training iterations. Since the
augmented composite images dynamically vary during the
training procedure, we refer to this augmentation strategy as
dynamic augmentation. We also compare this augmentation
strategy with static augmentation, that is, generating ade-
quate augmented composite images beforehand and merg-
ing them into the original training set. We find that dynamic
augmentation is more elegant and effective than static aug-
mentation (see Section 4.5).

Note that SycoNet is only used in the training stage. Dur-
ing inference, we only use the image harmonization net-
work G, without introducing extra computational cost.

4. Experiments

4.1. Datasets and Implementation Details

We conduct experiments on iHarmony4 [5] which con-
sists of four datasets: HCOCO, HFlickr, HAdobe5k, and
Hday2night. HCOCO (resp., HAdobe5k, HFlickr, and
Hday2night) has 38545 (resp., 19437, 7449, and 311) train-
ing images and 4283 (resp., 2160, 828, and 133) test im-
ages. We mainly use HFlickr and Hday2night, which are
two relatively small datasets, because the advantage of data
augmentation could be exhibited more clearly on small-
scale datasets. We also conduct similar experiments on the
other two datasets (HCOCO and HAdobe5k) and observe
that the performance gain decreases as the scale of training
data increases, which is left to Supplementary.

In the augmentation network, we adopt ResNet18 [17]
as the encoders Er and Ez . We set the dimension of la-
tent code z as dz = 32 and the number of basis LUTs as
L = 20. For the harmonization network G, since our aug-
mentation network can cooperate with any existing image
harmonization network, we take RainNet [26] and iS2AM
[32] as two examples to show the effectiveness of learn-
able augmentation in Section 4.2. In the other sections, we
adopt iS2AM as G by default considering its simplicity and
effectiveness. Our network is implemented using Pytorch
1.7.0 and trained using Adam optimizer with learning rate
of 1e−4 on ubuntu 18.04 LTS operation system, with 32GB
memory, Intel Core i7-9700K CPU, and two GeForce GTX
2080 Ti GPUs. We adopt MSE, foreground MSE (fMSE),

7486



Train Aug Hday2night HFlickr
MSE↓ fMSE↓ fSSIM ↑ MSE↓ fMSE↓ fSSIM ↑

1 - - 40.59 591.07 0.7726 69.68 443.63 0.9108
2 ft(o) - 38.08 567.21 0.7763 64.07 411.12 0.9151
3 ft(oa) CT 39.62 575.35 0.7672 73.00 461.90 0.9072
4 ft(oa) LUT 42.97 630.55 0.7661 86.06 559.67 0.8948
5 ft(oa) Ours 36.49 547.63 0.7766 63.53 407.53 0.9164
6 ft(a) Ours(ft) 42.79 572.53 0.7757 68.05 431.20 0.9149
7 ft(oa) Ours(ft) 34.44 517.00 0.7844 58.46 385.43 0.9176

(a) The results using iS2AM [32] as the harmonization network.

Train Aug Hday2night HFlickr
MSE↓ fMSE↓ fSSIM ↑ MSE↓ fMSE↓ fSSIM ↑

1 - - 47.24 852.12 0.7444 117.59 751.13 0.8573
2 ft(o) - 44.10 785.79 0.7471 107.83 722.97 0.8629
3 ft(oa) CT 51.10 950.66 0.7177 105.69 708.03 0.8685
4 ft(oa) LUT 50.44 937.03 0.7349 117.72 788.21 0.8533
5 ft(oa) Ours 39.86 717.05 0.7531 102.57 678.18 0.8731
6 ft(a) Ours(ft) 44.47 792.99 0.6758 109.94 733.49 0.8614
7 ft(oa) Ours(ft) 37.28 643.78 0.7662 96.01 634.55 0.8780

(b) The results using RainNet [26] as the harmonization network.

Table 1: In “Train” column, “ft” means finetuning the harmonization model on Hday2night/HFlickr, and “o” (resp., “a”)
represents original (resp., augmented) training images. In “Aug” column, “LUT” (resp., “CT”) means using random LUT
(resp., traditional color transfer methods) for data augmentation. “Ours” means using our SycoNet for data augmentation,
and “Ours(ft)” means finetuning SycoNet on Hday2night/HFlickr. The best results are highlighted in boldface.

foreground SSIM (fSSIM) as evaluation metrics for harmo-
nization performance, in which MSE is calculated based
on the whole image while fMSE and fSSIM are calculated
within the foreground region.

