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Abstract

Face Image Quality Assessment (FIQA) lays the founda-
tion for ensuring the stability and accuracy of face recogni-
tion systems. However, existing FIQA methods mainly for-
mulate quality relationships within the training set to yield
quality scores, ignoring the generalization problem caused
by ethnic quality bias between the training and test sets.
Domain adaptation presents a potential solution to mitigate
the bias, but if FIQA is treated essentially as a regression
task, it will be limited by the challenge of feature scaling
in transfer learning. Additionally, how to guarantee source
risk is also an issue due to the lack of ground-truth labels of
the source domain for FIQA. This paper presents the first at-
tempt in the field of FIQA to address these challenges with a
novel Ethnic-Quality-Bias Mitigating (EQBM) framework.
Specifically, to eliminate the restriction of scalar regres-
sion, we first compute the Likert-scale quality probability
distributions as source domain annotations. Furthermore,
we design an easy-to-hard training scheduler based on the
inter-domain uncertainty and intra-domain quality margin
as well as the ranking-based domain adversarial network
to enhance the effectiveness of transfer learning and fur-
ther reduce the source risk in domain adaptation. Exten-
sive experiments demonstrate that the EQBM significantly
mitigates the quality bias and improves the generalization
capability of FIQA across races on different datasets.

1. Introduction

To maintain stable accuracy for face recognition systems
in the wild deployment circumstance, numerous Face Im-
age Quality Assessment (FIQA) techniques have been de-
veloped [38]. The existing FIQA schemes build their ap-
proaches on the assumption that the training and test data
share similar distributions, and have shown promising out-
comes on popular evaluation benchmarks [2, 21, 25, 33, 31,
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Figure 1. Illustration of the two different FIQA schemes. Pre-
vious FIQA schemes focus on formulating new quality relation-
ships within the source domain, which may lead to ethnic quality
bias due to the gap between the source and target domains. In
contrast, in our proposed technique, the intra-domain margin and
inter-domain uncertainty are involved in amending quality predic-
tions of the target domain, which mitigates the ethnic quality bias.

41, 46, 52]. However, recently Babnik et al. [4] and Terhörst
et al. [45] emphasize the potential problem of ethnic qual-
ity bias that leads to generalization challenges when FIQA
models are deployed in real-world scenarios with different
demographic distributions.

On the one hand, the challenge stems from the un-
balanced demographic attributes in datasets. For in-
stance, mainstream FIQA training datasets, such as CASIA-
Webface [53], MS-Celeb-1M [20], and VGGFace2 [34], are
gathered from the Internet and contain people with unbal-
anced ethnic distributions. These datasets are overwhelm-
ingly composed of people with Caucasian attributes, with
over 74% of the samples with this demographic. Such a
dramatic difference between the Caucasian (i.e. source do-
main) and other races (i.e., target domain) may lead to do-
main shifts in the deployment of FIQA models. Collect-
ing and labeling more data along the underrepresented at-
tributes for these million-scale training sets may be a solu-
tion but it is impractical. Moreover, the collection of face
images would be involved in private legal issues across dif-
ferent districts. On the other hand, existing FIQA meth-
ods [2, 21, 25, 31, 46] focus on exploring new quality con-
sistency relationships between quality scores and the per-
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formance of face recognition models, largely escaping the
research attention for amending quality scores against eth-
nic quality bias. Therefore, there appears to be a new chal-
lenging and meaningful problem: how to utilize unbalanced
training data to reduce ethnic quality bias?

A potential solution is to adopt unsupervised domain
adaptation to tackle the FIQA task via leveraging the source
data to learn a robust quality regressor for the target do-
main [12, 14, 26]. Unfortunately, the majority of current
domain adaptation schemes have not attained favorable ad-
vances solely for regression [14]. Moreover, how to guar-
antee the source risk of domain adaptation without ground
truth labels in the FIQA task is also a challenge [28].

In this work, we build a novel Ethnic-Quality-Bias Miti-
gating (EQBM) framework based on the curriculum domain
adaptation to address these issues. Herein, we describe the
core idea of our framework in Fig. 1. Different from previ-
ous FIQA techniques [6, 33, 52] that focus on formulating
new quality relationships within the source domain to yield
quality scores, our EQBM framework explores the intra-
domain quality margin and inter-domain uncertainty in the
curriculum design to amend quality scores, showing signif-
icant advantages over previous works on evaluation bench-
marks for mitigating the ethnic quality bias.

The main contributions of this work are threefold:

• We present the first attempt to address the challenging
yet meaningful problem of ethnic quality bias via do-
main adaptation in the field of FIQA, which provides
new insights into developing robust FIQA schemes.

• We devise a new framework to amend quality scores
against the bias, in which we boost the potential of do-
main adaptation for migrating the ethnic quality bias
via the Likert-scale quality probabilities and quality
ranking.

