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Abstract

Most lip-to-speech (LTS) synthesis models are trained
and evaluated with the assumption that the audio-video
pairs in the dataset are well synchronized. In this work, we
demonstrate that commonly used audiovisual datasets such
as GRID, TCD-TIMIT, and Lip2Wav can, however, have the
data asynchrony issue, which will lead to inaccurate eval-
uation with conventional time alignment-sensitive metrics
such as STOI, ESTOI, and MCD. Moreover, training an LTS
model with such datasets can result in model asynchrony,
meaning that the generated speech and input video are out
of sync. To address these problems, we first provide a time-
alignment frontend for the commonly used metrics to ensure
accurate evaluation. Then, we propose a synchronized lip-
to-speech (SLTS) model with an automatic synchronization
mechanism (ASM) that corrects data asynchrony and penal-
izes model asynchrony during training. We evaluated the
effectiveness of our approach on both artificial and popu-
lar audiovisual datasets. Our proposed method outperforms
existing SOTA models in a variety of evaluation metrics.

1. Introduction

Lip-to-speech (LTS) refers to the task of reconstructing
spoken audio from a speaker’s lip movements in a video that
lacks sound. It is especially useful in circumstances where
audio is missing due to various reasons, such as inadequate
recording devices, ambient noise, transmission failures, efc.
Deep learning has significantly advanced this field, with the
development of various data-driven deep networks aimed at
solving the LTS task.

During the training and evaluation of LTS models, it
is often assumed that there is little or no time offset be-
tween the corresponding audio-video data pair, as audiovi-
sual datasets are usually believed to be well synchronized.
However, as shown in Fig. 2 and studies by others [26],
commonly used datasets for training and evaluating LTS
models have varying time offsets within their audio-video
pairs, which we refer to as data asynchrony. While some

1.0 & 1.0 1%
\ \,
\ \
S S
_ N ~ 0.8 N
108+ w xl LN
5 S 06
2 = 4 n_
0.6 —®- Vanilla S —®- Vanilla SS
: - 044 : -
Aligned R Aligned Sso
- h |
0 10 20 30 40 0 10 20 30 40
Offset (ms) Offset (ms)
Y] 4.550 Tl ===
—®- Vanilla =" ‘(\\\ —® - Vanilla
. - ~ .
30 1 Allgncd/rf 4.525 4 D | Aligned
—~ = \
L -~ L4500 N
a bl o \
E / 4] \
104 / A 4.475 A \
II \\ A
/ 4.450 4 -
0x o
0 10 20 30 40 0 10 20 30 40
Offset (ms) Offset (ms)

Figure 1: The impact of offsets on alignment-sensitive met-
rics such as STOI, ESTOI, and MCD can be significant. A
40ms offset, which is equivalent to a single video frame at
25 fps, can lead to severe degradation in the scores of the
original versions of these metrics (i.e. Vanilla). PESQ is less
affected due to its alignment mechanism. Our proposed so-
lution, which is a time alignment frontend applied to each of
the metrics (i.e. Aligned), ensures consistent scores regard-
less of the offsets. The results were obtained by computing
the scores between the ground truth audio as the reference
and its offset versions as the test audios on the test set of
GRID-4S (as described in Section 4.1).

datasets such as GRID [4] and TCD-TIMIT [7] have small
offsets within 1 video frame (i.e., £40ms), others like
Lip2Wav [20] can have larger offsets of multiple video
frames.

Data asynchrony can significantly impact the evaluation
of LTS models. Even a slight misalignment between the
reference and the test audio can have a major impact on
the vanilla STOI [24], ESTOI [11] and MCD [16] scores
during evaluation. To address this issue, we propose a
time-alignment frontend that precedes the computation of
alignment-sensitive metrics. This frontend effectively miti-
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Figure 2: AV offsets produced by SyncNet on various datasets with the SyncNet confidence scores noted beneath the speaker
ID. We only consider offsets with confidence scores greater than 3.0. Most of the samples in the GRID-4S and TCD-TIMIT-
LS datasets exhibit zero or slight offsets of +40 ms. In contrast, the Lip2Wav dataset shows larger offsets, with the chess
speaker exhibiting -200 to -250 ms and other speakers showing offsets around -80 ms.

gates the impact of synchronization errors on conventional
time-alignment sensitive metrics, thus ensuring consistent
scoring despite data asynchrony, as demonstrated in Fig. 1.

When a model is trained on a dataset with synchroniza-
tion errors, it can generate offset audio against the input
video during inference. We refer to this issue as model asyn-
chrony. To train LTS models that can handle asynchrony
in datasets and produce synchronized output, we propose
the synchronized lip-to-speech (SLTS) model, which incor-
porates an automatic synchronization mechanism (ASM)
to ensure synchronization from both the data and model
perspectives during training. The ASM overcomes data
asynchrony with a data synchronization module (DSM) and
prevents model asynchrony using the self-synchronization
module (SSM).

