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Figure 1: The proposed end-to-end framework facilitates robust one-shot face video re-enactment at 10242, purely
based on StyleGAN2’s predefined latent spaces without explicit structural priors for guidance. We show on the Left,
2nd row: re-enactment examples successfully animating the source frame to mimic the motion of the driving sequence and
3rd row: re-enactments with latent-based attribute edits facilitated by our approach. Right: Ideally, re-enactments need to
be insensitive to the head pose and expressions of the source. The heatmap depicts the L1 loss (lower the better) averaged
across 5 one-shot same-identity re-enactments of the driving frame, each initiated from a single source frame with a different
head pose and expression. This proves the superior robustness of our approach in comparison to existing approaches (FOMM
[30], PIRenderer [26], FS-Vid2Vid [35], LIA [37], StyleHEAT [42]).

Abstract
Recent research on one-shot face re-enactment has pro-

gressively overcome the low-resolution constraint with the
help of StyleGAN’s high-fidelity portrait generation. How-
ever, such approaches rely on explicit 2D/3D structural pri-
ors for guidance and/or use flow-based warping which con-
strain their performance. Moreover, existing methods are
sensitive (not robust) to the source frame’s facial expres-
sions and head pose, even though ideally only the iden-
tity of the source frame should have an effect. Address-
ing these limitations, we propose a novel framework ex-
ploiting the implicit 3D prior and inherent latent proper-
ties of StyleGAN2 to facilitate one-shot face re-enactment
at 10242 (1) with zero dependencies on explicit structural
priors, (2) accommodating attribute edits, and (3) robust
to diverse facial expressions and head poses of the source

frame. We train an encoder using a self-supervised ap-
proach to decompose the identity and facial deformation of
a portrait image within the pre-trained StyleGAN2’s pre-
defined latent spaces itself (automatically facilitating (1)
and (2)). The decomposed identity latent of the source
and the facial deformation latents of the driving sequence
are used to generate re-enacted frames using the Style-
GAN2 generator. Additionally, to improve the identity
reconstruction and to enable seamless transfer of driv-
ing motion, we propose a novel approach, Cyclic Man-
ifold Adjustment. We perform extensive qualitative and
quantitative analyses which demonstrate the superiority of
the proposed approach against state-of-the-art methods.
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Figure 2: The pipeline of the proposed framework. The high-level re-enactment process (Top), the expanded architectures
of the encoding (Bottom-Left) and re-enactment (Bottom-Right) processes are depicted. In encoding, given a frame, the En-
coder, E, outputs a pair of latents: Identity latent, WID, and Facial-deformation latent, SF , that reside within the predefined
W+ and SS spaces of StyleGAN2. In re-enactment, WS

ID (source) transformed using A(·) and SD
F (driving frame) are

combined to form the animated SS latent, which is used to obtain the re-enacted frame using the StyleGAN2 Generator, G.

1. Introduction

One-shot face video re-enactment refers to the process
of generating a video by animating the identity of a por-
trait image (source frame) mimicking the facial deforma-
tions and head pose of a driving video. The increasing in-
terest in virtual reality has stimulated video re-enactment
due to its wide range of applications (e.g., digital avatars,
animated movies, telepresence).

The task of one-shot face re-enactment is challenging
since it requires extraction of (1) identity and 3D facial
structure of the given 2D source frame and (2) motion in-
formation from the driving frames, to facilitate realistic an-
imations, despite the unavailability of paired data. To this

end, most research employ facial landmarks [18, 24, 32, 43]
or 3D parametrized models [12, 19, 26, 42] to capture the
underlying facial structure and/or motion. Even though
explicit facial structure priors may support rigorous con-
trol, they suffer from lack of generalizability (for differ-
ent face geometries), inability to capture fine/complex facial
deformations (e.g., wrinkles, internal mouth details such as
tongue and teeth), inability to handle accessories such as
eyeglasses, and inconsistencies in predictions which hinder
their performance. While latent-based models [9, 37, 39,
44] and predictive keypoint models [30, 36] alleviate the
dependency on explicit structural priors they are limited to
producing low resolution videos.
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Moreover, since the source frame is only responsible for
determining the identity of the animated frame in one-shot
face re-enactment, ideally, the expression and head pose of
the source frame should not have an effect on the animated
frame. We define this property as one-shot robustness. Ex-
isting one-shot re-enactment methods do not address this
issue and thus have poor robustness to diverse expressions
and head poses of the source frame (see Fig. 1: Right).