• We propose a novel curriculum domain adaptation ap-
proach, a sequential adaptation strategy, which adapts
from the easier samples to harder ones, in which the
intra-domain quality margin and inter-domain uncer-
tainty are coupled for the curriculum design.

2. Related Work
2.1. Face Image Quality Assessment

With the success of deep neural networks, there has been
a surge of interest in developing deep learning-based ap-
proaches for FIQA. Existing methods can be broadly di-
vided into two categories: quality regression-based [6, 7,
21, 52, 33] and recognition model-driven [2, 9, 31, 41, 46].
Quality Regression-based Technique. This scheme aims
at calculating quality scores as annotations on a closed
dataset of face recognition to train a FIQA regression

model. For instance, Hernandez-Ortega et al. [21] com-
puted the Euclidean distance of intra-class recognition em-
bedding as the quality score for training and proposed Face-
Qnet to infer face image quality. Xie et al. [52] developed
PCNet that relies on mated pairs to obtain annotations for
FIQA network training. Best-Rowden and Jain [6] studied
the relationship between face quality and annotations with
partial or complete human efforts and evaluated the perfor-
mance of trained FIQA regressors with these annotations.
Ou et al. [33] proposed SDD-FIQA, in which the Wasser-
stein metric is utilized to generate quality annotations by
computing the similarity distribution distance between pos-
itive and negative samples, and then a FaceQnet-like quality
network is trained for quality prediction.
Recognition Model-driven Technique. This scheme pro-
poses to learn or compute the embedding uncertainty as the
quality score on face recognition models. In literature, Shi
and Jain [41] proposed the Probabilistic Face Embedding
(PFE) to introduce the uncertainty of samples to evaluate
the quality. Subsequently, Chang et al. [9] improves the
PFE via simultaneously learning the mean and uncertainty
of Gaussian embedding distribution. Terhorst et al. [46] cal-
culated the mean Euclidean distance of embeddings that are
produced from a recognition model with the active dropout
operator as the quality score. Meng et al. [31] proposed
MagFace to reflect the quality of samples by adding an
adaptive margin and regularization based on feature mag-
nitude. Most currently, Žiga et al. [2] utilize the character-
istics of face adversarial examples in the embedding space
to estimate face quality by a quality aggregation function.

The aforementioned FIQA techniques focus on unveiling
an improved association between quality scores and the per-
formance of face recognition models. Nevertheless, there is
rare research dedicated to resolving the generalization is-
sue caused by quality bias in FIQA. To tackle this difficulty,
instead of exploiting a new quality relationship, we concen-
trate on rectifying quality scores via the domain adaptation
technique to diminish the FIQA quality bias for target do-
mains, which is rarely touched in previous works.

2.2. Bias in Face Image Quality Assessment

In literature, face recognition bias has been demonstrated
by exhibiting disparate performances of the recognition
model for various demographic groups in terms of ethnic-
ity and gender [19, 35, 50], which significantly affect the
fairness of recognition models and thus promote numerous
studies for mitigating the recognition bias in recent years.

For FIQA, Terhörst et al. [45] investigated the demo-
graphic bias of the previous FIQA methods by comparing
the number of samples of each demographic attribute in a
certain proportion of low-quality samples. More recently,
Babnik et al. [4] conducted a more specific study to measure
demographic biases of FIQA, including gender and ethnic-

20719



Dt = {xt
i}N

i=1

Source Domain

Target Domain

Ds = {(xs
i , ys

i , vs
i )}M

i=1

Obtaining Source Domain Annotations

Quality Relation  
Function xxxxxxQ(vs

i |ys
i )

Quality Score Likert-scale Quality 

Probabilities             

Training Curriculum Difficulty Measurers

Domain Discriminator

Easy-to-Hard Training Scheduler

Easy-DA

Source

Sample


Pairs

Intra-domain 

Quality Margin

Inter-domain 

Uncertainty

Training Phases

Easy-DA

Target


Sample

Pairs

Ranking-based Domain Adversarial Network

Hard-DA

Source

Sample


Pairs

Hard-DA

Target


Sample

Pairs

GRL

Map

DA-Driven 

Feature Extractor

Source-Driven 

Feature Extractor

Source 
  

Sample Pairs

I
II

Target 
  

Sample Pairs
I
II

I II
I II

II

I

-

Curriculum  

Design

CE Loss LCE

EMD Loss LEMD

EMD Loss LEMD

Ranking Loss LRank

ADV Loss LAdv

Figure 2. Overview of the proposed EQBM framework. Specifically, we first compute the quality score of the source domain by the FIQA
quality relation function, and map it into the Likert-scale quality probabilities. Then, we train two curriculum difficulty measurers to obtain
the mutual information between intra-domain quality margin and inter-domain uncertainty for building the curriculum-based easy-to-hard
training scheduler. Finally, to amend the quality scores of the target domain, the ranking-based domain adversarial network is trained
following the scheduler under the constraint of different losses and the Gradient Reversal Layer (GRL) for Domain Adaptation (DA).

ity, by comparing different FIQA evaluation results on each
demographic group. Herein, this study revealed that the ma-
jority of the evaluated FIQA methods show a strong pref-
erence for Caucasian samples. Meanwhile, compared with
ethnic bias, there was a less obvious trend in terms of gender
bias for FIQA. Additionally, in the literature survey [38],
for fairness and bias control, enhancing the robustness of
FIQA or reducing bias on different demographic groups is
expected to increase interest in future research.