In our experiment section, we first validated the robust-
ness of the proposed SLTS model on a small-scale artificial
dataset with severe data asynchrony issue called GRID-4S-
Async, which we created from GRID [4] by adding artificial
audio-video offsets uniformly sampled from —150 to 150
ms. Then we tested the SLTS model on popular audiovi-
sual datasets, including GRID-4S [4], TCD-TIMIT-LS [7],
and Lip2Wav [20]. Our findings demonstrate that SLTS is
effective on datasets with either obvious asynchrony that
can be seen by the human eye (e.g. GRID-4S-Async and
Lip2Wav [20]), or slight synchronization errors (e.g. single
frame or sub-frame offsets, such as in GRID-4S and TCD-
TIMIT-LS [7]).

In summary, this paper offers several contributions to
the field of lip-to-speech (LTS) synthesis. We begin by
identifying two types of asynchrony issues that arise dur-
ing the development of LTS models: data asynchrony and
model asynchrony. Next, we propose a time alignment fron-
tend to enable consistent evaluation regardless of the time
offsets in the audiovisual dataset. Following this, we in-
troduce a novel synchronized lip-to-speech (SLTS) model,
which incorporates an automatic synchronization mecha-
nism (ASM) that actively learns audiovisual time offsets

during training, aiding in the rectification of data asyn-
chrony and alleviating model asynchrony. The SLTS model
shows competitive and, in many cases, superior perfor-
mance on various datasets, leading to high-quality and syn-
chronized audio reconstruction.

2. Related works

Synchronization in lip-to-speech models. Lip-to-speech
models often use components with large temporal re-
ceptive fields, such as 3D convolutional stacks [20],
LSTM/GRU [1, 20, 28, 18], location-sensitive attention [20,

], and self-attention [13, 27], which are vulnerable to
model asynchrony. When the dataset exhibits data asyn-
chrony, the large receptive field can cause the model to
generate audio that is offset from the input video. Kim et
al. [13] suggested the use of additional synchronization
losses during training as a solution for model asynchrony.
However, their method does not take into account the issue
of data asynchrony.

Lip-sync models. The primary objective of lip-sync models
is to accurately predict audiovisual offsets, thus rectifying
any synchronization errors. Existing works, such as [3, 14],
construct positive (i.e. in-sync) and negative (i.e. off-sync)
audiovisual pairs to train the model with contrastive loss.
Chung et al. [3] utilize the audiovisual samples in the train-
ing set as positive pairs. They generate negative pairs by
randomly shifting the audio and train their network using
contrastive loss from Siamese networks[2]. Kim et al. [14]
adopt a softmax-based contrastive loss, treating audio and
video features from the same time step as positive pairs and
those from different time steps as negative pairs. Both meth-
ods assume that the audiovisual dataset is well synchronized
to create the positive and negative pairs. In contrast, our
proposed data synchronization module (DSM) does not as-
sume that the dataset is synchronized. Instead, it processes
a set of candidate pairs and discovers positive and nega-
tive pairs in an unsupervised manner, driven by the learn-

7844



Offset Video
Frames X°@

Offset Video
Frame Features F°d

One-Hot Speaker

Offset Reconstructed
Embeddings ~ Mel-Spectrogram M°d*om

S

i
|
|
/4 V| - } SM
e | Video Frame D D Mel [
@ Encoder Decoder > DSM —* ——>  Vocoder —*

Hard-Corrected

E Mel-Spectrogram M"

Ground Truth ASM

Mel-Spectrogram M (Training-Only) }
[ St A S

Offset-Corrected

|
|
|
|
!
!
|
|
|
|
|
|
} Waveform Y
|
|
|
|
|
|

Figure 3: An overview of the proposed SLTS model architecture. Where o, is due to data asynchrony and o,, is due to model
asynchrony; both are measured in seconds. The two asynchrony issues are handled by DSM and SSM respectively.

ing objective of the lip-to-speech task (to be introduced
in Sec. 3.5).

End-to-end lip-to-speech models. Lip-to-speech models
typically represent waveforms using more compact acoustic
features, such as mel-spectrograms. As a result, these mod-
els require a vocoder to convert these acoustic representa-
tions into audio waveforms. Commonly used vocoders in-
clude the algorithmic Griffin-Lim used in [20, 13, 28], and
separately trained neural vocoders explored in [12, 9, 17].
Recently, there has been increasing interest in develop-
ing end-to-end lip-to-speech models that directly generate
audio waveforms [18, 27]. In this work, we also delve
into end-to-end modeling by jointly training a UnivNet
vocoder [10] as part of the proposed model.

