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Abstract

Visible watermark removal aims to erase the watermark
from watermarked image and recover the background im-
age, which is a challenging task due to the diverse wa-
termarks. Previous works have designed dynamic network
to handle various types of watermarks adaptively, but they
ignore that even the watermarked region in a single im-
age can be divided into multiple local parts with distinct
visual appearances. In this work, we advance image-
specific dynamic network towards part-specific dynamic
network, which discovers multiple local parts within the wa-
termarked region and handle them adaptively. Specifically,
we propose a query-based multi-task framework, in which
part query embeddings are jointly used in two branches to
predict part masks and restore watermarked parts. Exten-
sive experiments demonstrate the effectiveness of our fine-
grained watermark removal network.

1. Introduction

Overlaying visible watermark on a digital image has
been a prevalent way to claim copyright and declare own-
ership. As its reverse process, visual watermark removal
[33, 56] has attracted more and more research interest,
which can verify and promote the resilience of overlaid
watermarks. Specifically, visible watermark removal aims
to erase the watermark and reconstruct the watermark-free
(background) image. One major challenge of watermark
removal task is that the watermarks are very diversified, in
terms of different locations, patterns, transparencies, and so
on. Recent works [33, 56] realize this issue and develop dy-
namic networks to cope with diversified watermarks adap-
tively. For example, [33] extracts the feature of water-
marked region and appends it to original feature map as ex-
tra guidance. [56] also extracts the feature of watermarked
region, but uses it to generate dynamic convolution kernel to
manipulate the original feature map. Although [33, 56] have
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Figure 1. Two examples of watermarked images associated with
their background images, watermark masks, and watermarks. Vis-
ible watermark removal aims to erase the watermark and recon-
struct the background image.

achieved significant improvement over previous methods by
adaptively coping with various types of watermarks, they
still treat the watermarked region in an image as a whole,
disregarding the fact that even the watermarked region in a
single image could be divided into multiple parts with vastly
distinct appearances. For example, the watermarked region
in Figure 1(a) consists of one pattern and two lines of texts,
and the watermarked region in Figure 1(b) consists of one
symbol, one line of text, and extra curves. Moreover, when
a watermark is overlaid on a background image with certain
transparency, one part (e.g., one line of text) in the water-
marked region could also exhibit diverse colors due to the
colorful background, which makes the appearance of water-
marked region even more complicated.

In this work, inheriting the spirit of previous works
[33, 56], we take a further step along the path of dynamic
network. Specifically, we not only cope with the water-
marked regions in different images adaptively, but also cope
with different watermarked parts in one image adaptively,
which advances image-specific dynamic network towards
part-specific dynamic network. We adopt the multi-task
framework used in previous works [33, 56], which contains
one encoder and two encoders. The mask decoder accounts
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for localizing the watermark and the background decoder
accounts for recovering the watermarked region. Follow-
ing previous works [33, 56], we also add skip connections
[42] linking one encoder with two decoders. To cope with
different watermarked parts adaptively, we need to localize
them in the mask decoder and repair them in the background
decoder. Inspired by query-based network structures in pre-
vious works [3, 6], we introduce query embeddings into our
multi-task framework, which establishes a connection be-
tween mask decoder and background decoder.

In particular, assuming that there are in total K fine-
grained categories of watermarked parts, K part query em-
beddings and one watermark-free query embedding inter-
act with the encoder feature map through a transformer [45]
block to produce adapted query embeddings. K+1 adapted
query embeddings are expected to contain the part-relevant
information and watermark-free information of one specific
image. Then, we apply K + 1 adapted query embeddings
to mask decoder and background decoder. In the mask de-
coder, similar to [6], we calculate the similarity between
K + 1 adapted query embeddings with the last feature map
in the mask decoder to generate K part masks correspond-
ing to K part categories and one watermark-free mask. Dif-
ferent from [6], we do not have ground-truth masks for K
part categories. Hence, we enforce the union of K pre-
dicted part masks to approach the ground-truth watermark
mask and employ low-entropy loss [17] to push apart K
predicted part masks. In the background decoder, we use
K adapted part query embeddings to produce K modulated
convolution kernels for K part categories, which act upon
K local parts specified by K predicted part masks. In this
way, we can restore different watermarked parts adaptively
and achieve better restoration effect.

