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Abstract
Understanding and analyzing human behaviors (actions
and interactions of people), voices, and sounds in chaotic
events is crucial in many applications, e.g., crowd manage-
ment, emergency response services. Different from human
behaviors in daily life, human behaviors in chaotic events
are generally different in how they behave and influence
others, and hence are often much more complex. How-
ever, currently there is lack of a large video dataset for
analyzing human behaviors in chaotic situations. To this
end, we create the first large and challenging multi-modal
dataset, Chaotic World, that simultaneously provides dif-
ferent levels of fine-grained and dense spatio-temporal an-
notations of sounds, individual actions and group interac-
tion graphs, and even text descriptions for each scene in
each video, thereby enabling a thorough analysis of com-
plicated behaviors in crowds and chaos. Our dataset con-
sists of a total of 299,923 annotated instances for detect-
ing human behaviors for Spatiotemporal Action Localiza-
tion in chaotic events, 224,275 instances for identifying
interactions between people for Behavior Graph Analy-
sis in chaotic events, 336,390 instances for localizing rel-
evant scenes of interest in long videos for Spatiotempo-
ral Event Grounding, and 378,093 instances for triangu-
lating the source of sound for Event Sound Source Local-
ization. Given the practical complexity and challenges in
chaotic events (e.g., large crowds, serious occlusions, com-
plicated interaction patterns), our dataset shall be able
to facilitate the community to develop, adapt, and eval-
uate various types of advanced models for analyzing hu-
man behaviors in chaotic events. We also design a sim-
ple yet effective IntelliCare model with a Dynamic Knowl-
edge Pathfinder module that intelligently learns from multi-
ple tasks and can analyze various aspects of a chaotic scene
in a unified architecture. This method achieves promising
results in experiments. Dataset and code can be found at
https://github.com/sutdcv/Chaotic-World.

1. Introduction
Chaotic situations can occur in many scenarios, often

arising on the onset or aftermath of natural disasters or
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human-caused incidents such as accidents, crowd crush,
crimes, or protests. How people behave, interact, and in-
fluence others in chaotic events can be very different from
those in peaceful daily life situations (e.g., [33, 54, 20, 11]),
and are generally much more complex [43]. Also, the num-
ber of people in such scenarios can vary from a few indi-
viduals to crowd of thousands, and how they interact with
one another is complex, which warrants detailed analysis
of the situation before they evolve to become major public
safety and security concerns, and subsequently resulting in
damages to properties, injuries, or even death [31]. Even
a peaceful or joyous event can suddenly turn chaotic [31]
such as the recent unfortunate Itaewon crowd crush [56].

Ensuring public safety and order has become challeng-
ing, and costs the world at least USD$13.6 trillion each
year [15, 16]. The probability of chaotic events occurring is
likely to increase with the increased number of natural dis-
asters due to climate change [66, 63], protests (which have
tripled in the past 15 years) [42] and violence occurrences
[15, 16] etc. Hence, the ability to closely monitor and ac-
curately detect such sudden onset of chaotic situations and
potential accidents; rapidly analyze (especially critical dur-
ing time-sensitive emergencies) humans, their actions and
interactions with others; intelligently acquire vital informa-
tion about the chaotic scene; and then swiftly deploy hu-
manitarian aid [68, 1] has become even more important than
ever, and can tremendously minimize casualties and dam-
ages [25, 61]. This area of research has also attracted greater
attention over the years [68, 50, 1, 70, 73, 8, 74, 31].

Besides being extremely critical for public safety [5],
understanding and analyzing human behaviors in chaotic
events are also significant in many applications [21, 67,
61, 8] such as the following: Firstly, event organisers,
intelligence services, and emergency services can utilize
the insights to intelligently deploy smart assistant systems,
plan safe evacuation route, manage and control crowds
[67, 61, 8]. Secondly, urban space designers can likewise
design safer and better spaces [8]. Thirdly, psychologists,
criminologists, and social behavioral scientists can learn
about the complex human interactions in chaotic situations,
so as to develop effective strategies to mitigate or handle
chaotic situations or post-chaos trauma [5]. Lastly, content
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providers or film regulators can automatically identify and
tag scenes that may be uncomfortable to viewers (e.g., vio-
lence) and provide appropriate content rating guidance [6].

Considering that chaotic scenes are often dynamic (and
often with serious occlusions) and complex (including ac-
tions of individuals and interactions between individuals),
analyzing human behaviors and interactions in such scenes
while taking in account the different data modalities is
currently challenging, and especially so for humans to
screen through large volume of social media or surveillance
footages with multiple views of the scene [1, 68], and often
a large part of these footages may not contain the chaotic
scene of interest [31]. Furthermore, given that many peo-
ple can appear in the same frame in the chaotic scene, with
each person performing one or more actions [10], and fur-
ther compounded by the fact that actions can occur and
change within split seconds, localizing relevant temporal
segments and human behaviors becomes even more chal-
lenging. Thus, there is a demand to develop intelligent au-
tomated systems to analyze human behaviors and interac-
tions in chaotic scenes, and pre-empt potential escalation in
crowd tension or threats to public safety [5, 39, 31], thereby
minimizing possible damage or casualty through alerts or
mitigatory measures.