StyleGAN2’s [22] ability to generate high-resolution
(10242) photo-realistic faces and semantic interpretabil-
ity of its latent spaces [13, 29, 40] lead to improved re-
enactment generations [19, 25, 42]. Considering Style-
GAN2 latent space manipulations [1, 13, 25, 40], which
facilitate edits on head pose, smile, gaze, blink, etc., it is ev-
ident that the predefined latent space of a pre-trained Style-
GAN2 has implicit 3D information embedded within it. We
conjecture that the StyleGAN2’s latent spaces are not yet
fully exploited for re-enactment and use of explicit struc-
tural representations as in [19, 42] (3DMM) is redundant
and limits the performance of StyleGAN2 to the capacity-
limits of such structural priors as discussed previously.

In this work, we address the following question: Can we
learn a general model to facilitate face identity, attributes,
and motion edits leveraging the predefined latent spaces of
StyleGAN2 without reliance on explicit 2D/3D facial struc-
ture priors while improving the performance of generating
realistic, high-quality, and temporally consistent one-shot
face re-enactment videos that are also robust to diverse ex-
pressions and head poses of the source frame?

We train an encoder through a self-supervised approach
to encode a given portrait image as an Identity latent, WID,
and a Facial deformation latent, SF , that reside in the prede-
fined W+ and StyleSpace (SS) latent spaces [40] of Style-
GAN2 respectively, thus forming a hybrid latent space.
This novel approach of decomposing identity and facial de-
formation within the predefined latent spaces of StyleGAN2
itself obviates the need for explicit structural priors and ac-
commodate latent-based attribute manipulation (e.g., smile,
pose, age, etc.) proposed by previous research [13, 29]. We
exploit the inherent latent properties of the W+ and SS la-
tent spaces: best distortion-editability trade-off and best dis-
entanglement [40] respectively, to design the decomposition
framework as explained in Sec. 3. The decomposed identity
latent of the source and the deformation latents of the diving
sequence of frames are then used to generate high-fidelity
one-shot face re-enactment video (with or without attribute
edits) at 10242 using a pre-trained StyleGAN2 generator
(Fig. 2). Further, the model was carefully designed such
that the re-enacted video is robust to diverse head poses and
expressions of the source frame.

Additionally, we propose a novel algorithm, Cyclic Man-
ifold Adjustment (CMA) inspired by PTI [28], to address (1)
StyleGAN2’s poor identity reconstruction of out-of-domain

source frames and (2) the non-homogeneity of the local
manifolds around the driving identity and the source iden-
tity latents (i.e., a facial deformation edit applied to two
identity latents would have slight differences in the rendered
animation due to the non-homogeneity of local manifolds
around different identities). Thus improving the source
identity reconstruction and enabling seamless transfer of fa-
cial deformations of the driving video. While research such
as [5, 28, 34] addresses the former, to the best of our knowl-
edge no research has been conducted to address the latter.

In summary, our key contributions include:

• A novel StyleGAN2-based hybrid latent space frame-
work that enables high-fidelity one-shot face video re-
enactment at 10242, robust to diverse head poses and
expressions of the source yielding state-of-the-art re-
sults (quantitative improvement of upto 12% in cross-
identity re-enactment and 50% in one-shot robustness),

• A novel hybrid latent space approach of decomposing
the identity and facial deformation of a portrait im-
age within the predefined latent spaces of StyleGAN2
itself obviating the need for explicit structural priors
for guidance and facilitating re-enactments with latent-
based attribute edits,

• A novel algorithm, Cyclic Manifold Adjustment, that
locally adjusts the StyleGAN2’s manifold to improve
the reconstruction of an out-of-domain source and en-
able seamless transfer of facial deformations of the
driving video to the source image.

To the best of our knowledge, we are the first to decom-
pose identity and facial deformation within the pre-trained
StyleGAN2’s predefined latent spaces itself, the first to han-
dle robustness to diverse head pose and expressions of the
source frames, and the first to propose a manifold adjust-
ment technique handling both source identity reconstruc-
tion and non-homogeneity of the latent space in the task of
latent-based re-enactment.

2. Related Work
Face Video Re-enactment: Face video re-enactment

approaches can be categorized based on the identity/motion
representation or the approach used to generate the ani-
mated frames. Facial landmarks [18, 24, 32, 43], 3D fa-
cial priors [12, 19, 26], 2D/3D predictive keypoint methods
[30, 36], and intermediate latent representations [9, 37, 39,
44] are commonly used for identity/motion representation.
While 3D facial priors address the main issue of 2D facial
priors, i.e., unrealistic deformations caused during signifi-
cant motion, their performance is limited by the lack of fine
visual-details surrounding face dynamics (wrinkles, teeth,
non-rigid deformations), inability to represent accessories
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(e.g., eyeglasses), and representation of only the inner face
region. Further, the use of explicit 2D/3D facial structural
priors leads to spatio-temporal incoherence stemming from
inconsistencies of the landmarks/parameters and poor gen-
eralization in cases of varying facial geometries between the
driving and source identities.