We conduct experiments on two benchmark watermark
removal datasets: CLWD [38] and LOGO30K [8], to verify
the effectiveness of our proposed method. Our contributions
can be summarized as follows. 1) We are the first to con-
sider fine-grained part categories in the visible watermark
removal task, which advances image-specific dynamic net-
work towards part-specific dynamic network; 2) We design
a query-based multi-task framework, in which the adapted
query embeddings are jointly used to localize different part
categories in the mask decoder and restore the correspond-
ing local parts in the background decoder; 3) Extensive ex-
periments on two benchmark datasets demonstrate the ef-
fectiveness of our proposed network.

2. Related Work

2.1. Visible Watermark Removal

Visual watermarking prevails in protecting the digital
image copyright, by superimposing a watermark on the
background image. As its adversarial task, visible wa-

termark removal can enhance the resilience of watermark.
Early methods [31, 2] proposed GAN [16]-based network
structures for watermark removal. [38, 23] formulated
watermark removal under a multi-task framework, which
predicts watermark-free image, watermark mask, and wa-
termark pattern collaboratively. [8] designed a two-stage
multi-task framework with attention mechanism and refine-
ment stage. [33] designed self-calibrated mask refinement
for adaptive mask prediction and mask-guided background
enhancement. [56] used semantic similarity to propagate
useful information and applied dynamic convolution to han-
dle diverse watermarks. [14] designed a novel architecture
for better information extraction in the long range. [37] pro-
posed watermark vaccine, which adds invisible perturbation
to the watermarked images to attack against the existing wa-
termark removal methods.

However, the above methods are still struggling to tackle
diversified and complicated watermarked regions. More-
over, they ignore that even the watermarked region in a sin-
gle watermarked image could be decomposed into multiple
parts. In this work, we consider fine-grained part categories
by localizing and restoring different local parts adaptively.

2.2. Image Content Removal

Image content removal or image restoration includes
myriads of tasks such as image deraining [46, 51], image
dehazing [7, 12, 55], shadow removal [9, 11], and so on. Be-
sides the research works in each field, there are also some
general methods [49, 20, 54, 53, 57, 40, 32] for universal
image content removal or image restoration. To name a few,
[49] proposed a transformer block with locally enhanced
window and a learnable multi-scale restoration modulator.
In [20], they proposed a general blind image decomposi-
tion network. In [54], they proposed a multi-stage progres-
sive image restoration architecture. In visible watermark
removal task, the removal target is watermark with diverse
colors, patterns, locations, transparencies, etc, making it a
challenging and unique task.

2.3. Vision Transformer

Transformer has been applied to a wide range of com-
puter vision tasks like detection [3, 58], segmentation
[48, 47, 6], and pose estimation [24, 35]. Transformer has
also been used in some low-level computer vision tasks like
image super-resolution [50, 34, 52, 1], image denoising and
image deraining [4, 49], image harmonization [18], style
transfer [10]. Our mask decoder is similar to [6], but we
do not have ground-truth part masks. More importantly, our
network is query-based multi-task framework, in which the
adapted query embeddings are jointly used in the mask de-
coder and the background decoder.
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2.4. Dynamic Network

Dynamic networks have been widely used in deep learn-
ing image processing tasks, which has been discussed and
categorized in [21]. According to [21], dynamic parameters
can be classified into parameter adjustment [22, 15], weight
prediction [43, 25, 39, 19], and dynamic features [30, 5].
Our model uses adapted query embeddings to control the
kernel weights, which belongs to weight prediction. This is
the first work to handle different watermarked parts dynam-
ically.