Before analyzing a chaotic situation, one would first be
concerned about identifying the relevant chaotic scene or
person of interest in long video streams, and this can be ex-
pedited by Spatiotemporal Event Grounding (Fig. 5). Next,
identifying each individual’s action is important (e.g., un-
covering intentions), and therefore there is a need to localize
them through Spatiotemporal Action Localization (Fig. 3).
Besides actions, analyzing sound can also be important as
a sound (e.g., explosion going off) or voice can affect the
actions of one or many (e.g., causing the crowd to scamper
and leading to even more chaos). Thus, it is crucial to lo-
cate the source of sound in such a chaotic scene using Event
Sound Source Localization (Fig. 6). On top of these, the ac-
tion of a person can also affect the trajectories and actions
of many people (e.g., person shouting “Bomb” can cause
the crowd to scamper or duck to the ground). Hence, ana-
lyzing the complex graph of one’s interactions with others
through Behavior Graph Analysis (Fig. 4) is crucial for one
to understand relationships (e.g., accomplices), sense crowd
dynamics, detect changes in human behaviors, and analyze
trends and development of the fluid chaotic situation. All
of these tasks are crucial for analyzing human behaviors in
chaotic situations, and it is also important to have a large
and comprehensive dataset to develop, adapt, and evaluate
deep learning models [24, 33].

Unfortunately, there is lack of a large video dataset
that comprehensively analyzes human behaviors in chaotic
events [31], thereby stifling deeper research and prospect of
bringing much needed benefits to this underserved domain.

Motivated by this, we create Chaotic World, the first
large and challenging multi-modal video dataset for ana-
lyzing different dimensions of a scene for holistic and de-
tailed analysis of human behaviors in chaotic situations —
from high-level information on the (1) type of chaotic situ-
ations, ranging from natural disasters (e.g., earthquakes) to
human-caused incidents (e.g., accidents, crimes, protests)
in different parts of the world, to mid-level details of the (2)
complex interaction graph among individuals for Behavior
Graph Analysis, and down to low-level details of (3) actions
of individuals for Spatiotemporal Action Localization, and
even (4) sound and voice for Event Sound Source Localiza-
tion. Our dataset also contains (5) descriptions of people
in scenes-of-interest that can be used to identify the rele-
vant segment in long video streams through Spatiotemporal
Event Grounding (Fig. 5). Our Chaotic World dataset pos-
sesses challenges with complex scenes of chaotic scenar-
ios with crowds (up to 50 people in one frame) and serious
occlusions, dynamic background (e.g., moving objects in
a flood) and motion blur (e.g., camera shake during earth-
quake). There are also new, unique, and complex action
and interaction patterns that are unique in chaotic scenar-
ios (e.g., postures and trajectories of someone walking in an
earthquake that are not seen in normal situations). Also, the
interactions among many people in chaotic scenarios form
distinct and very complex chaotic patterns and large interac-
tion graphs that differ significantly from everyday activities,
because one person can affect many others, many may also
affect one, and many can affect many in such scenarios, thus
forming complicated graphs of actions, interactions, and
sounds (Fig. 1) that are seldom handled in previous datasets.

With the rich annotations, our challenging dataset shall
be able to attract and facilitate the community to develop,
train, and evaluate various types of advanced methods for
analyzing human behaviors in chaotic situations, and take
advantage of highly correlated multi-modal information to
assist the model in learning complex patterns associated
with chaotic events so as to obtain detailed holistic anal-
ysis of human behaviors in chaotic events, thereby expe-
diting the rate in which such research is conducted to ben-
efit a wide range of future applications. We also present
an effective IntelliCare model with a Dynamic Knowledge
Pathfinder module that intelligently learns from multiple
tasks and can analyze various aspects of a chaotic scene in
a unified architecture to facilitate a more thorough under-
standing and analysis of human behaviors in chaotic events.

2. Related Works
Analyzing human behaviors is an important task. Be-

low we review some of the notable human behavioral video
datasets and methods. Readers are suggested to refer to the
survey papers [34, 52, 60, 31] for a comprehensive list of
human behavior datasets and methods.

Human Behavioral Analysis Video Datasets. Most of
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Figure 1. Our Chaotic World dataset contains complicated graphs
of actions, interactions, and sound in complex scenes of chaotic
scenarios with crowds, serious occlusions, complex action and in-
teraction patterns etc.
the existing datasets (e.g., [20, 35, 33, 55, 54, 29, 27, 58,
24, 19, 41, 40, 51, 38, 28, 64, 36, 37]) focus on common
day-to-day activities, while some specially focus on group
activities (e.g., [69, 26]) or specific domains such as sports
(e.g., [26, 32]), campus activities (e.g., [11]), or first-person
egocentric view of human actions (e.g., [19, 12, 53]).

Most of the human behavioral localization datasets (e.g.,
[27]) provide only temporal, but not spatial, localization
for each action. Unlike the rest, Atomic Visual Actions
(AVA) [20] is a multi-label Spatiotemporal Action Local-
ization dataset with 430 video clips and 80 types of fine-
grained visual actions localized in both time and space.