The work on re-enactment either follows an optical flow
based warping strategy [11, 30, 36] or a generative approach
[9, 16, 19] to animate frames. Even though warping meth-
ods yield results with high resemblance to the in-the-wild
source images due to operating in image space, they are
prone to unrealistic deformations in faces, have weaker gen-
eralization compared to generative approaches, and perform
poorly in generating facial structures that were not visible
in the source image (e.g., filling in teeth in opening of the
mouth, opening eyes, ears when rotating the head).

StyleGAN-based Face Re-enactment: Recent research
[8, 19, 42] employ StyleGAN2 as a tool for high-resolution
one-shot face re-enactment due to its ability to produce real-
istic portraits at 10242 and the rich semantic properties of its
latent spaces [13, 29, 40]. MegaFR [19] encodes the resid-
ual deformation between the source image and a 3D ren-
dering (combination of 3DMM parameters [7] of the source
and driving frames) of the animated frame as an additive la-
tent space offset. Bounareli et al. in [8] map the difference
of 3D model parameters of the driving and source frames
onto the latent space to obtain the re-enacted frame’s latent.
StyleHEAT [42] uses 3DMM parameters to capture the fa-
cial deformations to generate flow fields which are used to
warp an intermediate feature space of the generator.

While the above methods yield promising results, they
employ explicit 3D priors to capture the facial struc-
ture/motion, thus, suffer from the limitations of using ex-
plicit structural priors as explained previously (i.e., incon-
sistencies, lack of fine-grained details, limited by the ca-
pacity of the 3D model, etc.). In contrast, our novel frame-
work does not use explicit 2D/3D structural models, instead,
we exploit the implicit 3D priors of StyleGAN2 and the in-
herent properties of its latent spaces to encode the decom-
posed identity and the motion within the StyleGAN2’s pre-
defined latent spaces itself, which also facilitates accom-
modation of latent-based attribute edits proposed by pre-
vious research. While StyleGAN2 inherently suffers from
texture-sticking, StyleHEAT aggravates the issue as their
model warps the intermediate feature space of the Style-
GAN2 generator. Moreover, compared to [8, 19] that en-
code in the W+ space, we employ a hybrid latent ap-
proach using both W+ and SS latent spaces to exploit high
inversion-editability and high disentanglement respectively.
Further, our method is robust to diverse head poses and fa-
cial expressions of the source frame (i.e., better one-shot ro-
bustness) as opposed to the existing one-shot re-enactment
methods, which perform poorly.

3. Methodology
Preliminaries: Among the prominent predefined latent

spaces of StyleGAN2, W+ space has the best trade-off
between inversion quality and editability as demonstrated
by StyleGAN2 inversion and latent manipulation research
[3, 27, 31] and StyleSpace, SS, has the highest disentan-
glement [40]. Leveraging these signature properties, we en-
code a given portrait image to an Identity latent and a Facial
deformation latent that resides within the predefined W+
and SS latent spaces respectively. The logical reasoning
of this choice is explained involving Eqs. (2) and (4) in the
Overview and is supported by ablations in Sec. 4.3.

Overview: As shown in Fig. 2, the proposed framework
comprises of two main networks, an encoder, E, and a de-
coder, G: a pre-trained StyleGAN2 generator. The encoder
consists of two heads: Identity Encoder, EID, and Facial
Deformation Encoder, EF , preceded by a common Feature
Extraction Network, F . Given an input frame, the encoder
outputs two latents, WID and SF , capturing identity and
facial deformations respectively, such that,

WID = EID(F (I)), SF = EF (F (I)), (1)
I = G (A(WID) + SF ) , (2)

where, A(·) is the affine transformation from W+ to SS.
While WID resides in the entire W+ space i.e., WID ∈
W+ ⊂ R18×512, SF resides in the space spanned by the
first 10 SS layers i.e., SF ∈ SS1:10 ⊂ R10×512. This
is based on (1) the observation in [25, 40] that SS latents
corresponding to facial deformations of interest, (i.e., pose,
mouth, gaze, eyes, eyebrows, and chin) lie within the first
10 layers of SS and (2) to avoid the appearance jitters
caused by edits on high-resolution feature layers [41].