These studies provide valuable prior guidance for devel-
oping FIQA methods to troubleshoot ethnic quality bias.
Building upon these insights, we introduce the first en-
deavor to address FIQA bias by domain adaptation. Be-
sides, we meticulously design the experimental settings
based on the discoveries from these surveys to further ex-
plore the efficacy of FIQA on non-Caucasian groups under
different deployed recognition models.

2.3. Domain Adaptation

Domain adaptation refers to the task of adapting a
network from a labeled source domain to the target do-
main [17, 37, 43, 54]. Herein, the maximum mean discrep-
ancy [27, 29, 48] and correlation alignment [10, 44, 49] are
widely used to align marginal feature distributions of two
domains. Meanwhile, another mainstream scheme is the
adversarial training strategy [8, 13, 28, 47] that introduces
a Gradient Reversal Layer (GRL) [18] to make the feature
extractor independent of domain-specific information.

Furthermore, inspired by the curriculum learning strat-
egy [5], several curriculum domain adaptation schemes
have been developed in recent years. For instance, Yang
et al. [56] proposed a curriculum-style domain adaptation
approach with two stages of adaptation to infer numerous

properties for the target domain. Chen et al. [12] developed
a two-stage domain adaptation method to first split the tar-
get domain into confident and uncertain subdomains based
on their prediction confidences, and then perform fine-level
adaptation between the two subdomains. Shu et al. [42] pro-
posed a curriculum learning-based strategy that leverages
the loss of the network as weights to identify and eliminate
unreliable source samples. PFAN [11] leveraged an easy-to-
hard transfer strategy, which gradually selects target sam-
ples with higher cosine similarity to source prototypes on
a per-category basis. In [36], curriculum graph co-teaching
was proposed, which employs a dual classifier head, one
of which is a graph convolutional network that aggregates
features from similar samples across the domains.

These methods are not designed for FIQA tasks and
thus do not take domain adaptation under the instability
of source domain labels into account. Apart from previ-
ous domain adaptation methods, our method specially de-
signs the domain adaptation for FIQA, which considers the
mutual prior information between inter-domain uncertainty
and intra-domain quality margin for curriculum design and
involves the ranking-based domain adversarial network.

3. Methodology
In this section, we first describe the preliminaries of the

problem formation. Then, the motivation and the details of
each core component in our framework are described. The
overview of the proposed framework is illustrated in Fig. 2.

3.1. Preliminaries

Given the face image set X s, identity label set Ys,
and recognition embedding set Vs from the source domain
D = {(xs

i , y
s
i , v

s
i )}Mi=1 ⊂ X s × Ys × Vs, where M is the
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number of samples. Commonly, there exists a quality rela-
tion function Q to yield quality scores. We can obtain the
quality score qsi as the annotation of the i-th sample from
the source domain by qsi = Q(vsi |ysi ). Thus, the source
domain can be recomposed as the labeled training set by
Ds = {(xs

i , q
s
i )}Mi=1. Besides, the target domain is an unla-

beled training set, namely Dt = {xt
i}Ni=1. Meanwhile, the

data distributions of the source domain P and the target one
Q are different (i.e., P ̸= Q).

Our goal is to learn a deep-quality feature extractor de-
noted by Gf ∈ RN , where the feature representations with
N dimensions are expected to be invariant between domains
and improve the performance of target samples. Unfortu-
nately, due to the fact that qsi is a scalar, it is still a challenge
to train a robust Gf adapted to the target domain under the
regression optimization: RN 7→ R, due to feature scaling
problem in regression revealed by the study [14]. Specifi-
cally, the study found that there is a heightened vulnerability
for Gf to experience performance degradation during the
process of transferable representation learning for domain
adaptation in regression tasks since regression performance
is less robust to feature scaling. To this end, inspired by the
Likert-scale quality probabilities distribution [40], we intro-
duce the soft-mapping function to map qsi into a marginal
probability distribution q̂si associated with K-level anchors
C = {cm}Km=1 as the label of the source domain during
training Gf , which is given by

q̂s,mi =
exp (−β∥qsi − cm∥)∑K
i=1 exp (−β∥qsi − ci∥)

, (1)

where q̂s,mi ∈ q̂si , β is a scaling constant, and K = 5 de-
notes the number of quality levels representing the level
of “bad”, “poor”, “fair”, “good”, and “excellent” accord-
ingly. Thus, the source domain can be reformulated as
Ds = {(xs

i , q̂
s
i )}Mi=1. For quality prediction, given a face

image x, the final predicted quality score is calculated by

q̃ (x) =

K∑
m=1

ϕq (m|Gf (x))× cm, (2)

where ϕq (m|·) is the marginal probability of m to be esti-
mated by a quality classifier ϕq .