3. Our Method
3.1. Overall Network Structure

When superimposing one watermark on a watermark-
free (background) image Ibg , we can obtain the water-
marked image Iwm and its corresponding watermark mask
M . Visible watermark removal task aims to localize and
recover the watermarked region in Iwm, producing the
watermark-free image Ibg . Since visible watermark re-
moval task needs to handle two tasks simultaneously: wa-
termark mask prediction and background image restoration,
which falls into the realm of multi-task learning. Thus, pre-
vious works [33, 56] usually adopt the multi-task frame-
work with one encoder shared by different tasks and multi-
ple decoders accounting for different tasks. In this work, we
also employ one encoder E and two decoders {Dms, Dbg},
in which Dms is the mask decoder used to predict the wa-
termark mask M and Dbg is the background decoder used
to recover the background image Ibg . The encoder E con-
sists of five encoder blocks. The decoder Dbg/Dms consists
of four decoder blocks, in which the first decoder block is
shared by two decoders. The structures of encoder and de-
coder blocks are inherited from [23, 33]. Following previ-
ous works [33, 56], we also add skip connections [42] to
link one encoder with two decoders.

To cope with diversified watermarked parts, we learn
part query embeddings corresponding to different part cat-
egories, which are jointly used by mask decoder and back-
ground decoder. For the mask decoder, we calculate the
similarity between query embeddings and mask decoder
feature map, yielding part masks for different part cate-
gories. For the background decoder, the query embeddings
are used to modulate convolution weights for different part
categories, which act upon the background decoder feature
map within the corresponding local parts specified by part
masks. Next, we will introduce the details of part query em-
beddings in Section 3.2 and describe their usage in the mask
(resp., background) decoder in Section 3.3 (resp., 3.4).

3.2. Part Query Embeddings

Assuming that the local parts of watermarked regions
can be classified into K part categories based on dis-

tinct visual appearances, we use K part query embeddings
{qk|Kk=1} to represent the prior knowledge (e.g., color,
scale, pattern) of K part categories. Additionally, we in-
troduce a watermark-free query embedding qK+1 for the
watermark-free category. These K + 1 query embeddings
can be used to predict the watermark mask and restore the
watermarked region, establishing the connection between
the mask decoder and the background decoder.

Even for the same part category, the local parts in differ-
ent images are likely to have different visual appearances.
Similarly, the watermark-free regions in different images
also vary dramatically. To better cope with diverse images,
we further adapt query embeddings to each specific image.
Specifically, we use encoder E to extract the feature map
F en from watermarked image Iwm. Each query embedding
qk interacts with the encoder feature map F en through a
transformer [45] block T , during which qk serves as key and
the pixel-wise feature vectors in F en serve as keys/values,
producing an adapted query embedding q′

k. The adapted
query embeddings are supposed to incorporate the relevant
information from Iwm and become well-tailored to this im-
age. Next, we will introduce how the adapted query embed-
dings {q′

k|
K+1
k=1 } are used to predict fine-grained watermark

part masks and restore local parts accordingly.

3.3. Part Mask Prediction

The mask decoder Dms targets at predicting the masks
for different part categories and watermark-free category.
We denote the last feature map in Dms as Fms. Analo-
gous to [6], we obtain the masks for different part categories
and watermark-free category by calculating the similarity
between each adapted query embedding and pixel-wise fea-
ture vectors in Fms. Specifically, for the k-th adapted query
embedding q′

k, we project it to the same space as Fms us-
ing a fully-connected (FC) layer and calculate its dot prod-
uct with all pixel-wise feature vectors in Fms. We perform
softmax normalization on the dot product results over K+1
query embeddings, leading to K part masks {M̂pt

k |Kk=1}
and one watermark-free mask M̂pt

K+1. Note that we only
have the ground-truth mask M for the entire watermark
region, and there is no ground-truth supervision for each
part mask. Thus, we calculate the sum of K part masks as
M̂wm =

∑K
k=1 M̂

pt
k , which is equivalent to 1 − M̂pt

K+1.
M̂wm is enforced to be close to M using binary cross-
entropy loss:

Lms = −
∑
i,j

[M(i, j) log M̂wm(i, j) (1)

+(1−M(i, j)) log(1− M̂wm(i, j))],

in which M(i, j) (resp., M̂wm(i, j)) is the (i, j)-th entry in
M (resp., M̂wm).