Different from human behaviors in these peaceful and
daily life situations, human behaviors in chaotic situations
can be more different and complex (e.g., trajectory and
manner in which people run in normal situation VS after
a shooting incident), and there can be significantly larger
number of people in the same frame. There are also unique
actions specific to chaotic events (e.g., carrying casualty).
Besides analyzing the actions of an individual, analyzing
how the individual interacts with others (which results in
the formation of extensive, intricate, and complex multi-
person spatiotemporal interaction graphs) can also be im-
portant in understanding human behaviors. Furthermore,
analyzing human behaviors and the interaction graphs in
chaotic scenes can be much more complex and challeng-
ing with serious occlusions, motion blur (e.g., camera shake
during earthquake), dynamic background (e.g., moving ob-
jects in a flood), and even trajectories or postures that are not
seen in normal situations (e.g., Fig. 2) [31]. Though there
are some datasets on crowd surveillance and events analy-
sis [3, 36, 37], incidents [68, 50], or violence [70, 23, 46],
most of these datasets are small, typically focus on peace-
ful events or a specific type of scene, and merely provide
simple and often single label for action classification of the
entire scene. Thus, there is lack of a large and comprehen-
sive human behavioral video dataset with detailed graph and
different levels of details (e.g., actions, interactions, sound,
voice, and textual descriptions) for analyzing human behav-

iors in various types of chaotic situations.
Unlike existing datasets, our Chaotic World is the first

large and comprehensive multi-modal dataset for ana-
lyzing human behaviors, human interaction graphs, and
sound/voice in various chaotic situations, in a holistic man-
ner with different levels of annotated details (i.e., event cat-
egory, action, interaction, and audio labels). With rich an-
notations, our dataset shall facilitate the community to de-
velop and test various types of models, with a challenging
suite of benchmarks, for holistic human behavior analysis
of chaotic scenes.

Human Behavioral Analysis Methods. There are var-
ious types of existing human behavior analysis methods,
such as C3D [65], I3D [7], and SlowFast [14]. They
use Convolutional Neural Networks [65, 7, 13, 14, 11]
and sometimes with Long-Short Term Memory [33, 22].
Some other methods use Transformer Networks [4, 35].
To spatially locate humans before identifying their ac-
tions, current Spatiotemporal Action Localization methods
[20, 30, 59, 44] often use a two-stage process — first de-
tecting humans using Fast-RCNN [18] before performing
action recognition using methods such as those described
earlier [7, 65, 13, 14]. To analyze interactions between hu-
man and objects (or at times between humans), existing
Scene Graph Generation methods use scene graph feature
banks [29], hierarchical relation tree [62], or multiple lin-
ear transformations for relationship prediction [9]. In our
case for Spatiotemporal Action Localization and Behavioral
Graph Analysis, we present a simple yet effective unified
multi-task IntelliCare model with a Dynamic Knowledge
Pathfinder module to intelligently learn from multiple tasks
and select, for respective task, relevant blocks of learned
task-shared and task-specific features.

3. Proposed Chaotic World Dataset
In this section, we introduce the significant properties of

our dataset and annotated tasks that are helpful for analyz-
ing chaotic scenes.

3.1. Description of Dataset
Our dataset contains 299,923 annotated instances for

Spatiotemporal Action Localization, 224,275 instances for
Behavior Graph Analysis, 336,390 instances for Spatiotem-
poral Event Grounding, and 378,093 instances for Event
Sound Source Localization in chaotic scenes.

Multiple levels of details. Our dataset provides a holis-
tic view of the chaotic event, with different levels of de-
tails annotated for various tasks — from the high-level de-
tails of the category of chaotic events, to the mid-level de-
tails of complex interactions between individuals in Behav-
ior Graph Analysis, down to the low-level details of fine-
grained actions of an individual in Spatiotemporal Action
Localization, and even sound and voice for Event Sound
Source Localization. These tasks facilitate a thorough un-
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Figure 2. Examples of chaotic events in our dataset. Different
from existing datasets, human behaviors in chaotic scenes that
arise from the onset of natural disasters, accidents, protests etc.
can be much more different and complex, in terms of how they
move, behave and interact with others.

derstanding and analysis of human behaviors in chaotic
events from various aspects.

Diverse range of events and behaviors. Our dataset
encapsulates different types of chaotic events ranging from
natural disasters (e.g., hailstorm) to accidents to violence
and crimes (e.g., looting) to protests in different parts of the
world. Human actions in chaotic events can be much more
different and complex (e.g., running that can come in many
forms), hence our dataset includes many types of actions
(e.g., performing resuscitation, burning/setting fire) that are
not found in most datasets. In total, our action vocabulary
contains fine-grained behaviors, ranging from disruptive be-
haviors (e.g., waving flarestick, spraying aerosol) to ag-
gressive behaviors (e.g., shooting/firing, punching) to crimi-
nal behaviors (e.g., stealing/looting) to life-saving behaviors
(e.g., carrying casualty, extinguishing fire). Analyzing these
behaviors will be useful to different groups of professionals
(e.g., emergency response team and social behavioral scien-
tists) in assessing and analyzing chaotic scenes. Given that
human actions are highly varied, having a large and diverse
dataset is important in understanding and analyzing human
behaviors in dynamic real-world chaotic scenes, and essen-
tial for training various types of robust models.