3.2. Curriculum Design for Domain Adaptation

With the quality probabilities distribution computed
by Eq. (1) as the source-domain annotations, we can train
a robust Gf for the target domain via domain adapta-
tion. Unfortunately, for common domain adaptation meth-
ods [27, 28, 29, 47], all samples of source and target do-
mains are fed to the network in the training phase, which
may constrain the effect of transfer learning since the intra-
domain learning difficulty of Gf is different among differ-
ent samples. In order to explore the full potential for domain
adaptation, we design a curriculum-style learning scheme

with an easy-to-hard training pattern, in which the learning
difficulty is determined by considering both intra-domain
and inter-domain metrics. Concretely, we first take advan-
tage of domain uncertainty by calculating the distance be-
tween the sample from one domain and the other domain
in the same latent space to measure the inter-domain diffi-
culty. For the intra-domain difficulty measure, we leverage
the quality margin between the sample and others within the
same domain, in order to introduce the pair-wise ranking
under a certain margin to assist Gf in reducing the negative
effect of qsi with low confidence and ensure the quality bal-
ance of the samples from the two domains in a batch during
the transfer learning of domain adaptation.

3.2.1 Training Curriculum Difficulty Measurers

To obtain the intra-domain and inter-domain measures, we
train two curriculum difficulty measures, including a naive
source-driven quality network and a domain discriminator.
For the naive source-driven quality network, both feature
extractor Gf and quality classifier ϕq are trained by mini-
mizing the constrained loss

LEMD (Gf , ϕq) = E(xs
i ,q̂

s
i )∼P bEMD (ϕq (Gf (x

s
i )) , q̂

s
i ) ,

(3)
where (xs

i , q̂
s
i ) ∼ P b represents sampling a batch of b exam-

ples from source domain, and EMD(·, ·) denotes the earth
mover’s distance. Then, the domain discriminator ϕd0

is
trained by cross-entropy loss CE(·, ·), which is given by

LCE (Gf , ϕd0
) = Exs

i∼P bCE (ϕd0
(Gf (x

s
i )) , 0)

+ Ext
i∼QbCE

(
ϕd0

(
Gf

(
xt
i

))
, 1
)
,

(4)

in which, 0 and 1 represent the domain labels of the source
and target domains, respectively.

3.2.2 Easy-to-Hard Training Scheduler

To split the data into the easy-domain-adaptation subset and
the hard one, we adopt the domain discriminator trained by
Eq. (4) to compute the inter-domain uncertainty of each
sample as the difficulty measure in terms of the inter-
domain. The inter-domain uncertainty can be measured by
the distance between the feature representation F (·|ϕd0

)
yielded from ϕd0

and the learned class-specific center of
the other domain. Specifically, the distances of the source
and target domain samples are separately calculated by

µs
i =

∣∣∣∣∣∣F (xs
i |ϕd0

)− c1|ϕd0

∣∣∣∣∣∣2
2
, (5)

and

µt
i =

∣∣∣∣∣∣F (
xt
i|ϕd0

)
− c0|ϕd0

∣∣∣∣∣∣2
2
, (6)

where c1|ϕd0
and c0|ϕd0

indicate the learned class-specific
center of the target domain and source domain of ϕd0

, re-
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spectively. As a result, the data of the source domain is di-
vided into the source easy-domain-adaptation training sub-
set Ds

easy = Ds
|⩽E[µs

i ]
∈ Ds and the source hard-domain-

adaptation training subset Ds
hard = Ds

|>E[µs
i ]

∈ Ds, in

which E [µs
i ] denotes the average of inter-domain uncertain-

ties for the source domain. Similarly, the target domain is
also divided into two training subsets, Dt

easy and Dt
hard.

Furthermore, to compute the intra-domain quality mar-
gin, we utilize the quality difference d (xi, xj) between the
sample xi and the other one xj within the same domain via
the source quality annotations or predictions by Eq. (2). The
intra-domain quality margins for the source domain and the
target domain are able to be respectively computed by

ds
(
xs
i , x

s
j

)
= |δs(qsi )− δs(q

s
j )|, (7)

and

dt
(
xt
i, x

t
j

)
= |δt

(
q̃(xt

i)
)
− δt

(
q̃(xt

j)
)
|, (8)

where δ(·) represents the operator of the Z-score standard-
ization in order to fix the variance σ of quality scores
to one. To this end, for the easy training scheduler, we
mine the sample pair (xi, xj) under conditions subjected
to d (xi, xj) > 2σ, [xi ∈ Ds

easy ∧ xj ∈ Ds
easy] or [xi ∈

Dt
easy ∧ xj ∈ Dt

easy]. A similar operation is performed in
the hard training scheduler under d (xi, xj) > σ.