When only using Lms, we observe that the predicted
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Figure 2. Our network consists of one encoder E and two decoders {Dms, Dbg}. We omit the skip connections in this figure for brevity.
The transformer block T outputs the adapted query embeddings, which interact with mask decoder feature to produce part masks and
interact with background decoder feature through our PFM block to restore the background image. The detailed architecture of PFM block
is shown in the right subfigure.

K part masks are all close to each other, failing to distin-
guish different parts. To address this issue, we additionally
employ low-entropy loss [17] for the predicted part masks,
which ensures that each watermarked pixel is classified into
certain part categories instead of uniformly distributed over
all part categories. Formally, we apply low-entropy loss to
the watermarked pixels:

Lle = −
∑
i,j

M(i, j)

K+1∑
k=1

M̂pt
k (i, j) log M̂pt

k (i, j), (2)

in which M(i, j) = 1 (resp., M(i, j) = 0) indicates the
watermarked (resp., watermark-free) pixels and M̂pt

k (i, j)

is the (i, j)-th entry in M̂pt
k . Note that lower entropy im-

plies higher concentration. In addition, the probabilities
that watermarked pixels belong to watermark-free category
have been suppressed to zero based on Eqn. 1. Therefore,
the probabilities that watermarked pixels belong to differ-
ent part categories are pushed to be concentrated based on
Eqn. 2.

Although the procedure of our query-based mask pre-
diction resembles that in [6] to some extent, our method has
several major differences: 1) [6] has ground-truth masks,
which are inaccessible in our task. Hence, we design Lms

and Lle to supervise the predicted masks; 2) Our predicted
part masks and watermark-free mask are also used in the
background decoder to help restore the background, render-
ing a novel query-based multi-task framework in which two
tasks jointly use the adapted query embeddings.

3.4. Part-aware Background Restoration

The background decoder Dbg targets at predicting the
background image. Because different part categories have

quite distinct visual appearances, we conjecture that restor-
ing different local parts in the watermarked region adap-
tively could achieve better restoration effect. Therefore, we
design a novel Part-aware Feature Modulation (PFM) block,
which utilizes the adapted query embeddings and the masks
predicted by mask decoder to restore different local parts
adaptively. The adapted query embeddings and predicted
masks solve the problem of how and where to restore, re-
spectively.

We denote the last feature map in Dbg as F bg . We ex-
pect to transform the feature map in the watermarked region
while keeping the watermark-free region unchanged, since
only the watermarked region needs to be restored. To trans-
form different local parts in the watermarked region adap-
tively, we opt for the dynamic feature transformation tech-
nique proposed in [28], which dynamically modulates con-
volution weights. In our work, we use K adapted part query
embeddings to produce K modulated convolution weights,
which are applied to F bg separately to acquire K trans-
formed feature maps {F̂ bg

k |Kk=1}.

Specifically, we have learnable base convolution weights
W̄ , in which W̄ (m,n, l) is the weight for the m-th input
channel, n-th output channel, and the l-th spatial location.
Then, we pass each adapted query embedding q′

k through
one FC layer to predict the scale vector sk corresponding to
input channels, which are used to modulate the base convo-
lution weights:

W̄ ′
k(m,n, l) = W̄ (m,n, l) · sk(m), (3)

where sk(m) is the m-th entry in sk (scale for the m-th
input channel) and W̄ ′

k(m,n, l) is the modulated weight.
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Next, we normalize the modulated weights following [28]:

W̄ ′′
k (m,n, l) =

W̄ ′
k(m,n, l)√∑

m,l W̄
′
k(m,n, l)

2
+ ϵ

, (4)

in which ϵ is a small constant to avoid numerical error. For
more details of convolution weights modulation, please re-
fer to [28]. We apply the modulated convolution weights
W̄ ′′

k to F bg and produce the transformed feature map F̂ bg
k .