Dynamic scene compositions with fine-grained multi-
label actions and complex interactions. In contrast to
most other human behavioral datasets [20, 33, 26, 69], our
dataset contains much more complex scenes of massive and
dynamic chaotic scenarios with crowds (up to 50 people in
one frame), with different people performing different ac-
tions. Additionally, a person can perform more than one
action at the same time. The same type of action can look
differently when performed by the same person before, dur-
ing, and after the chaotic situation (e.g., runners running
before and after an explosion (Fig. 2)). Furthermore, the in-
teractions between many individuals can be dynamic and
form a complex graph. All of these inevitably result in
multi-label actions and unequal long-tailed distribution of

actions, which pose significant and practical challenges. In
addition, our dataset possesses challenges such as serious
occlusions, dynamic background (e.g., moving objects in
a flood) and motion blur (e.g., camera shake during earth-
quake). For real-world human behavior analysis in chaotic
events, having such a challenging dataset like ours contain-
ing scenes of both crowd and chaos, with multiple individ-
uals sometimes performing subtly different actions, is nec-
essary to develop and evaluate robust and accurate models
to tackle the complex real-world scenarios, and hence shall
encourage the community to develop advanced strategies to
overcome these practical challenges.

Multiple data modalities. In addition to RGB video
frames, our dataset contains audio information that can pro-
vide complementary information for behavior analysis in
chaotic scenes. The diverse nature of our dataset provides
variances in natural conversational features (e.g., variation
of noisy backgrounds), thus presenting practical challenges
in localizing the source of sound (voice), thereby facilitat-
ing future research into these areas.

Besides audio information, the textual description of the
scene, person, behaviors, and interactions in the chaotic
scene also provides different levels of details of the scene,
which will be helpful in video and information retrieval.
Utilizing all modalities (visual, audio, and text information
about the chaotic scene) can also enrich the feature space,
which enables multi-modality model training [2, 48, 72].

Diverse types of footages and viewpoints. The
footages in our dataset are obtained from YouTube and
are captured by the public, news agencies, and security
agencies who use different equipment (e.g., phone camera,
surveillance camera) and are captured at different angles
and styles (e.g., live recording captured by the public, and
news with the news anchor reporting live at the scene). Our
dataset encapsulates a wide range of unscripted real-world
chaotic scenes from all over the world with carefully an-
notated untrimmed long videos. This also means that our
dataset contains a rich diversity of human subjects across
ages, genders, languages, clothes and accessories, and loca-
tions (e.g., streets, parks, indoor). Therefore, having diverse
representation of humans in a dataset to reflect the diver-
sity in the real world would facilitate the development of
robust and generalizable models to handle the challenging
task of analyzing human behaviors in chaotic events. While
all these inject realism and reflect the natural interactions
between people in chaotic situations, the complex compo-
sitions and the spatiotemporal dynamism of the scene also
present practical challenges for human behavior analysis.

Dynamic illumination and environmental conditions.
The footages in our dataset contain different illumination
conditions (e.g., night time or even smoky due to the fire
started by protesters (Fig. 2) which leads to occlusion). All
of these are practical challenges in chaotic events and can
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affect the appearances of humans and present significant vi-
sual challenges (e.g., low foreground-background contrast)
to the level of details and actions that can be recognized.
Having such diversity in our dataset is the first step towards
building a robust model that can handle varied scenarios.
3.2. Dataset Tasks and Annotations

In this section, we introduce salient details of the key
tasks (i.e., Spatiotemporal Action Localization, Behav-
ior Graph Analysis, Spatiotemporal Event Grounding, and
Event Sound Source Localization) that can be crucial in an-
alyzing human behaviors in chaotic scenarios. Carefully an-
notated by 15 individuals over a year, we manually identi-
fied and provided annotations of chaotic events, sounds, hu-
man actions, and interactions in the videos, and conducted
2 rounds of quality checks for the annotations. The video
clips range from 10 seconds to 1 hour.

Task 1: Spatiotemporal Action Localization identi-
fying individuals and their action(s) in chaotic scenes.
In Spatiotemporal Action Localization (Fig. 3), a video
clip is provided to the model as the input. The model
first detects where (spatial) each person is, and then iden-
tifies the action when (temporal) it occurs in the chaotic
scene, thereby localizing the person of interest and out-
putting his/her action(s). Our dataset contains 299,923 in-
stances, with each action ranging from 5 to 200 seconds
(average of 10 seconds). Our action vocabulary consists of
unique fine-grained actions, ranging from disruptive behav-
iors (e.g., waving flarestick) to aggressive behaviors (e.g.,
shooting/firing) to criminal behaviors (e.g., looting) to life-
saving behaviors (e.g., carrying casualty).

Figure 3. In Spatiotemporal Action Localization, the positions of
the individuals are located and the actions of individuals are iden-
tified. Note that for clarity of presentation, we do not show all
annotations of the whole scene in this figure.

Task 2: Behavior Graph Analysis describing the in-
teractions between individuals in chaotic scenes. Sim-
ilar to a graph with nodes connected by edges, a Behav-
ior Graph is a graph that describes the interacting behavior
(edge) between individuals (nodes). The interacting behav-
ior (or termed as interaction in short) between individuals
(Fig. 4) can provide much more contextual clues about the
chaotic scene. Such interactions are predicted by Behav-
ior Graph Analysis models (using Scene Graph Generation
models [9, 62]). To enable such analysis of interactions, our
dataset contains 224,275 instances of individuals interact-
ing with others (e.g., throwing object at someone, shouting

at, arresting). In Behavior Graph Analysis, when given the
video frame, the model predicts the interactions between
individuals. Thus, all the interactions in the scene form a
graph, with the interactions being the directed edges (see
arrows in Fig. 4). This can be quite useful for comprehen-
sively understanding the behavior relations and trend of the
chaotic scenario. In the simplest Predicate Classification
(PredCls) setting, the additional information of the bound-
ing boxes of individuals are also provided to the model, so
that the model only predicts the interactions between indi-
viduals. In contrast, in the more challenging Graph Detec-
tion (GDet) setting, besides predicting the interactions be-
tween individuals, the model also needs to predict the spa-
tial locations (bounding boxes) of the individuals.