In re-enactment, we follow a frame-wise approach,
where a single source frame, IS , and each frame, IDt ,
of the driving sequence are projected to {WS

ID,SS
F } and

{WD
IDt

,SD
Ft
} respectively (Eq. (1)). Thereafter, the ani-

mated frame, IS→D
t is generated using G, sourcing WS

ID

and SD
Ft

latents, comprising of the source identity and the
driving frame’s facial deformations respectively.

IS→D
t = G

(
A(WS

ID) + SD
Ft

)
(3)

As seen in Eq. (3), the additive latent SD
Ft

constitutes a
latent edit performed on WS

ID. Thus, it is important for
WS

ID to reside in the latent space with the best inversion-
editability trade-off (i.e., W+) and accommodate a wide
range of facial deformation latent edits imposed by the driv-
ing sequence ({SD

Ft
}). It is equally important for SD

Ft
to re-

side in a highly disentangled latent space (i.e., SS), so that
it minimizes identity leakage, which would alter the source
identity across frames. This choice of design also accom-
modates the latent-based attribute manipulations (e.g., pose,
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age, smile, etc.) proposed by previous research [13, 29].

IS→D
edit,t = G

(
A(WS

ID +Wedit,t) + SD
Ft

)
(4)

3.1. Architecture

Feature Extraction Network, F : We use a ResNet50-
SE backbone [14, 17] extended with a feature pyramid [23]
to extract the coarse, medium, and fine features of each
frame. These levels correspond to the levels of features ad-
dressed by each latent layer as in [21].

Identity Encoder, EID: The EID consists of network
blocks similar to map2style in [27] where the feature maps
of the corresponding granularity are gradually reduced to
512 dimensions using a fully convolutional network. The
encoder consists of 18 such blocks each predicting a single
layer (dimension) of WID ∈ R18×512.

Facial Deformation Encoder, EF : While EF has a
similar architecture to EID, it consists of only 10 map2style
blocks as we limit the SS latent edits to only the first 10 lay-
ers of SS as explained in the Overview.

Decoder, G: We use the pre-trained StyleGAN2 gener-
ator, which facilitates the input of SS latents [40], as the
decoder to generate re-enacted frames from the latents.

3.2. Implementation

Due to the unavailability of paired re-enactment datasets,
we follow a self-supervised training approach to learn the
weights of the encoder, E. During training, we randomly
sample a single source frame, IS , and two driving frames,
ID1 and ID2, one belonging to the same identity as IS and
the other from a randomly selected different identity respec-
tively. The three frames, IS , ID1, and ID2 are encoded to
the corresponding latents, {WS

ID,SS
F }, {WD1

ID ,SD1
F }, and

{WD2
ID ,SD2

F } respectively (Eq. (1)). We learn the weights
of E by optimizing over the following loss functions.

Reconstruction Losses: Reconstruction losses are two-
fold comprising of a self-reconstruction loss, Eq. (5), and a
re-enactment loss, Eq. (6), which measure the reconstruc-
tion of the source frame, IS→S , and the same-identity driv-
ing frame, IS→D1, using the source identity latent, WS

ID,
and the corresponding facial deformation latents.

Lself = Lrec

(
IS , G{A(WS

ID) + SS
F }

)
(5)

Lreenact = Lrec

(
ID1, G

(
A(WS

ID) + SD1
F

))
(6)

Lrec = λL2LL2 + λLPIPSLLPIPS + λGV LGV (7)

where, Lrec is a weighted sum of the MSE loss (LL2),
LPIPS loss [45] (LLPIPS), and Gradient Variance loss [2]
(LGV ), weighed by λL2, λLPIPS , and λGV respectively.

Identity Loss: The identity loss is computed using,

Lid = {1−
〈
ϕ(IS), ϕ(ISID )

〉
} (8)

+ {1−
〈
ϕ(IS), ϕ(IS→D2)

〉
} (9)

where, cosine similarity (⟨·, ·⟩) of the ArcFace [10] feature
space, is measured between the pair of images. ISID =
G
(
A(WS

ID)
)

is the source identity image and IS→D2 =

G
(
A(WS

ID) + SD2
F

)
denotes the animation of the source

representing the facial deformations of ID2. Eq. (8) ensures
the identity of the source is captured within WS

ID and also
prevents the optimization from converging to the trivial so-
lution of Eqs. (5) and (6): i.e., WS

ID = 0. Further, Eq. (9)
makes sure that cross-identity re-enactment preserves iden-
tity i.e., minimizes the identity information leakage to SF .