Then, we combine K transformed feature maps and the
original feature map based on the predicted K part masks
and one watermark-free mask, giving rise to the final feature
map F̂ bg:

F̂ bg =

K∑
k=1

M̂pt
k ◦ F̂ bg

k + M̂pt
K+1 ◦ F

bg, (5)

in which ◦ means element-wise product. Although similar
dynamic kernel has been used in [56], our method is vastly
different from theirs in the following aspects: 1) [56] uses
the pooled watermark feature to predict the entire convo-
lution kernel, while we use adapted query embeddings to
modulate the base convolution weights; 2) [56] only pre-
dicts a single convolution kernel for the entire watermarked
region, whereas we use K modulated convolution weights
to cope with K part categories adaptively.

The final feature map F̂ bg is used to predict the back-
ground image Îbg . We combine Îbg with the input wa-
termarked image Iwm using the predicted watermark mask
M̂wm, yielding the final output Ĩbg = M̂wm ◦ Îbg + (1−
M̂wm) ◦ Iwm. Following [33, 56], we regularize the final
output with L1 loss and perceptual loss [26]:

Lbg = ∥Ĩbg − Ibg∥1 +
3∑

d=1

∥Φd(Ĩ
bg)− Φd(I

bg)∥1, (6)

where Φd(·) represents the activation map of d-th layer in
VGG16 [44].

So far, all the losses can be summarized as

Lall = Lms + Lle + λLbg, (7)

in which λ is a hyper-parameter.

4. Experiments
4.1. Datasets and Implementation Details

We conduct experiments on two benchmark datasets:
Colored Large-scale Watermark Dataset (CLWD) [38] and
LOGO30K Dataset [8]. Both datasets are constructed with
colored complex watermarks, which are challenging for wa-
termark removal task.
CLWD [38]: In CLWD, the training set has 60, 000 images
with 160 different watermarks and the test set has 10, 000

images with 40 different watermarks. The watermarks are
collected from public image websites. The background im-
ages in the training (resp., test) set are randomly chosen
from the training (resp., test) set of PASCAL VOC2012
[13]. When superimposing the collected watermarks on the
background images, the location, scale, rotation, and trans-
parency of watermarks are randomly determined, with the
watermark transparency in the range of [0.3, 0.7].
LOGO30K [8]: In LOGO30K, the training set has 28, 352
images and the test set has 4, 051 images. The watermarks
collected from Internet include more than 1k famous logos.
The background images come from the VAL2014 subset of
MSCOCO [36] dataset. When creating watermarked im-
ages, the watermark transparency is set in the range of [0.35,
0.85].

Following previous methods [38, 33], we use PSNR,
SSIM, RMSE, and RMSEw to evaluate the restored back-
ground, in which RMSEw means RMSE calculated within
the watermarked region. We use IoU and F1 to evaluate the
predicted watermark mask.

Our method is implemented with Pytorch [41]. The input
image size is set to 256 × 256. During training, we choose
Adam [29] optimizer with the initial learning rate being
0.001. All methods are trained and evaluated on Ubuntu
4.18.0, with 512GB memory, Intel(R) Xeon(R) Platinum
8358 CPU, and one A100 SXM4 40GB GPU. The encoder
E has five encoder blocks and the decoder Dms/Dbg has
four decoder blocks, in which the encoder and decoder
block structures are borrowed from [33]. The transformer
block T has two transformer layers [45]. We set K = 8 and
λ = 10 by default.

4.2. Comparison with Baselines

We compare with two groups of baselines: 1) the gen-
eral methods for image content removal; 2) the watermark
removal methods.

For the first group of methods, we compare with recent
methods MPRNet [54], UFormer [49], and BIDNet [20].
We also include UNet [42] for general image-to-image
translation as a baseline. For the second group of methods,
we compare with the following watermark removal meth-
ods: Li et al. [31], Cao et al. [2], WDNet [38], BVMR [23],
SplitNet [8], SLBR [33], DKSP [56].