3.3. Ranking-based Domain Adversarial Network

With the above easy-to-hard training scheduler, we can
train a domain adversarial network to mitigate the quality
bias for the target domain. Herein, guaranteeing the source
risk during transfer learning is crucial for domain adap-
tation [57]. In mainstream adversarial domain adaptation
pipelines [8, 28, 47], Gf is supervised by a classification
loss in the source domain, which is based on the assump-
tion that the source annotations are genuine ground-truth.
However, genuine ground-truth quality labels are unavail-
able in FIQA. Therefore, to further reduce the negative ef-
fect caused by generated quality annotations qsi with low
confidence during network training, we introduce a pair-
wise learning-to-rank based adversarial domain adaptation
approach. Specifically, for the input sample pair (xs

i , x
s
j),

we adopt a binary decision strategy as our ranking loss to
guide the network to learn which sample is of better quality,
which is computed by

LRank (Gf , ϕr) = E(xs
i ,x

s
j)∼P b − [ηi,j · log(pr

(
xs
i , x

s
j

)
)

+ (1− ηi,j) · log(1− pr
(
xs
i , x

s
j

)
)],

(9)
where

pr
(
xs
i , x

s
j

)
= ϕr

(
Gf (x

s
i )−Gf (x

s
j)
)
, (10)

and

ηi,j =

{
1, if qsi > qsj
0, otherwise

, (11)

in which ϕr and ηi,j denote the ranking clssifier and label
respectively, and Gf (x

s
i ) − Gf (x

s
j) means the differences

of the two corrponding features yielded by Gf . Meanwhile,
according to Eq. (2), the ultimate goal of the network is to
output a predicted quality score of the input sample. Thus,
we also employ EMD loss to train the network by Eq. (3).

To mitigate quality bias for the target domain, the
scheme of adversarial domain adaptation is employed to
reduce the domain gap between the source and target do-
mains. Herein, the GRL is utilized to train the domain dis-
criminator ϕd1

across the source and target domains by the
minimax game training strategy. We adopt the adversarial
loss to achieve the optimization of ϕd1 , which is given by

LAdv (Gf , ϕd1
) = −E(xs

i ,x
s
j)∼P b [log (ϕd1

(Gf (x
s
i ))) + log(

ϕd1
(Gf (x

s
j))

)
]− E(xt

i,x
t
j)∼Qb [log

(
1− ϕd1

(Gf (x
t
i))

)
+ log

(
1− ϕd1

(Gf (x
t
j))

)
].

(12)
To this end, our ranking-based domain adversarial network
is trained by the minimax game

min
ϕq, ϕr

max
ϕd1

LRank + LEMD − λLAdv, (13)

where λ is a hyper-parameter to trade off the two optimiza-
tion objectives.

4. Experiments
4.1. Experimental Settings

Datasets. In accordance with [50], our bias study employs
the BUPT-Transferface dataset for training and the RFW
dataset for testing. BUPT-Transferface was proposed for
the purpose of analyzing the ethnic bias in domain adap-
tation [51], and it contains 470K labeled images of 10K
Caucasians as well as 50K unlabeled images of other races.
The labeled images of Caucasians are utilized as the source
domain, while the unlabeled images of non-Caucasians are
used as the target domain. The RFW dataset consists of
faces from four ethnic groups, namely Caucasian, Indian,
Asian, and African. Each group contains 10K images of 3K
identities suffering from various real-world quality degra-
dation. All samples are cropped and resized to 112 × 112
via MTCNN [55], and they are normalized by subtracting
the channel-wise mean value and dividing the variation.
Implementation. We train our framework on the BUPT-
Transferface dataset using the MobilefaceNet [22] pre-
trained on the MS-Celeb-1M [20] as the backbone of fea-
ture extractor based on its light-weight and high efficiency.
Moreover, the architecture of the ϕq , ϕd0