Identity Latent Consistency Loss: To enforce one-shot
robustness we obtain the WID of IS→D2 by passing it
through E and compute the following loss over the latent
space to encourage consistent identity latents irrespective
of head pose and facial expressions of the source.

Lw id = ∥WS
ID −WS→D2

ID ∥2 (10)

Regularization Loss: Additional regulatory losses are
used to reduce the variance within WS

ID [31] and to control
the facial-deformation edits, SD1

F , to be within the proxim-
ity of A(WS

ID) combined in a ratio of 1 : λS . Indices [i]
and [j] denote the ith and jth dimension of the latent.

∆i = WS
ID[i]−WS

ID[1] (11)

Lreg =
∑

i=1:18

∥∆i∥2 + λS

∑
j=1:10

∥SD1
F [j]∥2 (12)

Feature Reconstruction Loss: Complementary to the
reconstruction losses, feature reconstruction losses are com-
puted using the same loss functions with the exception of
the losses being computed on a dilated masked region con-
sisting of the mouth, eyes, and eyebrows to increase the
emphasis on capturing fine facial deformations accurately.

Lf = Lrec

(
MS ⊙ IS ,MS ⊙ IS→S

)
+ Lrec

(
MD1 ⊙ ID1,MD1 ⊙ IS→D1

)
(13)

Additionally, similar to [31] we train a Latent Discrim-
inator, with adversarial loss, Ld, to encourage the WS

ID to
be in the well-editable regions of StyleGAN2 latent space.

Total Loss: The total loss is as follows, where λ∗ repre-
sents the corresponding weights.

L = Lself + Lreenact + λid · Lid + λw id · Lw id

+λd · Ld + λreg · Lreg + λf · Lf (14)

3.3. Cyclic Manifold Adjustment (CMA)

As explained in Sec. 1, we propose a novel approach,
Cyclic Manifold Adjustment, inspired by PTI[28], with the
following objectives: (1) improving the identity reconstruc-
tion quality of out-of-domain subjects and (2) addressing
the non-homogeneity of the local manifolds around the
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Figure 3: Cyclic Manifold Adjustment (CMA). For an
out-of-domain subject, W̃S

ID, WS
ID, and {SD

Ft
}, represent

the true identity, identity latent estimate obtained using E,
and the sequence of facial deformation latents obtained
from the driving sequence. We locally tweak the Style-
GAN2’s manifold around WS

ID, to include the latent space
spanned by {SD

Ft
} centered around W̃S

ID, thus improving
the source identity reconstruction and enabling seamless
transfer of facial deformations of the driving video.

driving and source identity latents. We achieve this by fine-
tuning the StyleGAN2 generator, G, at inference (with en-
coder weights frozen), optimizing the carefully designed
cyclic objective (Eqs. (15) to (18)).

Suppose the true source identity latent is W̃S
ID which

is out of StyleGAN2’s domain. Fine-tuning the Style-
GAN2 generator, G, using PTI on the source image, would
constrain the local latent space around the source identity,
W̃S

ID, thus limiting the editability through facial deforma-
tion latents of the driving frames, {SD

Ft
} (as PTI focuses

only on objective (1)). In contrast, CMA tweaks the la-
tent space manifold around the source identity latent esti-
mate, WS

ID, obtained through E, to include the latent space
spanned by the sequence {SD

Ft
} centered around W̃S

ID as
depicted in Fig. 3. In other words, the cyclic reconstructions
of the source and driving frames are obtained from the de-
composed latents WS

ID cyc,SD
F cyc of the re-enacted frame,

IS→D (Eqs. (17) and (18)). Thus, considering Eq. (16),
WS

ID cyc,SD
F cyc = E(IS→D) = E(G(A(WS

ID) + SD
F )),

minimizing the cost function, Eq. (15), finetunes G, such
that the source identity, WS

ID, and the driving face de-
formations, SD

F , are maximally visible in the re-enacted
frame, IS→D. This locally adjusts the StyleGAN2 manifold
around WS

ID to include W̃S
ID with SD

F in its neighborhood.
This novel approach improves the identity reconstruction of
the out-of-domain source and enables seamless transfer of
facial deformations of the driving video. We achieve this by
optimizing the cost function,

L
(
IScyc, I

S
)
+ L

(
IDcyc, I

D
)

(15)

where, L denotes a combination of LPIPS and L2 losses
and IScyc and IDcyc are cyclic reconstructions of the source

and driving frames respectively generated as follows.