Figure 4. In Behavior Graph Analysis, when given the video
frames, the model in the GDet setting locates the spatial posi-
tions of the individuals (shown in bounding boxes) and identifies
the interactions between individuals (indicated by arrows between
bounding boxes). In the PredCls setting, only the interactions be-
tween individuals are identified. In Behavior Graph Analysis task,
we label the interactions. Note that we have also labelled the ac-
tions of each individual which is part of the Spatiotemporal Action
Localization task (see Fig. 3).

Task 3: Spatiotemporal Event Grounding retrieving
scenes of interest based on textual description. In Spa-
tiotemporal Event Grounding (Fig. 5), very much like a
video clip search engine using text data, the user types an
input query sentence that describes the (chaotic) scene, de-
scription of persons, behaviors, and interactions of interest
(e.g., Fig. 5). The model will then output both the rele-
vant temporal segment with the start and end timing, as well
as the spatial position of the relevant person in the video
frame. Spatiotemporal Event Grounding plays a critical role
in expediting the video and information retrieval from long
videos, because a large part of the long videos may not con-
tain the footage of the individuals and behaviors of interest
[31]. Hence, Spatiotemporal Event Grounding will be an
extremely useful and convenient way for users to search for
the relevant time segment in long videos by describing the
scene, person, behavior, and interaction of interest. This
can be of significant interest during times of emergencies,
whereby rapid video and information retrieval is mission
critical. To facilitate this, our dataset contains 336,390 in-
stances for Spatiotemporal Event Grounding.

Task 4: Event Sound Source Localization outputting
location of sound. In Event Sound Source Localization
(Fig. 6), when given the video frames with the corre-
sponding audio clip, the model locates the spatial position
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Figure 5. Example of Spatiotemporal Event Grounding. After en-
tering a textual search query, the model identifies the relevant seg-
ment with the start and end timing, as well as the location (shown
in bounding box) of the person of interest.

(source) of the sound of interest (e.g., shouting for help) in
the video frames of a chaotic scene. During training via the
unsupervised setting, the audio clip and the corresponding
video frames are provided to train the model. In contrast,
during training via the supervised setting, the information
of the bounding box (i.e., source of the sound of interest) is
also provided when training the model. During inference,
the audio clip and video frames are provided to the model
for it to find the spatial location of the sound of interest in
the video frames of a chaotic scene. This is especially use-
ful in instances whereby audio data in the video provides
additional informative clues to visual cues, that are help-
ful in identifying the scene, person, and behavior of interest
(e.g., finding a person shouting for help). To facilitate this,
our dataset contains 378,093 instances with different types
of sounds (e.g., explosion, shouting, smashing).

Figure 6. Example of Event Sound Source Localization. When
given video frames with the corresponding audio clip, the model
locates the spatial position (visualized in the form of a heatmap)
of the sound of interest in the video frames of the chaotic scene.

In a nutshell, our Chaotic World dataset is the first large,
comprehensive, and challenging dataset for multi-modal
multi-task learning with multiple levels of details about
chaotic scenes. The four tasks complete a detailed graph
of a chaotic scene, distilling the complex interactions be-
tween sound, voice, text, actions and interactions of peo-
ple. Thus, our dataset shall provide a useful benchmark
with practical challenges to facilitate further research into
various types of advanced strategies for human behavioral
analysis in chaotic events.

4. IntelliCare Model for Multi-task Learning
An in-depth understanding and analysis of human be-

haviors in chaotic events may require thorough analysis of
various aspects – from the sound or voice (Event Sound
Source Localization), to the spatiotemporal information of
the scene or behaviors (Spatiotemporal Event Grounding),
to behaviors (Spatiotemporal Action Localization) of indi-
viduals, and their interactions with others (Behavior Graph

Analysis). While the inputs of these four tasks may not be
identical (e.g., Spatiotemporal Event Grounding uses text
and visual inputs, while Event Sound Source Localization
uses audio and visual inputs), the visual input is required
and common across all the four tasks. Hence, by using
a shared visual backbone, visual features containing task-
shared knowledge can be learned and used in downstream
tasks. As such, we design a unified architecture, which we
term as IntelliCare model (Fig. 7), that uses a shared visual
backbone and respective task heads to train the four tasks
together. Such a unified model with multi-task learning can
benefit from the visual features learned with the task-shared
knowledge across all four tasks, thus enhancing model’s
generalization ability.