, ϕd1
, and ϕr can

be denoted by FC(256)-BN-FC(256)-BN-FC(n)-Softmax,
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where FC and BN respectively means a fully connected
layer and batch normalization layer, and n is the node num-
ber. Adam with 5e−4 weight decay is used as the optimizer.
The training initial learning rates of all networks are set
to 1e−4 that is divided twice by a factor of 10 when er-
rors plateau with a batch size of 128. To normalize quality
scores to the range of [0, 1], the qsi in Eq. (1) is normalized
by min-max normalization, C = {0.1, 0.3, 0.5, 0.7, 0.9},
and β is set to 64. We train all networks with PyTorch on
a machine equipped with a single NVIDIA GeForce RTX
3090 Ti GPU. In addition, the proposed framework is also
implemented by MindSpore [15].
Evaluations. We compare the proposed EQBM with nu-
merous state-of-the-art FIQA approaches, including Face-
Qnet [21], PFE [41], PCNet [52], SER-FIQ [46], SDD-
FIQA [33], MagFace [31], and FaceQAN [2]. All competi-
tors are trained on the MS-Celeb-1M dataset following their
publicly available official implementations or code obtained
directly from the authors. It is worth mentioning that our
training set (BUPT-Transferface) is a subset of MS-Celeb-
1M and its demographic distribution is approximately sim-
ilar to MS-Celeb-1M. Moreover, our experiments are con-
ducted on the cross-model setting for deployed face recog-
nition models [2, 33].
Performance Criteria. In accordance with previous FIQA
works [2, 21, 31, 33, 38, 46], the Error Versus Reject Char-
acteristics (EVRC) curve is employed to measure the per-
formance of FIQA approaches. The EVRC curve shows
the False Non-Match Rate (FNMR) under different Ratios
of Unconsidered Images (RUI) at a specific False Match
Rate (FMR). As suggested in [2, 32, 33, 38], we report
the Area Over Curve (AOC) results for quantitative compar-
isons among different EVRC curves [32, 33, 38]. The AOC
is computed using the formula AOC = 1 −

∫ b

a
g(φ)dφ,

where g(φ) represents the FNMR at the RUI φ, and the
lower and upper bounds of RUI, a and b, are fixed at 0 and
0.95, respectively. Furthermore, according to recommenda-
tions provided by [1, 39, 3], the partial Area Under Curve
(pAUC) results are also reported in the part of our experi-
ments. The pAUC aims at evaluating the FIQA performance
at a lower discard rate, as it better aligns with the practical
application scenario of FIQA.

4.2. Experimental Results

4.2.1 Results on Different Ethnic Groups

We first conduct evaluation experiments on different groups
to examine the effectiveness of the proposed EQBM frame-
work and compare it with the state of the arts on the RFW
dataset. As done in [50], Caucasian is used as the source
domain and other races as target domains to train our net-
works. In order to investigate the effect of quality bias on
FIQA for different ethnic groups under different deployed

Table 1. AOC results under the FaceNet on the RFW dataset.

Type FMR
Competitors Ours

SER-FIQ PCNet MagFace SDD-FIQA FaceQAN EQBM-M EQBM-S

A
fr

ic
an

1e−2 0.095 0.280 0.225 0.226 0.289 0.312 0.330
1e−3 0.083 0.191 0.186 0.172 0.206 0.225 0.244
1e−4 0.066 0.133 0.127 0.102 0.140 0.159 0.168
EER 0.097 0.228 0.167 0.187 0.242 0.262 0.280

In
di

an

1e−2 0.167 0.349 0.270 0.271 0.305 0.325 0.397
1e−3 0.104 0.265 0.247 0.240 0.264 0.274 0.331
1e−4 0.107 0.226 0.187 0.186 0.186 0.208 0.245
EER 0.135 0.261 0.188 0.214 0.222 0.253 0.314

A
si

an

1e−2 0.182 0.261 0.269 0.253 0.304 0.337 0.353
1e−3 0.102 0.184 0.225 0.192 0.246 0.245 0.265
1e−4 0.043 0.129 0.222 0.131 0.206 0.138 0.169
EER 0.159 0.223 0.214 0.218 0.255 0.306 0.311

Table 2. AOC results under the ArcFace on the RFW dataset.

Type FMR
Competitors Ours

SER-FIQ PCNet MagFace SDD-FIQA FaceQAN EQBM-M EQBM-S

A
fr

ic
an

1e−2 0.080 0.241 0.170 0.199 0.267 0.287 0.294
1e−3 0.081 0.215 0.174 0.165 0.226 0.241 0.258
1e−4 0.062 0.147 0.150 0.124 0.181 0.197 0.211
EER 0.069 0.175 0.118 0.152 0.208 0.217 0.229

In
di

an

1e−2 0.178 0.340 0.202 0.247 0.274 0.291 0.366
1e−3 0.102 0.272 0.187 0.209 0.240 0.247 0.311
1e−4 0.097 0.199 0.160 0.159 0.205 0.203 0.242
EER 0.105 0.228 0.128 0.181 0.168 0.192 0.252

A
si

an

1e−2 0.150 0.229 0.209 0.180 0.235 0.274 0.289
1e−3 0.097 0.189 0.157 0.118 0.157 0.189 0.206
1e−4 0.019 0.152 0.150 0.123 0.160 0.179 0.191
EER 0.120 0.145 0.111 0.142 0.151 0.208 0.217

Table 3. AOC results under the GAC on the RFW dataset.