3. Synchronized lip-to-speech synthesis

In this section, we outline our synchronization methods
for both evaluation and training. We start with the metric
alignment frontend, a mechanism that guarantees consis-
tent evaluation, irrespective of dataset asynchrony. Follow-
ing this, we turn our attention to our synchronized lip-to-
speech (SLTS) model, detailing the automatic synchroniza-
tion mechanism and our end-to-end training objectives.

3.1. Metric alignment frontend

As shown in Fig. 1, alignment-sensitive metrics such as
STOI [24], ESTOI [1 1] and MCD [16] can produce inaccu-
rate scores when the two input audio signals are not time-
aligned. To solve this issue, we propose a time alignment
frontend to synchronize the degraded (i.e. generated) and
reference (i.e. ground truth) audio signals.

The frontend initiates by identifying the optimal align-
ment, which is subsequently used to adjust the degraded
audio signal. To accomplish this, we utilize a method based
on grid search. First, we extract mel-spectrograms from
both the degraded and reference 16-kHz audio signals us-
ing a window size of 40 ms and a hop length of 10 ms, and
then L2-normalize these mel-spectrograms across the mel-
frequency bands. Following this, we shift the normalized

mel-spectrogram of the degraded audio frame by frame,
generating a range from —30 to 30 frames, equivalent to
—300 to 300 ms, resulting in 61 potential shift proposals.
We then identify the shift proposal that yields the smallest
mean squared error (MSE) when compared to the normal-
ized reference mel-spectrogram, and select this proposal as
the optimal one for adjusting the degraded audio. The ad-
justed degraded audio and original reference audio are sub-
sequently used as input for conventional metrics to produce
the final scoring.

During the aforementioned process, length discrepancies
can arise due to the shifting operation. When searching for
the optimal shift proposal, we truncate the reference mel-
spectrogram, either from the start or end based on the direc-
tion of the shift, to ensure precise alignment. Once the best
offset is identified, we instead correct the length mismatch
by padding the degraded audio with silence (i.e., a value of
0), either at the beginning or end as needed, while ensuring
the reference audio remains unaltered before sending to the
metrics.

In Fig. 1, we compare the commonly used metrics in
their original form (i.e. Vanilla) and when they are used
with our proposed time alignment frontend (i.e. Aligned).
Our time alignment frontend consistently provides accurate
scoring, regardless of the AV offsets.

3.2. SLTS model architecture overview

Once we have addressed the issues related to the eval-
uation metrics, our attention shifts towards improving the
model architecture for training with asynchronous datasets.
To this end, we introduce the synchronized lip-to-speech
(SLTS) model, as depicted in Fig. 3. Without loss of gen-
erality, we assume that the audio in each audio-video pair
is offset free and is referred to as ground truth audio, while
the video in the pair, however, can be offset from the au-
dio and is referred to as offset video. During training, SLTS
reconstructs an offset-corrected audio waveform Y € RT«
from a silent offset video X % € RTv*HxWX3 that has an
offset of 04 seconds to match ground truth audio Y € R,
Here, T, is the length of the audio waveform, T, is the
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Figure 4: Proposed AV offset predictor architecture.

number of video frames, H, W, and 3 denote the height,
width, and number of channels of the RGB video frame,
respectively. During inference, the SLTS model operates in
two modes. When a reference mel-spectrogram is given, the
SLTS model generates a synchronized audio signal, denoted
Y. If not, it creates an offset audio, Y”d, which aligns with
the offset input video, X °¢. The former mode serves as an
AV synchronizer, while the latter is used for the LTS task.

3.3. Lip-to-speech backbone

The proposed synchronized lip-to-speech (SLTS) model
shares several typical components with conventional LTS
models, including a video encoder, a mel-spectrogram de-
coder, and a vocoder. The video encoder used in this work is
a framewise 2D-ResNet18 [8], which produces a sequence
of D-dimensional vectors F' = (fo,..., fr,—1) at 25 Hz,
where f; € RPs. The mel decoder comprises a Con-
former [6] and a Convld-based postnet. Frame features
F', obtained at a rate of 25 Hz, are first concatenated with
the speaker embedding and then fed into the Conformer to
generate compact acoustic representations. These represen-
tations capture both local and global contexts, which are
then linearly upsampled to 100 Hz and passed into the post-
net to reconstruct mel-spectrograms M at 100 Hz. The
reconstructed mel-spectrograms are then fed into a Uni-
vNet vocoder [10] to produce 16 kHz audio waveform. To
effectively train the vocoder, we randomly segment pairs
of generated mel spectrograms and reference audio wave-
forms into 0.6-second segments, since vocoders are typi-
cally trained with shorter audio segments.