4.2. Effectiveness of Our Learnable Augmentation

In Table 1a, we first report the results of iS2AM model
trained on the whole iHarmony4 training set (row 1). Then,
we finetune the harmonization model on the training set of
Hday2night or HFlickr (“ft(o)”). The attained results in row
2 are significantly better than those in row 1, which verifies
the domain gap between different datasets. Next, the fol-
lowing results are all obtained by finetuning the harmoniza-
tion model on Hday2night or HFlickr, with both original
training data and augmented training data (“ft(oa)”) or only
augmented training data (“ft(a)”).

We first try two simple augmentation methods: tradi-
tional color transfer methods [31, 38, 11, 30] (“CT” in
row 3) and random LUT (“LUT” in row 4). For “CT”,
following [5], for each real image in each training it-
eration, we randomly choose one reference image from
ADE20k dataset [45] and one of the color transfer methods
[31, 38, 11, 30] to perform color transfer on its foreground.
The attained results in row 3 are worse than those in row 2.

As claimed in [5], the obtained synthetic composite images
without deliberate filtering may have noticeable artifacts or
unreasonable albedo change, which would adversely affect
the effectiveness of augmentation. For “LUT”, we gather
100 LUTs from Internet and randomly choose one LUT for
each real image in each training iteration. The obtained re-
sults in row 4 become even worse.

Then, we train our augmentation network SycoNet on
the whole iHarmony4 training set and perform dynamic
augmentation when finetuning the harmonization model.
The obtained results in row 5 outperform two simple aug-
mentation methods (row 3 and row 4), and generally outper-
form those without augmentation (row 2), which shows the
superiority of our augmentation network. Next, we finetune
SycoNet on Hday2night and HFlickr respectively, and use
finetuned SycoNet for dynamic augmentation. We report
the results in the last row (row 7), based on which the fine-
tuned SycoNet performs more favorably (row 7 v.s. row 5).
Due to the large domain gap between different datasets, the
finetuned SycoNet can better approximate the foreground
adjustment process of each dataset, and thus generate more
suitable synthetic composite images for each dataset. Fi-
nally, we report the results (row 6) obtained by only using
augmented data and discarding original training data. The
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Figure 3: The leftmost (resp., rightmost) column is the input composite image (resp., ground-truth real image), in which the
foreground in the input image is outlined in red. The rest columns show the harmonized results of row 1, 2, 5, 7 in Table 1a.
Train and Aug below the row index means the corresponding training setting and augmentation setting as in Table 1. The first
(resp., last) two rows are from Hday2night (resp., HFlickr) dataset.

comparison between row 6 and row 2 implies that the gener-
ated synthetic composite images still have certain gap with
the original synthetic composite images. However, jointly
using them can achieve significant improvement (row 7 v.s.
row 2). Another observation is that the improvement of our
learnable augmentation (row 7 v.s. row 2) on Hday2night
dataset is more significant than that on HFlickr dataset,
which confirms our conjecture that data augmentation is
more effective on small-scale datasets.

In Table 1b, we report the results based on RainNet and
have similar observations on the relation between differ-
ent rows. For example, simple color augmentation (row 3,
row 4) generally brings no performance gain, except when
the performance without augmentation is very poor (e.g.,
“CT” slightly improves RainNet on HFlickr). A common
SycoNet can improve the results (row 5 v.s. row 2) and the
finetuned SycoNet can achieve further improvement (row 7
v.s. row 5). The improvement on Hday2night is more no-
table than that on HFlickr.

4.3. Qualitative Results

For qualitative comparison, we show the visualization re-
sults of row 1, 2, 5, 7 in Table 1a on two datasets in Figure 3.
From row 1 to row 7, the results are overall getting better.
The results obtained by using our finetuned augmentation
network (row 7) are more visually appealing and closer to
the ground-truth real images, which proves that it is useful
to finetune the harmonization model with the aid of fine-
tuned augmentation network. More visualization results can
be found in Supplementary.

4.4. Ablation Studies on Augmentation Network

By taking Hday2night as an example, we conduct abla-
tion studies on our augmentation network SycoNet in Ta-
ble 2. Besides the harmonization metrics used in Table 1,
we also evaluate the diversity of generated composite im-
ages, which is referred to as “Div” in Table 2. In particular,
for each real training image, we randomly sample zg for
10 times to produce 10 synthetic composite images. Then,
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we calculate fMSE between each pair of composite images
and compute the average over all pairs, and then compute
the average over all real training images. For MSE, fMSE,
fSSIM, the experimental setting is the same as row 7 in Ta-
ble 1a. In detail, we finetune the harmonization model on
each dataset using data augmentation, with the augmented
images generated by different variants of our augmentation
network. We include the results obtained by using our full-
fledged augmentation network (row 7 in Table 1a) as “Ours”
for comparison.