Type FMR
Competitors Ours

SER-FIQ PCNet MagFace SDD-FIQA FaceQAN EQBM-M EQBM-S

A
fr

ic
an

1e−2 0.154 0.497 0.226 0.321 0.452 0.479 0.474
1e−3 0.244 0.420 0.237 0.305 0.419 0.442 0.452
1e−4 0.260 0.388 0.240 0.271 0.370 0.400 0.403
EER 0.084 0.323 0.152 0.199 0.290 0.316 0.323

In
di

an

1e−2 0.179 0.471 0.366 0.455 0.451 0.473 0.529
1e−3 0.173 0.404 0.288 0.382 0.385 0.401 0.488
1e−4 0.070 0.345 0.278 0.321 0.325 0.357 0.431
EER 0.154 0.348 0.265 0.330 0.310 0.340 0.399

A
si

an

1e−2 0.241 0.383 0.395 0.372 0.497 0.512 0.536
1e−3 0.286 0.372 0.378 0.293 0.425 0.414 0.434
1e−4 0.292 0.275 0.369 0.225 0.317 0.357 0.368
EER 0.149 0.238 0.257 0.240 0.344 0.357 0.373

face recognition models, three experimental groups are con-
sidered: 1) FIQA performance is evaluated under the de-
ployed recognition model with bias, 2) FIQA methods are
tested under the fair deployed recognition model, and 3)
We compare the FIQA methods under the quality-aware de-
ployed recognition model.
Evaluation under the Face Recognition Model with Bias.
We use two mainstream open-source face recognition mod-
els as the deployed recognition models of FIQA, includ-
ing FaceNet [34] and ArcFace [16] trained on CASIA-
Webface [53] and VGGFace2 [34] datasets respectively,
to test FIQA performance under the deployed recognition
models with demographic bias. The EVRC curves of dif-
ferent races are shown in Fig. 3. Herein, Fig. 3 (a)-(c) and
Fig. 3 (d)-(f) show the EVRC curves under the FaceNet and
ArcFace, respectively. We can see that EQBM performs
better than all competitors in most cases on different eth-
nic groups. Besides, for Indian and Asian groups, the gaps
between EQBM-S and the best competitor (i.e. FaceQAN)
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Figure 3. EVRC results at FMR=1e−3 on the RFW dataset. Our framework (EQBM) is compared with seven FIQA methods under
different deployed face recognition models “EQBM-S” represents the proposed method using the quality relation of SDD-FIQA to yield
source quality annotations, while “-M” represents the one using MagFace.

are enlarged with the increased ratio of unconsidered im-
ages. Additionally, the AOC results at different FMRs are
reported in Table 1 and Table 2 for quantitative analysis.
For the AOC results under the FaceNet in Table 1, EQBM-S
achieves over 13.2% on the African group, 41.4% on the In-
dian group, and 21.9% on the Asian group higher accuracy
than the best competitor at FMR=EER. For the AOC results
under the ArcFace in Table 2, EQBM-M and EQBM-S both
surpass the FaceQAN by a non-trivial margin in most cases
on different groups.

Evaluation under the Fair Face Recognition Model. To
investigate the FIQA performance under the fair face recog-
nition model, GAC [19] is adopted as the deployed recog-
nition model of FIQA. The EVRC plots are shown in
Fig. 3(g)-(i), and the AOC results are reported in Table 3.
Intuitively, we can see that from Fig. 3(h), EQBM-S per-
forms better obviously than other FIQA methods when RUI
is greater than 30% on the Indian group. Meanwhile, we
found that compared with results tested under the recog-
nition model with bias, the curve of most FIQA methods

declines faster under the fair recognition model, which sug-
gests that they perform better in this circumstance. The
results in Table 3 show that our EQBM-M achieves over
5.9% on the African group, and the EQBM-S outperforms
all competitors on the other two groups.

Evaluaton under the Quality-aware Recognition Model.
Here, we also employ AdaFace [24] recognition models
trained on CASIA-Webface [53] (C) and WebFace4M [58]
(W) datasets further to evaluate the FIQA performance un-
der state-of-the-art quality-aware recognition models. The
EVRC curves are presented in Fig. 5, where Fig. 5(a)-
(c) and Fig. 5(d)-(f) plot for AdaFace (W) and AdaFace
(C) models, respectively. Additionally, the corresponding
pAUC (discard rate=0.3) results are presented in Table 4.
Herin, the lower the pAUC value, the better the performance
of the FIQA method. It is evident that EQBM-S outper-
forms all the other comparison methods.

The above analysis demonstrates that our framework is
able to effectively mitigate the quality bias across different
ethnic groups under all sorts of recognition models.
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Figure 4. Illustration of the easy (blue) and hard (red) sample pairs and the corresponding intra-domain quality margin in our curriculum
design. The quality margin is normalized by the Z-score standardization. This figure is best viewed in color.
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Figure 5. EVRC results at FMR=1e−3 on the RFW dataset under
the quality-aware recognition models.