3.4. AV offset predictor

To tackle asynchrony issues, we develop an automatic
synchronization mechanism (ASM) and incorporate it into
the lip-to-speech (LTS) model, forming our synchronized
lip-to-speech (SLTS) model. The ASM consists of two
modules: a data synchronization module (DSM) and a
self-synchronization module (SSM). Both modules have
its time-offset predictor, which parameterizes a categorical
distribution on the audiovisual offsets within a predefined
range. Before exploring the details of the two synchroniza-
tion modules, we first introduce the proposed offset predic-
tor in this section.

As detailed in Fig. 4, the offset predictor first ex-
tracts two normalized feature embedding sequences: the
linearly upsampled video frame embedding sequence,
Vor = (vge,.. g _1)» and the mel-spectrogram em-
bedding sequence, U = (uy, ..., ur, —1) of length T),,
both at a frequency of 100 Hz. A cross-correlation se-
quence, ¢ = (c_k,...,ck), where K € NT signifies the
preset range in terms of the number of frames of the mel
spectrogram, is then calculated as follows:

min(k,0)+T), —1

a= >

i=max(k,0)

(00 i), (1)

The computed cross-correlation sequence is then passed
through a softmax function with a manually adjusted tem-
perature parameter (set at 7 = 0.1), to generate the offset
distribution:

exp(ck/T)

i gexp(ei/T)

where O represents the parameters of the offset predictor.
We use the same architecture for audio and video feature ex-
tractors, consisting of two Conv1D-BN-GELU blocks fol-
lowed by a fully connected layer. The first ConvlD has a
kernel size of 3, and the other has a kernel size of 1. This
design decision confines the receptive field to maintain the
time precision of the embeddings, while leveraging certain
temporal context, and thereby enhancing the discriminabil-
ity of the embeddings.

Po(k|F%, M) = )

3.5. Data synchronization module (DSM)

The proposed data synchronization module (DSM) in-
corporates an offset predictor that parameterizes a cate-
gorical distribution on audiovisual offsets, represented as
Po,(k | F°*,M). Tt does so by utilizing the ground-
truth mel-spectrogram, M, and the offset video features,
F°4_along with a specific set of parameters from the DSM
model, ©4. As illustrated in Fig. 5, the produced offset dis-
tribution is later used to rectify the reconstructed mel spec-
trogram prior to the calculation of frame-level losses (e.g.
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Figure 5: The data-synchronization module.

MSE and vocoder losses), through both soft and hard cor-
rections.

First, we generate a soft-corrected mel-spectrogram,
denoted as M?*.  This process entails reversing the
temporal direction of the offset distribution, followed
by a convolution operation with the reconstructed mel-

spectrogram: Moatom = (fpgtom . gnjaTom) Asa
result, we obtain a soft-corrected mel-spectrogram denoted
as M* = (m§, ... ,m%m_l), where:

min(K,z)

mi = > Po,(—k | F°*, M)sg(mnitom).
k=max(—K,i—T,+1)

(3)
A soft-DSM loss is defined as:

Loy = | M — M*|3. (4)

The loss aims to supervise the offset predictor to produce
the most appropriate shift to correct the offset in the video,
hence matching the generated audio with the target au-
dio. In Eq. (3), the gradient stopping operation, denoted
by sg(-), is essential to avoid potential optimization issues.
The soft-corrected mel-spectrogram aggregates various off-
set proposals, some of which may be incorrect. Without
the gradient stopping operation, these erroneous proposals
could lead the decoder to attempt to learn from multiple in-
correct targets simultaneously, thus hindering model con-
vergence.

Given that the soft-DSM loss solely generates gradi-
ents for updating the offset predictor, and the decoder does
not receive updates due to the gradient stopping operation,
we also incorporate a hard-corrected reconstructed mel-
spectrogram. This is used to supervise the decoder based on
the most probable offset proposal. The hard-corrected mel-
spectrogram M" = (1nft,... k. ) is computed by
convolving the reconstructed mel-spectrogram with another
correction convolution kernel that suppresses all offsets but
the most probable one, as shown in the left branch in Fig. 5.
This is equivalent to the following mel-spectrogram shifting
operation:

moiton >k
mh:{ ik = ®)

where k = argmax Pg,(k | F°¢, M). The out-of-bound
k

frames, i.e., 1 < 12;, are set to zero and excluded from the
loss computation. Note that there is no sg(-) operation ap-
plied to the mel-spectrogram this time as we want the loss
to supervise the decoder. Similarly, we apply the MSE loss
on the hard-corrected mel-spectrogram:

L = || M — M"]3, ©6)
which we name as the hard-DSM loss.