In addition to learning task-shared knowledge, learning
task-specific knowledge is also important for the respec-
tive task’s performance, since not all visual features are
equally helpful and can be shared by all four tasks. Thus,
we need to effectively and dynamically learn the relevant
task-shared and task-specific knowledge for each task. As
such, we design a simple yet effective Dynamic Knowl-
edge Pathfinder module that automatically and intelligently
chooses (‘cares’) the learning path in the network, with
required task-shared and task-specific knowledge for each
task. This module contains multiple dynamic layers, with
each layer consisting of multiple knowledge blocks. For
each task, the Pathfinder dynamically finds the best path that
is made up of, over layers, the best knowledge blocks for the
task. Specifically, we use I3D [7] as the shared visual back-
bone and build the Dynamic Knowledge Pathfinder with it.
To construct the Dynamic Knowledge Pathfinder, we re-
place the last L layers of I3D with the dynamic layers. For
each dynamic layer, we duplicate B copies of the block at
the corresponding original I3D layer, and thus achieves B
knowledge blocks. We also add an extra score module con-
sisting of a linear layer and a Gumbel Softmax layer at each
dynamic layer. This score module is used to produce the
decision about which block at the current dynamic layer to
be used for each task.

During training, we use four embeddings (i.e., [1, 0, 0,
0], [0, 1, 0, 0], [0, 0, 1, 0], and [0, 0, 0, 1]) as the task
indicators of the four tasks. For each task, the score mod-
ule at each layer takes in the corresponding task indicator,
and outputs a one-hot vector (with length 1×B) to repre-
sent the score (0 or 1) of each knowledge block at this
layer. Thus, at each layer, the knowledge block with the
score of 1 is selected to be the best knowledge block for
the current task. This operation is done for each dynamic
layer, as the Pathfinder needs to choose the best knowl-
edge block for the task at each layer. During training, the
four tasks are trained together, where the IntelliCare model
with Dynamic Knowledge Pathfinder is trained in an end-to-
end manner. Thus, after end-to-end training, the Dynamic
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Knowledge Pathfinder is trained to find the optimal block at
each layer for each task, so as to optimize the performance
of this task. This will cause some blocks to be shared among
some tasks (i.e., reused by multiple tasks), while some may
only be used by one task. As such, each task will have a
unique sequence of knowledge blocks to construct a unique
path, which contains task-shared and task-specific knowl-
edge. During testing, the parameters of the score module
are fixed, and thus each task takes a fixed optimal path for
inference.

Figure 7. Our multi-task IntelliCare model with Dynamic Knowl-
edge Pathfinder that intelligently selects relevant blocks of knowl-
edge learned from different tasks. Each task will take in respective
inputs and have a unique path (i.e., arrows of different colors for
different tasks) — a unique sequence of best knowledge blocks
(i.e., red boxes) for its task head.

Besides the visual input with the task embedding that
is used as input of the shared visual feature encoder (i.e.,
I3D with Dynamic Knowledge Pathfinder), other modality
inputs (i.e., audio and text), depending on the input require-
ment of each task, are sent to their respective modality en-
coders (i.e., using the same audio encoder that is used in
[57] for audio, and text encoder that is used in [71] for text).
For the visual features of each task, we use our shared visual
encoder (i.e., I3D with Dynamic Knowledge Pathfinder).
The visual features are then combined with other corre-
sponding modality features, and are sent to the respective
task heads. Here, the task heads are the same that are used
as Actor-Centric Relation Network (ACRN) [59] for Spa-
tiotemporal Action Localization, Target Adaptive Context
Aggregation Network (TRACE) [62] for Behavior Graph
Analysis, Self-Supervised Predictive Learning (SSPL) [57]
for Event Sound Source Localization, and TubeDETR [71]
for Spatiotemporal Event Grounding. More details of the
network design can be found in Supplementary.

In summary, the IntelliCare model is simple yet effective,
and can dynamically choose relevant knowledge blocks for
shared or unshared feature learning for each task (instead of
sharing all features and blocks over all tasks), hence achiev-
ing good generalization ability and performing well on all
tasks. Also, it is convenient and easier to use a unified
model to analyze different tasks for obtaining an in-depth
analysis of the chaotic scene, as opposed to having to sepa-
rately run different disparate models.

5. Experiments
Based on our dataset, we evaluate various methods

such as ACRN [59], I3D [7], SlowFast [14], and Actor-
Context-Actor Relation Network (ACAR) [45] for Spa-
tiotemporal Action Localization; Spatial-Temporal Trans-
former (STTran) [9] and TRACE [62] for Behavior Graph
Analysis; TubeDETR [71], Grounding of Textual Phrases in
Images by Reconstruction (GroundeR) [47] with Temporal
Activity Localization via Language Query (TALL) [17] for
Spatiotemporal Event Grounding; Learning Sound Source
in Visual Scenes (LSSVS) [49] and Self-Supervised Predic-
tive Learning (SSPL) [57] for Event Sound Source Local-
ization. We use their original codes and adapt them to our
Chaotic World dataset.

In addition, we also evaluate our unified multi-task Intel-
liCare model with Dynamic Knowledge Pathfinder module,
which can intelligently learn for multiple tasks. To evalu-
ate the benefits of multi-task learning, we use two settings
– IntelliCare without multi-task learning (i.e., all the tasks
are trained totally separately with the I3D visual backbone
and their respective task heads), and IntelliCare without Dy-
namic Knowledge Pathfinder (i.e., all tasks use the same
I3D visual backbone with the dynamic layer consisting of
only one block, i.e., all blocks are shared by all tasks). To
evaluate the benefits of using dynamic network in multi-task
learning, we compare IntelliCare with and without Dynamic
Knowledge Pathfinder.