We first evaluate the restored backgrounds from differ-
ent methods, which are summarized in Table 1. We ob-
serve that the methods specifically designed for watermark
removal are generally better than general content removal
methods [54, 49, 20]. Among the watermark removal meth-
ods, [8, 33, 56] achieve competitive performance due to
the multi-task framework. Our method significantly outper-
forms the existing methods, including [56] which uses addi-
tional semantic information. The superiority of our method
is attributed to the fined-grained watermark removal ability
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Method CLWD LOGO30K
PSNR↑ SSIM ↑ RMSE↓ RMSEw ↓ PSNR↑ SSIM ↑ RMSE↓ RMSEw ↓

U-Net [42] 23.21* 0.8567* 19.35* 48.43* 24.64* 0.8816 17.84 43.29*
MPRNet [54] 35.19 0.9725 5.52 20.76 37.81 0.9866 4.26 20.67
UFormer [49] 34.07 0.9784 6.29 25.66 39.84 0.9936 3.34 18.68
BIDNet [20] 35.02 0.9709 5.66 21.75 36.63 0.9829 4.83 24.29
Li et al. [31] 27.96* 0.9161* 12.63* 46.80* 30.51* 0.9312 10.51 39.11*
Cao et al. [2] 29.04* 0.9363* 10.36* 41.21* 32.18* 0.9654 8.20 35.16*
WDNet [38] 35.53* 0.9738* 5.11* 17.27* 39.15* 0.9874 3.49 15.94*
BVMR [23] 35.89* 0.9734* 5.02* 18.71* 38.28* 0.9852* 3.52 16.72*
SplitNet [8] 37.41* 0.9787* 4.23* 15.25* 41.27* 0.9910* 3.12 14.85*
SLBR [33] 38.28* 0.9814* 3.76* 14.07* 41.50* 0.9914 2.98 14.69*
DKSP† [56] 38.84* 0.9813 3.53 12.16* 42.16* 0.9921 2.77 13.78*

Ours 39.45 0.9823 3.19 11.28 42.57 0.9923 2.46 12.44
Table 1. The results of restored backgrounds of different methods on CLWD [38] and LOGO30K [8]. The results marked with ∗ are directly
copied from previous papers [8, 33, 56]. The method marked with † uses additional semantic information. The best results are denoted in
boldface.

Method CLWD LOGO30K
IoU↑ F1 ↑ IoU↑ F1 ↑

WDNet [38] 0.6120* 0.7240* 0.6821* 0.8010*
BVMR [23] 0.7021* 0.7871* 0.7287* 0.8305*
SplitNet [8] 0.7196* 0.8027* 0.7414* 0.8411*
SLBR [33] 0.7463* 0.8234* 0.7858* 0.8647*
DKSP† [56] 0.7730* 0.8480* 0.8016* 0.8770*

Ours 0.7909 0.8634 0.8185 0.8898
Table 2. The results of predicted watermark masks of different
methods on CLWD [38] and LOGO30K [8]. The results marked
with ∗ are directly copied from previous papers [33, 56]. The
method marked with † uses additional semantic information. The
best results are denoted in boldface.

by considering fine-grained part categories.
We also compare the quality of watermark masks pre-

dicted by different methods in Table 2. We only compare
with those methods [38, 23, 8, 33, 56] which predict water-
mark masks. Again, our method achieves the best results on
both datasets.

We show the visual comparison between different meth-
ods in Figure 3. We compare with the competitive baselines
WDNet [38], SplitNet [8], SLBR [33], DKSP [56]. We
show both predicted watermark masks and restored back-
grounds. Our method can predict accurate and complete
watermark masks, while the baseline methods could only
predict incomplete mask, when the watermark is composed
of multiple parts. This is because we use adapted query em-
beddings corresponding to different part categories to pro-
duce multiple part masks, which can cover the complete wa-
termarked region. For background restoration, since base-
lines fail to predict complete watermark masks, they cannot
erase the whole watermark and the recovered backgrounds
are far below expectation. With the predicted complete wa-
termark masks, our method can successfully repair the en-