3.6. Self-synchronization module (SSM)

During our initial experiments, we observed that the
model trained solely on DSM tended to generate mel-
spectrograms with a large consistent shift, which was likely
due to the model’s asynchrony caused by the Conformer’s
extensive receptive field. To alleviate this, we propose the
self-synchronization module (SSM). SSM includes an off-
set predictor parameterized by ©; to generate an offset dis-
tribution, Pe_(k | F°¢, M°om). Based on this offset dis-
tribution, we compute the SSM loss:

Lssm := —10gP@5 (k‘ =0 | Fod,Mod—H)m). @)

This loss function aims to encourage similarity between
the features of the generated audio and video at the same
timestep, while penalizing similarity between features at
different time steps.

3.7. End-to-end training of the SLTS model

So far, we have introduced several losses from the ASM,
including the soft-DSM to train the offset predictor, the
hard-DSM to guide the generation of the mel spectrogram,
and the SSM loss to prevent the model from producing
internal offsets. Since our model is an end-to-end sys-
tem that aims to generate waveforms, the vocoder is also
trained from scratch as part of the model. We supervise
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the vocoded waveform using the a spectral convergence loss
Ly, alog-STFT magnitude loss Lmae, and a negative STOI
loss Lyeg-stoi- Moreover, we optionally adopt the GAN ob-
jectives by employing a multi-resolution spectrogram dis-
criminator (MRSD) and a multi-period waveform discrimi-
nator (MPWD) to improve speech quality. Our final training
loss is given by:

L= Ll + Lism + Lssm + Luocs 3

where Lyoc 1= Lsc + Lmag + Loeg-stoi + AaLc. When train-
ing with GAN objectives, we set A\g¢ > 0 and adopt an ad-
ditional loss, Lp, to update the discriminator. Details on
vocoder training and GAN objectives (i.e., L, Lmag, La»
and Lp) can be found in [10].

4. Experimental settings

In this section, we will cover the specifics of our ex-
perimental setup. We first discuss the datasets used for
our study, then outline our evaluation metrics and the time
alignment frontend, and finish with our model training de-
tails.

4.1. Datasets

GRID-4S and GRID-4S-Async are subsets of the audio-
visual corpus GRID [4] that consist of four speakers: two
males (s/ and s2) and two females (s4 and s29). These
subsets are commonly used to evaluate lip-to-speech mod-
els [20, 13]. The corpus, recorded in a controlled laboratory
environment, features a limited vocabulary and employs an
artificial grammar. We follow the convention of dividing
the 4,000 samples (approximately 3.3 hours) into 90% for
training, 5% for validation, and 5% for testing (namely the
90-5-5 rule). We refer to the original dataset as GRID-
48, and then create another artificial dataset called GRID-
4S-Async by adding random AV offsets uniformly sampled
from —150 to 150 ms to each sample. This asynchronous
artificial dataset was designed to demonstrate the robustness
of the proposed SLTS model.

TCD-TIMIT-LS [7] is an audiovisual corpus produced
under laboratory conditions using real English sentences
and a larger vocabulary. The original TCD-TIMIT dataset
was produced by three professionally trained lip speakers
and 59 normal-speaking volunteers. Following the litera-
ture [20, 13], we only included the data from the three pro-
fessionally trained lip speakers. The three-speaker subset
consists of 1,131 samples, for a total of roughly 1.82 hours
of data. We split this subset using the 90-5-5 rule.
Lip2Wav [20] is a large-scale audiovisual dataset collected
from YouTube lecture videos. It contains a total of 16K
samples and more than 120 hours of data, including five
different speakers. We used the official data split for this
dataset.

4.2. Evaluation metrics

PESQ [22] evaluates the perceptual quality of a generated
speech compared to a clean reference speech. We follow
[20, 13] to report the narrowband MOS-LQO score.

STOI [24] & ESTOI [11] predict the intelligibility of gen-
erated speech by measuring the correlation of short-time
temporal envelopes with clean speech. These metrics as-
sume that the audio signals are time-aligned.

MCD [16] measures speech quality by computing the dif-
ferences between two sequences of mel cepstra, which are
extracted from the generated audio and reference audio.
WER is a metric used to evaluate the word accuracy of the
generated audio compared to its ground-truth transcription.
Since LTS does not directly generate text, we use Whis-
per medium [21] to obtain transcriptions of the generated
speech, with the resulting WER denoted as w-WER. Since
Whisper is trained with general English sentences, it is not
well suited for recognizing the artificial grammar used in
GRID. Instead, we train an ad hoc Kaldi ASR model [19]
on GRID-4S training data to recognize the generated audio,
with the resulting WER denoted as k-WER.

4.3. Time alignment frontend

We apply the time alignment frontend introduced
in Sec. 3.1 to alignment-sensitive metrics such as STOI, ES-
TOI, and MCD. This helps to achieve stable evaluation on
datasets with severe data asynchrony. The results obtained
with the frontend are denoted with the prefix a-.