For the experiments, we adopt the leave-k-out setting,
whereby each video clip is assigned to either the training
set (80% of samples), or test set (20% of samples). The
details of the calculation of the evaluation metrics can be
found in the Supplementary.
5.1. Spatiotemporal Action Localization Results

We follow [20] and use the commonly used frame-
mAP@spatial-IoU=0.5 for Spatiotemporal Action Local-
ization (STAL). mAP refers to the mean Average Preci-
sion. spatial-IoU refers to spatial Intersection-over-Union
(IoU ) of the predicted and groundtruth bounding boxes of
individuals. Our results are shown in Table 1.

Table 1. Results of Spatiotemporal Action Localization
Methods frame-mAP

ACRN [59] (I3D backbone [7]) 11.91
ACRN [59] (SlowFast backbone [14]) 12.90

SlowFast [14] 13.24
ACAR [45] 13.99

IntelliCare (w/o Multi-task Learning) 12.06
IntelliCare (w/o Dynamic Knowledge Pathfinder) 14.10

IntelliCare (w/ Dynamic Knowledge Pathfinder)(Full model) 16.25

5.2. Behavior Graph Analysis Results
In line with [62, 9], we adopt Recall@k (R@k) (k refers

to top-k returned results) as our evaluation metrics for Be-
havior Graph Analysis (BGA), and use two evaluation set-
tings: (1) Predicate Classification (PredCls) which predicts
the interactions (i.e., predicate in linguistic terms) between
individuals, using the input of the bounding boxes of in-
dividuals; and (2) Graph Detection (GDet) which, on top
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Table 2. Results of Behavior Graph Analysis
Methods PredCls R@10 GDet R@10

STTran [9] 12.91 7.12
TRACE [62] 13.58 7.37

IntelliCare (w/o Multi-task Learning) 13.58 7.37
IntelliCare (w/o Dynamic Knowledge Pathfinder) 15.71 8.75

IntelliCare (w/ Dynamic Knowledge Pathfinder)(Full model) 16.62 9.51

of predicting the interactions between individuals, also pre-
dicts the locations of individuals, where the prediction of
interaction is considered to be correct only if the predicted
tubelets (i.e., bounding box of each individual tracked over
time) of both individuals have an IoU of at least 0.5 with
the ground-truth tubelets. We present the results in Table 2.

5.3. Spatiotemporal Event Grounding Results
Following [71], we use different evaluation metrics to

evaluate different aspects of Spatiotemporal Event Ground-
ing (STEG). To evaluate the temporal grounding only, we
use mean temporal-IoU (m-tIoU ), which is computed
by taking the average of tIoU of all videos. tIoU is de-
fined as Intersection-over-Union (IoU ) of the predicted and
groundtruth timestamps.

To evaluate both spatial and temporal video ground-
ing (i.e., Spatiotemporal Event Grounding), we use
spatiotemporal-IoU (vIoU ), which is defined as vIoU =
1
FU

∑
t∈FI

IoU(b̂t, bt), where FI (or FU ) comprises the set
of frames in the intersection (or union) of the predicted
and groundtruth timestamps, with b̂t and bt representing
the predicted and groundtruth bounding boxes at time t re-
spectively. vIoU@τ represents the percentage of samples
whereby vIoU ≥ IoU threshold τ . The m-vIoU (i.e., mean
vIoU ) indicates the average of vIoU of all videos. The re-
sults are presented in Table 3.

Table 3. Results of Spatiotemporal Event Grounding.

Methods m
-t
I
oU

v
I
oU

@
0
.3

v
I
oU

@
0.
5

m
-v
I
oU

GroundeR [47] + TALL [17] 19.53 8.36 4.21 6.84
TubeDETR [71] 44.92 47.83 10.87 28.59

IntelliCare (w/o Multi-task Learning) 45.12 48.06 10.90 28.70
IntelliCare (w/o Dynamic Knowledge Pathfinder) 46.36 50.13 12.20 31.40

IntelliCare (w/ Dynamic Knowledge Pathfinder)(Full model) 47.38 51.74 13.60 32.60

5.4. Event Sound Source Localization Results
We follow [49, 57] and use consensus-IoU (cIoU@0.5),

whereby the score of each pixel is computed based on the
consensus of multiple annotations [49], as well as Area Un-
der the Curve (AUC) [49] for Event Sound Source Local-
ization (ESSL). Following [49], the bounding boxes of the
source of sound are provided to the model for the supervised
setting during training, but not provided to the model in the
unsupervised setting.