# T Dms Dbg Evaluation Metrics
PSNR↑ RMSEw ↓ IoU↑ F1 ↑

1 - q - PFM 40.08 16.60 0.7474 0.8325
2 - Lle - PFM 40.20 16.54 0.7576 0.8409
3 + -PFM 40.23 16.48 0.7893 0.8674
4 + + 41.67 13.85 0.8023 0.8772
5 + SB 41.04 14.84 0.7928 0.8699
6 + DK 40.82 15.51 0.7896 0.8679
7 + -g 40.47 16.43 0.7895 0.8672
8 + + + 42.57 12.44 0.8185 0.8898

Table 3. The ablation study results on LOGO30K [8]. “SB” is
short for scale/bias, “DK” is short for dynamic kernel, and “q”
stands for query embeddings.

tire watermarked region by handling different local parts
adaptively, producing visually pleasant backgrounds closer
to the ground-truth.

4.3. Ablation Studies

We conduct ablation studies to analyze the effectiveness
of each component and loss term, which are summarized in
Table 3. We first build a basic model without using query
embeddings or PFM module in row 1, in which case Fms

directly outputs the watermark mask and F bg directly out-
puts the restored background. Then, we use K + 1 query
embedding to interact with Fms to predict mask without
low-entropy loss Lle. The obtained mask results in row
2 are better than those in row 1, which proves the effec-
tiveness of query-based mask prediction. However, we ob-
serve that the predicted masks for different part categories
are prone to resemble each other. Thus, we add Lle to en-
force K part masks to be different from each other. By
comparing row 3 with row 2, we observe that the mask re-
sults are significantly improved by discovering multiple part
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Figure 3. From left to right, we show the watermarked image, the results of WDNet [38], SplitNet [8], SLBR [33], DKSP [56], our method,
and the ground-truth. In each group, the top row shows the restored background image and the bottom row shows the predicted watermark
mask. The top two examples are from LOGO30K [8] and the bottom two examples are from CLWD [38].

categories. Based on row 3, we insert our PFM block into
the background decoder, leading to row 4. We observe that
the background results are greatly improved. In the mean-

while, the mask results are also improved, which might ben-
efit from the information sharing between two tasks.

Based on row 4, we explore several variants of our PFM
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Figure 4. From left to right, we show the watermarked image, the results of row 1, 2, 3, 4, 8 in Table 3, and the ground-truth. In each group,
the top row shows the restored background image and the bottom row shows the predicted watermark mask.

block. Recall that we use the dynamic strategy proposed
in [28]. We also try some alternative ways of dynamic fea-
ture transformation. One alternative is dynamic convolution
similar to [33]. Specifically, we use adapted query embed-
dings to predict dynamic convolution kernels for different
part categories, which are applied to the corresponding re-
gions in the feature map. Another alternative is predict-
ing scales and biases similar to [27]. Specifically, we use
adapted query embeddings to predict channel-wise scales
and biases for different part categories, which are applied
to the corresponding local regions in the feature map. The
comparison among row 4, row 5, and row 6 shows that our
choice in the method is the optimal one. Moreover, we re-
move the guidance from query embeddings and treat the
input channel scales as learnable parameters. Without the
guidance of query embeddings, the learnt dynamic convo-
lution weights are less effective and thus the performance
(row 7) becomes worse than those with guidance (row 4-6).

At last, we add the transformer block T to adapt query
embeddings to each specific image. The obtained results in
row 8 verify the validness of adapted query embeddings, be-
cause the local parts from different images belonging to the
same part category may still have highly contrastive visual
appearances.

In Figure 4, we show the results of row 1, 2, 3, 4, 8
in Table 3. From row 1 to row 4, although the quality of

restored backgrounds are getting better, the watermarks are
not completely erased and residual watermark traces can be
obviously seen. When using our full method equipped with
all modules, row 8 achieves the best results that are close to
the ground-truth backgrounds.

5. Conclusion

In this work, we have proposed a query-based multi-task
framework for visible watermark removal, in which query
embeddings corresponding to different part categories are
jointly used for fine-grained mask prediction and back-
ground reconstruction. Our network can split one water-
marked region into multiple local parts and restore different
local parts adaptively. By considering fine-grained water-
marked parts, our network surpasses the existing methods
on two benchmark datasets.
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