4.4. Implementation details

To obtain the facial region of the videos for the three
datasets, we use the S3FD [29] face detector. Before
face detection, the long videos in the Lip2Wav dataset
are segmented into chunks with a maximum duration of
30 seconds, following the official Lip2Wav pre-processing
pipeline.

We limit the length of the video clips to a maximum of
three seconds using random clipping during training. To
train our SLTS models, we use a batch size of 32 and the
Adam optimizer [15] with linear warm-up and cosine an-
nealing learning rates. We use 1k warm-up steps and a
maximum learning rate of 5 x 10~%. For the GRID and
TCD-TIMIT models, we choose the conformer (S) archi-
tecture and set the offset predictor range to 150 ms. For
the Lip2Wav models, we choose the conformer (M) ar-
chitecture and set the offset predictor range to £300 ms.
All SLTS models are trained for a maximum of 50k itera-
tions, each taking around one day on an NVIDIA RTX 2080
Ti GPU. For comparison, we also train the state-of-the-art
VCA-GAN [13] for a maximum of 70k iterations using the
Adam optimizer with a fixed learning rate of 1 x 10~%. To
fit the model within the same amount of VRAM required by
SLTS, we reduce its batch size to 24.
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Dataset | Model | STOIt ESTOIt PESQT MCD | | a-STOI1 a-ESTOIT a-PESQT a-MCD | | WER (%) |
VCA-GAN 0.325 0.056 1.811  44.499 0.700 0.492 1.793 30.328 14.67
GRID-4S-Async | SLTS w/o ASM | 0.348 0.095 1.827  44.508 0.735 0.557 1.820 27.723 8.677
SLTS 0.337 0.079 1924  45.152 0.752 0.585 1.909 26.670 4251
VCA-GAN 0.688 0.500 1917  29.720 0.732 0.552 1.910 28.437 8.501
GRID-4S SLTS w/o ASM | 0.698 0.519 1.906  27.438 0.753 0.582 1.903 25.684 4,921
SLTS 0.703 0.525 1932 27.327 0.761 0.592 1.933 25.404 2.92f
VCA-GAN 0.577 0.398 1373 33.450 0.593 0.412 1.376 33.175 79.96
TCD-TIMIT-LS | SLTS w/o ASM | 0.622 0.460 1.480  30.334 0.650 0.496 1.482 29.667 50.40
SLTS 0.606 0.445 1.480  30.818 0.664 0.511 1.480 29.430 38.06
VCA-GAN 0.543 0.364 1.363  37.827 0.659 0.477 1.365 34.600 48.20
Lip2Wav chem | SLTS w/o ASM | 0.603 0.445 1478 34.104 0.736 0.578 1.481 30.291 33.03
SLTS 0.215 0.049 1.520  49.481 0.760 0.616 1.515 29.130 24.69

Table 1: Comparison between VCA-GAN [

], SLTS without ASM during training, and SLTS, on the GRID-4S-Async,

GRID-4S, TCD-TIMIT-LS, Lip2Wav chem. a- denotes metrics with the time alignment frontend. The WER indicated by  is
k-WER, while the others are w-WER, as described in Sec. 4.2. The ground-truth texts used to compute WER come from the
dataset by default, except for Lip2Wav as the dataset contains no transcriptions. For Lip2Wav, we obtained the ground truth

transcription by applying Whisper on the ground-truth speech.

Unless otherwise stated, the results presented are from
models with the best time-aligned STOI (i.e. a-STOI) on
the validation set throughout the training. The a-STOI is
computed after every 1k iterations for GRID-4S and TCD-
TIMIT-LS and 5k iterations for Lip2Wav. By default, we
do not apply GAN objectives, except for the SLTS model
with GAN in Tab. 2.

5. Results and discussion
5.1. Effectiveness of synchronization training

We begin by demonstrating the robustness of our pro-
posed SLTS model with the GRID-4S-Async dataset, as
shown in Tab. 1. The GRID-4S-Async dataset exhibits
a severe data asynchrony issue that causes vanilla time-
alignment sensitive metrics, such as STOI, ESTOI, and
MCD, to fail. In contrast, the metrics with the proposed
time alignment front-end show more reasonable scores
when considering the GRID-4S scores as a reference. Ac-
cording to the scores of time-alignment insensitive met-
rics, such as PESQ and k-WER, as well as aligned metrics,
such as a-STOI, a-ESTOI, and a-MCD scores, our proposed
SLTS model equipped with ASM achieves the best results.
This shows the effectiveness of the proposed ASM model
when dealing with a dataset with severe data asynchrony.