Table 4. Results of Event Sound Source Localization
Methods cIoU AUC

LSS [49] (Unsupervised) 23.85 36.56
SSPL [57] (Unsupervised) 35.50 43.58

LSS [49] (Supervised) 41.85 45.41
SSPL [57] (Supervised) 52.58 48.54

IntelliCare (w/o Multi-task Learning (Supervised)) 52.94 48.82
IntelliCare (w/o Dynamic Knowledge Pathfinder (Supervised)) 54.66 49.38

IntelliCare (w/ Dynamic Knowledge Pathfinder)(Full model) (Supervised) 57.37 51.44

5.5. Ablation Studies
Our results in Tables 1 to 4, show that our Intelli-

Care model that leverages multi-task learning outperforms
models that are trained on single task, whereby comple-
mentary information from multiple tasks can enhance the
model’s performance. This is observed by comparing Intel-
liCare (without Dynamic Knowledge Pathfinder) with In-
telliCare (without Multi-task Learning), which has better
performance across all tasks. More details on the effec-
tiveness of multi-task learning can be found in Supplemen-
tary. With the dynamic design in our Dynamic Knowledge
Pathfinder (with L = 5 dynamic layers and B = 2 blocks in
each layer), our model achieves optimal performance. We
also find that as B increases, the model’s performance is
improved (Table 5), and increase becomes marginal when
B > 2. In addition, the model’s performance also increases
with the increase of number of L layers (Table 6). However,
there is no further distinct increase in model’s performance
beyond 5 layers. In view of these findings, we use 5 layers
with 2 blocks in our model.

Table 5. Results of ablation studies
(Number (B) of blocks in each dynamic layer)

Task STAL BGA STEG ESSLPredCLS GDet

Metric fr
am

e-
m
A
P

R
@
10

R
@
1
0

m
-t
I
oU

v
I
oU

@
0.
3

v
I
oU

@
0.
5

m
-v
I
oU

cI
oU

A
U
C

Number (B)
of blocks

1 14.10 15.71 8.75 46.36 50.13 12.20 31.40 54.66 49.38
2 16.25 16.62 9.51 47.38 51.74 13.60 32.60 57.37 51.44
3 16.49 17.18 10.20 48.89 53.24 14.50 33.10 57.53 51.68

Table 6. Results of ablation studies
(Number (L) of dynamic layers)

Task STAL BGA STEG ESSLPredCLS GDet

Metric fr
am

e-
m
A
P

R
@
10

R
@
10

m
-t
I
oU

v
I
oU

@
0
.3

v
I
oU

@
0.
5

m
-v
I
oU

cI
oU

A
U
C

Number (L)
of layers

3 15.73 15.97 8.93 45.23 49.32 12.60 30.80 54.79 50.20
4 15.92 16.20 9.12 46.62 50.71 13.00 31.30 55.55 50.83
5 16.25 16.62 9.51 47.38 51.74 13.60 32.60 57.37 51.44
6 16.42 16.96 9.85 48.11 52.66 14.10 33.70 57.50 51.66

6. Conclusion
Our Chaotic World dataset provides a comprehensive yet

challenging benchmark for analyzing human behaviors in
chaotic scenes, with fine-grained and dense spatiotemporal
annotations of group interaction graphs, individual actions,
sounds, and even text descriptions for the scene in each
video. We also demonstrate how a unified multi-task In-
telliCare model, with Dynamic Knowledge Pathfinder that
can intelligently learn and leverage the task-shared and task-
specific features, can effectively analyze the chaotic scene.
We believe our work will attract the community to further
develop and evaluate various types of advanced strategies
for human behavioral analysis in chaotic events.
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Event detection in surveillance videos: A review. Multime-
dia Tools and Applications, pages 1–39, 2022. 1, 2, 3, 5

[32] Andrej Karpathy, George Toderici, Sanketh Shetty, Thomas
Leung, Rahul Sukthankar, and Li Fei-Fei. Large-scale
Video Classification with Convolutional Neural Networks.
In CVPR, 2014. 3

[33] Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang,
Chloe Hillier, Sudheendra Vijayanarasimhan, Fabio Vi-
ola, Tim Green, Trevor Back, Paul Natsev, et al. The
Kinetics Human Action Video Dataset. arXiv preprint
arXiv:1705.06950, 2017. 1, 2, 3, 4

[34] Viet-Tuan Le, Kiet Tran-Trung, and Vinh Truong Hoang.
A Comprehensive Review of Recent Deep Learning Tech-
niques for Human Activity Recognition. Computational In-
telligence and Neuroscience, 2022, 2022. 2

[35] Ang Li, Meghana Thotakuri, David A Ross, João Carreira,
Alexander Vostrikov, and Andrew Zisserman. The AVA-
Kinetics localized human actions video dataset. In CVPR
Workshops, 2020. 3

[36] Weiyao Lin, Huabin Liu, Shizhan Liu, Yuxi Li, Hongkai
Xiong, Guojun Qi, and Nicu Sebe. HiEve: A Large-Scale
Benchmark for Human-Centric Video Analysis in Complex
Events. IJCV, 2023. 3

[37] Weiyao Lin, Huabin Liu, Shizhan Liu, Yuxi Li, Hongkai
Xiong, Guojun Qi, and Nicu Sebe. HiEve: A Large-Scale
Benchmark for Human-Centric Video Analysis in Complex
Events. IJCV, pages 1–25, 2023. 3

[38] Jun Liu, Amir Shahroudy, Mauricio Perez, Gang Wang,
Ling-Yu Duan, and Alex C Kot. NTU RGB+D 120: A
large-scale benchmark for 3D human activity understanding.
TPAMI, 42(10):2684–2701, 2019. 3

[39] Qi Meng, Tingting Zhao, and Jian Kang. Influence of Music
on the Behaviors of Crowd in Urban Open Public Spaces.
Frontiers in Psychology, 9, 2018. 2

[40] Mathew Monfort, Kandan Ramakrishnan, Alex Andonian,
Barry A. McNamara, Alex Lascelles, Bowen Pan, Quanfu
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