First, we delete the reconstruction branch by removing
Ez and the associated inputs/outputs. After removal, there
is no supervision for the generated synthetic composite im-
age Ig . Therefore, we add an adversarial loss to make Ig

indistinguishable from original synthetic composite images
Ic in the training set. We observe that the produced com-
bination coefficients collapse to an one-hot vector and the
generated synthetic composite images lack diversity, which
is known as mode collapse issue [47]. As reported in row
1, “Div” is close to zero and the effect of augmentation
is negligible compared with row 2 in Table 1a. We also
try removing Ir from the input of Ez , because only using
{Ic,M} could also provide the target illumination informa-
tion of composite foreground Fc. The results become worse
than “Ours” (row 2 v.s. row 6), which shows that it would
be better to use both Ir and Ic to encode the information
required to transfer from Fr to Fc. Considering that the
random vector z could be appended to different locations
in Ez , we try an alternative location, i.e., spatially repli-
cating z and appending it to the input of Ez . The attained
results become slightly worse than “Ours” (row 3 v.s. row
6). Recall that we make some modifications about the LUT
design compared with [42, 4]. Here, we change the LUT
design to be the same as in [42, 4] and report the results
in row 4. As mentioned in Section 3.1.1, the learnt resid-
ual LUTs are prone to be similar with each other, so the
diversity of generated composite images is degraded. The
harmonization performance is also worse than “Ours”, in-
dicating that our LUT design is more effective. We also try
sampling zc to generate composite images and report the
results in row 6. Sampling zc can only reconstruct original
synthetic composite images (see Section 3.1.2) and cannot
achieve the goal of augmentation, so the obtained results are
merely comparable with those without using augmentation.

4.5. Comparing Dynamic and Static Augmentation

As described in Section 3.2, we dynamically generate
augmented composite images during the training proce-
dure, which is dubbed as dynamic augmentation. There
exists another straightforward augmentation strategy: gen-
erating augmented composite images beforehand and merg-
ing them into the original training set, which is dubbed as
static augmentation. We compare dynamic augmentation

Method MSE↓ fMSE↓ fSSIM ↑ Div↑
1 w/o rec 40.72 569.49 0.7754 0.01
2 w/o Ir 37.64 554.48 0.7760 1094.57
3 move z 34.83 525.54 0.7834 987.47
4 LUTv2 37.10 541.56 0.7810 847.01
5 zc 37.59 556.44 0.7758 8.37
6 Ours 34.44 517.00 0.7844 1132.71

Table 2: Ablation studies of our data augmentation network
SycoNet on Hday2night. “Div” measures the diversity of
augmented images. “w/o rec” means removing the recon-
struction branch. “w/o Ir” means removing Ir from Ez

input. “move z” means moving z to Ez input. “LUTv2”
means using the LUT design in [42, 4]. zc means using
zc ∼ N (µz, σ

2
z) instead of zg ∼ N (0,1) to generate Ig .

with static augmentation in Supplementary.

4.6. Evaluation on Real Composite Images

Following previous image harmonization works [36, 5,
26, 32], we also evaluate our method on 199 real composite
images from [36, 4] (99 images from [36] and 100 images
from [4]). As there are no ground-truth harmonious images
for real composite images, we conduct user study for com-
parison. The detailed user study results and visualization
results are left to Supplementary.

4.7. One Unified Model to Rule All Domains

We use SycoNet pretrained on iHarmony4 to generate
augmented images for the whole iHarmony4 training set.
Then, we train one unified model on the augmented train-
ing set, which is applied to all four domains. The detailed
results and analyses are left to Supplementary.

5. Conclusion
In this work, we have proposed learnable augmentation

to enrich the illumination diversity of image harmonization
datasets. Specifically, we design a novel augmentation net-
work named SycoNet, which can produce more synthetic
composite images for a real image. Our SycoNet can be in-
tegrated into any existing image harmonization network for
dynamic augmentation. Comprehensive experiments show
that our proposed learnable augmentation can significantly
boost the harmonization performance.
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