WS
ID cyc, SD

F cyc = E
(
IS→D

)
(16)

IScyc = G
(
A(WS

ID cyc) + SS
F

)
(17)

IDcyc = G
(
A(WD

ID) + SD
F cyc

)
(18)

4. Experiments and Results
Datasets: We pre-trained the encoder on the CelebV-

HQ dataset [47], which includes diverse high resolutions
(min. 5122) with over 35K videos involving 15K+ identi-
ties. The HDTF dataset [46], which consists of 362 videos
(720p/1080p) with 300+ identities, was used for the fine-
tuning stage with an 80-20 non-overlapping train-test split.
All the sampled frames were preprocessed according to
[30]. For training 50 samples/video were used and for eval-
uation the first 500 samples/video of 75 unseen videos (total
37.5K frames) were chosen.

Training: Training was performed in two stages: (1)
a Pre-training Stage: the entire encoder, E is trained for
200K iterations, followed by (2) a Fine-tuning Stage: only
the two latent-prediction heads: EID and EF are fine-tuned
(weights of the Feature Exctraction Network, F frozen) at a
reduced learning rate for 20K additional iterations to avoid
over-fitting. While the former focuses mainly on learning
the features of images, improving generalization, and learn-
ing the implicit prior of the StyleGAN2’s latent space, the
latter stage focuses on capturing the detailed facial deforma-
tions and face details. See supplementary for further details.

Inference: During inference, a driving video and a sin-
gle source frame were obtained from the evaluation sam-
ples of the HDTF dataset. While the source frame and the
driving video are of the same identity in same-identity re-
enactment, the identities differ in the case of cross-identity
re-enactment. The re-enacted frames were generated as
explained in Eqs. (1) to (4). Cyclic manifold adjustment
(Sec. 3.3) was used to improve realism and visual quality.
Since a generative architecture is used, our model is capable
of rendering re-enactment videos in real-time (∼ 30fps).

4.1. Baselines and Metrics

Baselines: We compare our results against a di-
verse range of state-of-the-art approaches that are based
on: predictive keypoints (FOMM [30]); 3D models
(PIRenderer [26], StyleHEAT[42]), facial landmarks (FS-
Vid2Vid[35]); intermediate latents (LIA [37]); flow-based
warping (FOMM, FS-Vid2Vid, PIRender, StyleHEAT); and
StyleGAN2-based (StyleHEAT).

Metrics: We extensively evaluate the results of the pro-
posed framework against the baselines using (1) Recon-
struction fidelity: L1-norm pixel loss, Peak Signal-to-Noise
Ratio (PSNR), (2) Identity preservation: Identity loss (LID

- computed using [10]), (3) Perceptual quality: LPIPS [45],
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Figure 4: Qualitative evaluation of same-identity (Top) and cross-identity (Bottom) re-enactment. Same-Identity Re-
enactment: Observe the lack of sharpness in facial features (e.g., teeth, wrinkles, eyes), visual artifacts around eyes, ears,
and mouth, and incorrect/missing facial features in baseline methods in comparison to our approach. Cross-Identity Re-
enactment: Observe in comparison to the baselines: 3rd row: teeth, mouth formation, and head pose; 4th row: preservation
of source identity and lip structure, and the expression of driving. Refer supplementary video for better visualization.

SSIM [38], FID [15], (4) Spatio-temporal perceptual qual-
ity: FVD [33], FVDM (FVD over the mouth), (5) Temporal
coherence in facial attributes: ρAU , ρGZ , and ρpose, the tem-
poral correlation of Action Units (expressions), gaze, and
pose respectively measured using [6].

Additionally, we design an experiment to evaluate the
robustness to diverse head poses and facial expressions of
the source frame (one-shot robustness). The performance
of same-identity one-shot re-enactment of 5 driving videos
with 5 diverse source frames per driving video (25 source
image-driving video combinations) are evaluated based on
the mean loss and standard deviation across re-enactments.

4.2. Analysis and Discussion

Quantitative Analysis: The performance of our ap-
proach in comparison to the baselines in the tasks of same-
identity and cross-identity re-enactments, are tabulated in
Tabs. 1 and 2 respectively. Our approach yields the best per-
formance across all metrics except LID where it achieves
comparable values to the best. A higher LID for FOMM
is expected as it operates in the image space as opposed
to our generative approach. However, the performance of
our model generating results at 10242, in comparison to
the baselines is not fully reflected through the metrics, as
(1) most of the metrics (LID, FID, FVD, etc.) are com-

puted on downsampled images at a low-resolution which do
not reflect the fine-grained details and (2) the lack of high-
resolution (≥ 10242) data samples. Further, we yield the
lowest mean and standard deviation in one-shot robustness
experiment (Tab. 3) (upto 50% improvement) proving the
superior robustness of our framework to diverse head poses
and expressions of the source frames compared to baselines.