The results on multiple conventional datasets are also
shown in Tab. 1, including two small-scale datasets with
less data asynchrony (GRID-4S and TCD-TIMIT-LS) and a
large-scale dataset with significant inherent data asynchrony
(Lip2Wav chem). SLTS models outperform baselines (i.e.,
VCA-GAN and SLTS without ASM) according to time-
aligned metrics, regardless of the severity of asynchrony in
the datasets.

When comparing GRID-4S-Async and GRID-4S, it can
be seen that asynchrony in the data set has a negative ef-
fect, since the results of GRID-4S-Async are generally
worse than those of GRID-4S. However, when trained on
a dataset with more severe asynchrony (i.e., GRID-4S-
Async), SLTS with ASM achieves more significant perfor-
mance gains compared to other baselines. This can also
be observed when comparing GRID-4S and TCD-TIMIT-
LS with Lip2Wav chem. The former two datasets exhibit
less severe asynchrony, while the Lip2Wav chem dataset
has a more serious issue. Notably, when employing SLTS,
the Lip2Wav chem dataset shows a more significant perfor-
mance improvement, particularly in aspects of intelligibil-
ity and content correctness, compared to the GRID-4S and
TCD-TIMIT-LS datasets.

5.2. Limitations of vanilla metrics

As shown in Fig. I, we observed that even a slight offset
between the test and the reference audio can have a signifi-
cant negative impact. Therefore, while models trained with
ASM achieve better intelligibility, perceptual quality, and
content correctness as measured by aligned metrics (e.g.,
a-STOI, a-ESTOI, a-MCD) and also alignment-insensitive
metrics (e.g., PESQ and WER), they can score worse on
vanilla STOI, ESTOI and MCD due to data asynchrony in
the test set. This is demonstrated in Tab. 1. These re-
sults highlight the limitations of alignment-sensitive met-
rics, since even a better-performing model can produce
lower scores without proper alignment.

5.3. Impact of GAN training on vocoder

As part of our study on building an end-to-end LTS
model, we also tried to improve audio quality by incor-
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Method | a-STOIt a-ESTOI1T a-PESQT a-MCD | | w-WER (%)} | MOS (I) 1 MOS (N) +

VCA-GAN 0.659 0.477 1.365 34.600 48.20 3.250 +0.225 2.042 £ 0.179
SLTS 0.760 0.616 1.515 29.130 24.69 3.6334+0.228 1.858 +0.171
SLTS w/GAN | 0.738 0.583 1.405 31.856 26.55 4.483 +0.139  4.267 = 0.153
Real Voice | 1.000 1.000 4.549 0.000 | 0.00 | 4.808+0.100 4.975 +0.028

Table 2: Results on Lip2Wav chem. w/ GAN: vocoder trained with GAN objectives. MOS scores are listed with their 95%

confidence interval computed from their t-distribution.

porating GAN objectives with discriminators (i.e., MRSD
and MPWD) for joint training of the vocoder as in [10]. It
is observed that the application of GAN objectives during
training led to a notable improvement in performance ac-
cording to human evaluation. However, this improvement
comes with a trade-off, as it results in a decline in objective
evaluation metrics, despite proper handling of alignment.

In Table 2, we present the mean opinion scores (MOS)
obtained from 12 volunteers who evaluated the intelligibil-
ity (I) and naturalness (N) of 10 randomly selected sam-
ples from the Lip2Wav chem test set. Each volunteer rated
four versions (i.e., VCA-GAN, SLTS, SLTS w/ GAN, and
real voice) of the 10 samples. The incorporation of the dis-
criminators led to a substantial increase in the MOS results,
enhancing both intelligibility and naturalness. However, we
noticed a decline in the objective scores with the GAN train-
ing objectives. For example, the inclusion of discriminators
led to a reduction in the a-STOI from 0.760 to 0.738 on the
Lip2Wav chem test set. We observed that this decrease in
the objective scores also had an impact on the training set.
On a training subset consisting of 200 samples, a drop in
the a-STOI from 0.855 to 0.825 was observed.

We hypothesize that the lower objective scores are a con-
sequence of the nonintrusive nature of GAN training. By in-
cluding discriminators in the training process, the generated
audio is encouraged to match the distribution of real audio,
rather than strictly align with the corresponding target au-
dio. As a result, lower scores on intrusive metrics may be
observed.

5.4. Synchronization qualitative study

To qualitatively understand how ASM works, we present
a concrete training example in Fig. 6. In this example,
the generated audio precedes the reference one by 80 ms.
DSM assigns a significant portion of the probability mass
to offsets around -80 ms. Once the reconstructed mel-
spectrogram is convolved with the hard-correction kernel,
the resulting mel-spectrogram aligns precisely with the
ground-truth mel-spectrogram, enabling a more accurate
timestep-level loss computation between the reconstructed
and reference mel-spectrograms.