Qualitative Analysis: The qualitative examples in Fig. 4
and supplementary video demonstrate that our approach
yields much improved visual results compared to the base-
lines that are prone to visual artifacts, incorrect facial at-
tributes, and lack of sharpness in scenarios where the
source and driving frames have significant difference in
pose and/or expression, subject is wearing eyeglasses, fill-
ing in unseen details (e.g., teeth, ear). Our approach suc-
cessfully handles these cases while producing more realis-
tic re-enactment at high-resolution (10242). The versatility
of our model is more pronounced in the cross-identity ex-
amples, where facial deformations of the driving frames are
accurately mimicked in the re-enacted frame while preserv-
ing the source identity. Fig. 1 demonstrates the ability of the
model to generate realistic re-enactments with latent-based
attribute edits.

Further, all approaches except StyleHEAT are only ca-
pable of low-resolution generation. While StyleHEAT uses
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Method res. L1 ↓ LPIPS↓ LID↓ PSNR↑ SSIM↑ FID↓ FVD↓ FVDM↓ ρAU↑ ρGZ↑ ρpose↑
FOMM [30] 2562 2.37 0.042 0.095 32.8 0.959 22.3 102.1 19.9 0.808 0.737 0.948
PIRenderer [26] 2562 3.52 0.053 0.118 29.1 0.932 28.0 145.1 26.8 0.748 0.770 0.906
LIA [37] 2562 2.72 0.049 0.102 31.5 0.951 26.4 105.0 19.6 0.822 0.732 0.944
FS-Vid2Vid [35] 5122 4.38 0.065 0.151 27.4 0.919 31.6 255.0 45.0 0.572 0.635 0.822
StyleHEAT [42] 10242 3.59 0.059 0.133 28.8 0.934 38.8 171.0 31.4 0.745 0.850 0.921
Ours 10242 2.28 0.027 0.097 33.1 0.967 19.3 101.0 16.6 0.829 0.872 0.952
Ours w/o ID reg 10242 2.34 0.028 0.111 32.8 0.953 20.3 115.4 20.7 0.810 0.857 0.948
Ours w/o Hybrid 10242 2.52 0.031 0.114 31.7 0.950 20.6 116.9 23.6 0.746 0.798 0.923

Table 1: Quantitative comparison of one-shot same-identity re-enactment against baselines. Top: Evaluation results
computed over 75 unseen videos (37.5K total frames) of the HDTF dataset [46]. Our approach yields the best performance
across all metrics except LID (comparable with best) while generating high-resolution re-enactment. Bottom: Ablations
performed for Ours w/o ID reg.: Framework without the Identity regularization and Ours w/o Hybrid: Framework without
the Hybrid latent spaces i.e., both latents in W+ space.

Method FID↓ FVD↓ FVDM↓ ρAU+GZ↑ ρpose↑
FOMM [30] 94.0 529.4 78.4 0.450 0.782
PIRenderer [26] 84.8 417.3 54.2 0.668 0.880
LIA [37] 94.8 536.2 76.7 0.404 0.788
FS-Vid2Vid [35] 90.6 532.7 86.7 0.493 0.745
StyleHEAT [42] 97.2 408.8 58.9 0.645 0.875
Ours 74.3 375.4 50.2 0.718 0.915
Ours w/o ID reg 85.6 399.8 53.1 0.685 0.894
Ours w/o Hybrid 93.0 427.3 60.8 0.649 0.878
Ours w/o CMA 86.9 388.1 52.4 0.646 0.896
Ours – CMA + PTI 84.8 421.2 56.8 0.627 0.890

Table 2: Quantitative evaluation of cross-identity one-
shot re-enactment. Top: Evaluation computed over 75 un-
seen videos (37.5K frames in total) of the HDTF dataset
[46] and random source frames of different identities. Our
approach yields the best performance across all metrics
which is reflective of the visual results. Bottom: Abla-
tions for Ours w/o ID reg.: Framework without the Iden-
tity regularization; Ours w/o Hybrid: Framework without
the Hybrid latent spaces i.e., both latents in W+ space;
Ours w/o CMA: Framework without Cyclic Manfold Ad-
justment (CMA) and Ours – CMA + PTI: Framework re-
placing Cyclic Manfold Adjustment (CMA) with PTI[28].