050, - DSM
z
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-}
0.00"=%0 6 100
Offset (ms)
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>
205
O
e
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0.0 =756 0100
200 250 Offset (ms)

Figure 6: An example from Lip2Wav chem. On the left side,
from top to bottom, are the reconstructed mel-spectrogram,
hard-corrected reconstructed mel-spectrogram, and ground
truth mel-spectrogram. On the right side, SSM concentrates
on offset 0 as expected, and DSM accurately predicts the
offset between the video and reference audio (i.e., -80ms).

Method | STOIT ESTOItT PESQ? MCD |
E2E-V2AResNet [23] | 0.627 - 2.030  27.790
Yadav et al. [28] 0.724 0.540 1.932 -
VCA-GAN [13] 0.724 0.609 2.008 -
Lip2Wav [20] 0.731 0.535 1.722 -
Kim et al. [12, 9] 0.738 0.579 1.984 -
SLTS | 0.757 0.588 1.931 25491

Table 3: Comparison of SOTA results on GRID-4S.

Method | STOIT ESTOIt PESQt MCD |
E2E-V2AResNet [23] | 0.472 - 1.540  36.190
Ephrat ef al. [5] 0487 0310 1231 -
GAN-based [25] 0511 0321 1.218 -
Lip2Wav [20] 0.558 0365 1.350 -
VCA-GAN [13] 0.584  0.401 1.425 -
SLTS | 0.661 0507 1474  29.689

Table 4: Comparison of SOTA results on TCD-TIMIT-LS.

5.5. Comparison with SOTA results

We compare our results with those of SOTA works re-
ported in the literature with conventional non-aligned met-
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Speaker | Method | STOI+ ESTOIf PESQ1?

Lip2Wav [20] 0.416 0.284 1.300
chem Hongeral. [9] | 0.566 0.429 1.529
SLTS 0.757 0.612 1.514
Lip2Wav [20] 0.418 0.290 1.400
chess Hong et al. [9] 0.506 0.334 1.503
SLTS 0.680 0.451 1.604
Lip2Wav [20] 0.282 0.183 1.671
dl Hongetal. [9] | 0.576 0.402 1.612
SLTS 0.565 0.320 1.513
Lip2Wav [20] 0.446 0.311 1.290
hs Hongeral. [9] | 0.504 0.337 1.366
SLTS 0.590 0.394 1.402
Lip2Wav [20] 0.369 0.220 1.367
eh Hong et al. [9] 0.463 0.304 1.362
SLTS 0.482 0.268 1.428

Table 5: Comparison of SOTA results on Lip2Wav.
Speaker-specific models are trained for each speaker, fol-
lowing the convention.

rics. As SLTS models produce audio that is synchronized
with the input video, severe data asynchrony in the test set
can result in low scores with vanilla metrics (e.g., chem in
Tab. 1). To ensure fair comparisons, the results presented
here are derived from the test set which has been synchro-
nized using the offsets predicted by the DSM module. In
GRID-4S Tab. 3, the SLTS model performs best in terms
of STOI and MCD, with slightly lower scores in ESTOI
and PESQ compared to the best result reported by [13]. In
TCD-TIMIT-LS Tab. 4, except for the PESQ of [23], SLTS
demonstrates the best scores in all metrics. For most speak-
ers in Lip2Wav (i.e., chem, chess, and hs), SLTS achieves
much better intelligibility and comparable (or superior) per-
ceptual quality. However, on dl and eh, SLTS performs sim-
ilarly or slightly worse than [9]. We notice that videos from
dl and eh have relatively smaller mouth regions, making the
recognition of visemes difficult. This observation is con-
sistent with the SyncNet results presented in Fig. 2c, which
also show a lower confidence in its performance on d/ and
eh. In general, the performance of SLTS, based on various
metrics, is either comparable to, or surpasses that of other
state-of-the-art works.

6. Conclusion

In this work, we have identified two types of asyn-
chronies that occur during lip-to-speech synthesis train-
ing: data asynchrony and model asynchrony. To ad-
dress these asynchronies, we propose a synchronized lip-
to-speech (SLTS) model. During training, the SLTS ac-
tively learns audiovisual time offsets to correct data asyn-
chrony through a data synchronization module (DSM). The
model synchronization is also ensured by using a self-

synchronization module (SSM). In addition, we have in-
troduced a time alignment frontend that separates the eval-
uation of synchronization and audio quality from conven-
tional time-alignment sensitive metrics, such as STOI, ES-
TOI, and MCD. We have conducted extensive experiments
using these new metrics to demonstrate the advantages of
the proposed model. Our method achieves comparable or
superior results across multiple tasks compared to existing
state-of-the-art works.
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