StyleGAN2 to generate re-enactment videos at 10242, the
use of an explicit 3D prior to capture the facial attributes and
warping of the intermediate feature spaces inhibits its per-
formance. In contrast, our model exploits the implicit pri-
ors of the predefined latent spaces of StyleGAN2 to achieve
state-of-the-art performance. Further, Fig. 1 (Right) and
supplementary video depict heatmaps of L1 loss (lower the
better) averaged across 5 one-shot re-enactment runs each
initiated with a single source frame with a different head
pose and expression, which clearly shows the superior one-
shot robustness of our approach in comparison to baselines.

4.3. Ablation Study

Identity Regularization: We evaluate the impact of us-
ing the identity-loss based regularization (Eq. (9)), which

Method LPIPS↓ LID ↓ FID↓ FVD↓
×10−2 ×10−1 ×101 ×102

FOMM 7.5± 2.1 2.3± 1.1 3.2± 1.0 2.0± 0.7
PIRenderer 5.7± 0.4 1.2± 0.2 2.2± 0.2 1.5± 0.3
LIA 7.8± 2.0 2.3± 1.0 3.4± 1.0 2.0± 0.8
FS-Vid2Vid 7.5± 1.1 1.8± 0.5 3.3± 0.6 2.2± 0.5
StyleHEAT 6.0± 0.4 1.4± 0.2 3.3± 0.5 1.5± 0.2
Ours 2.9± 0.2 1.1± 0.1 1.5± 0.2 0.8± 0.1

Table 3: Evaluation of One-Shot Robustness. We evaluate
the robustness of each model in the task of same-identity re-
enactment using 5 driving videos (500 samples/video) and
5 diverse source frames per driving video (25 source image-
driving video combinations). Our approach yields the least
mean and standard deviation proving its robustness to di-
verse head pose and expressions of source frames.

is in place to minimize the identity leakage into the facial
deformation latent, SF . The results are in Tabs. 1 and 2
(Bottom) as Ours w/o ID reg. Considerable quantitative im-
provement is seen in cross-identity re-enactment with the
inclusion of identity regularization.

Hybrid Latent Spaces: We employ a hybrid latent ap-
proach, where Identity latent, WID, and Facial deformation
latent, SF , reside in the domains of W+ and SS respec-
tively to make use of their inherent properties. We vali-
date the use of a hybrid approach against Ours w/o Hybrid,
where both the Identity and Facial deformation latents re-
side in the W+ space. Based on the results at the bottom of
Tabs. 1 and 2, the scores deteriorate compared to the Hybrid
approach, most likely due to the entanglements within the
W+ space.

Cyclic Manifold Adjustment (CMA): We evaluate the
performance improvement of using CMA in comparison to
(1) our framework without CMA (Tab. 2: Ours w/o CMA)
and (2) replacing CMA with PTI (Tab. 2: Ours – CMA +
PTI). While using CMA achieves the best results, it could
be observed that the use of PTI deteriorates the scores com-
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pared to Ours w/o CMA. This could be because using PTI on
the source constrains the local manifold around the source
Sec. 3.3 and it does not guarantee the local manifold around
the source to accommodate the facial deformations of the
driving sequence (due to non-homogeneity) leading to dis-
torted/ suboptimal results.

4.4. Limitations

Since we base our model on StyleGAN2, we inherit its
limitations of texture sticking and alignment requirements.
Further, handling occlusions and reconstruction of changing
backgrounds are challenging since StyleGAN2 generator is
pre-trained for faces. While our model could be adapted to
StyleGAN3[20] to mitigate the issue of texture sticking, the
use of StyleGAN2 is preferred due to its latent space being
more structured and expressive [4] and the lower compu-
tational requirement (lower parameters in the encoder for
StyleGAN2 as opposed to StyleGAN3). See supplementary
for further details.

5. Conclusion
We propose a novel StyleGAN2-based hybrid latent

space framework to facilitate one-shot face re-enactment at
10242 (1) without relying on explicit structural priors for
guidance, (2) accommodating latent-based attribute edits,
and (3) robust to diverse facial expressions and head poses
of the source frame, while achieving state-of-the-art results
both quantitatively and qualitatively. The framework re-
veals the full potential of StyleGAN2 for face edits, specif-
ically identity, attributes, and facial deformations in videos,
and is centered around an intuitively designed novel decom-
position of identity and facial information that reside within
the predefined latent spaces itself of a pre-trained Style-
GAN2. Additionally, we propose a novel algorithm, Cyclic
Manifold Adjustment that improves reconstruction of the
source and enables seamless transfer of facial deformations
of the driving video. The negative societal impact of our
model is similar to that of other DeepFake algorithms and
is discussed in the supplementary.
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