4.2.2 Quality Analysis

Visulization of Easy and Hard Sample Pairs. To analyze
the easy and hard samples in our curriculum-style training
scheduler, we first show some sample pairs and their intra-
domain quality margin in Fig. 4. Based on the illustration,
we observe that: 1) intuitively, easy sample pairs are easier
to distinguish the quality difference between face images
than hard sample pairs, and 2) for the target domain, the
pair-wise ranking correctness of sample pairs can also be
ensured. This demonstrates that the intra-domain quality
margin and the ranking-based domain adversarial network
in our framework are able to reduce the source risk in do-
main adaptation.
Quality Visualization. We show some examples of face

Table 4. pAUC results at FMR=1e−3 on the RFW dataset.

Method AdaFace (W) AdaFace (C)
African Indian Asian p̃AUC(↓) African Indian Asian p̃AUC(↓)

PFE [41] 0.842 0.857 0.880 0.860 0.921 0.897 0.925 0.914
MagFace [31] 0.740 0.673 0.730 0.714 0.917 0.840 0.883 0.880

SDD-FIQA [33] 0.730 0.655 0.716 0.700 0.913 0.819 0.879 0.870
FaceQAN [2] 0.726 0.624 0.698 0.683 0.904 0.809 0.877 0.863

EQBM-M (Ours) 0.714 0.647 0.716 0.692 0.902 0.813 0.869 0.861
EQBM-S (Ours) 0.693 0.608 0.703 0.668 0.900 0.802 0.865 0.856

† p̃AUC denotes the average pAUC at a discard rate of 0.3 across three ethnic groups.

images and their corresponding quality scores before and
after adaptation on different ethnic groups in Fig. 6. As
the visual quality of the same line of faces improves from
left to right, we can see that the rank of quality scores after
adaptation is more reasonable.
Quality Distribution. The quality distributions of different
ethnic groups are shown in Fig 7. After the domain adap-
tation, the quality distribution of the three non-Caucasian
ethnic groups dramatically changes, and the overall dis-
tribution tends to expand to the right. At the same time,
we note that for the African group, the proportion of low-
quality samples is significantly higher than the other two
ethnic groups before adaptation, and then the quality distri-
bution is similar to them after adaptation. This also provides
evidence to some extent that our method is able to reduce
the ethnic quality bias in FIQA effectively.

4.2.3 Results on Standard Benchmark Datasets

While our EQBM mitigates bias, we also wonder whether
it can perform well on standard benchmarks. Hence, we
evaluate our method on two standard benchmarks, includ-
ing LFW [23] and IJB-C [30]. These two datasets exhibit
imbalanced distribution in terms of ethnic demographics.
For a fair comparison with other FIQA methods, we use
the quality scores of different ethnic groups yielded by our
EQBM to train a simple quality regression network follow-
ing [21] for prediction. In Table 5, EQBM shows impressive
performance on standard benchmark datasets.
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Figure 6. Illustration of face image examples and the correspond-
ing quality scores before (blue) and after (red) adaptation. Zoom-
in for a better view.
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Figure 7. Illustrations of quality distributions before (blue) and af-
ter (red) adaptation on different ethnic groups.
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Figure 8. Parametric sensitivity of β (left) and λ (right).

4.2.4 Ablation Study

Parametric Sensitivity Analysis. In order to assess the
sensitivity of the proposed EQBM to its hyper-parameters,
we conduct experiments using the African group as the tar-
get domain and evaluate the AOC@FMR=1e−3 with vary-
ing hyper-parameter values of β in Eq. (1) and λ in Eq. (13).
Specifically, we systematically modified the target hyper-
parameters while keeping the other ones fixed, and com-
puted the AOC of the trained model. The results presented
in Fig. 8 indicate that our method is generally robust to the
changes in the hyper-parameters. We determined the opti-
mal values of β and λ to be 64 and 0.8, respectively.
Contribution of each Key Component. To investigate the
efficacy of the critical component of our proposed EQBM,
we perform the ablation study on the RFW dataset using the
fair deployed recognition model with and without (w/o) the
implementation of the curriculum design and intra-domain
quality ranking. The AOC results of this study are presented
in Table 6, and we have the following observations: 1) with-
out adaptation, SDD-FIQA shows impressive performance
on the Caucasian, but is unable to attain satisfactory AOC
results on other ethnic groups due to the existence of do-
main gaps, and 2) upon removing either the curriculum de-
sign or quality ranking, the FIQA model exhibits distinct
performance degradation.
Comparison with other Domain Adaptation Methods.
We also compare our proposed method with several estab-
lished domain adaptation techniques, such as DAN [27],

Table 5. AOC results at different FMR on LFW and IJB-C datasets.

Method LFW IJB-C
1e−2 1e−3 1e−4 EER 1e−2 1e−3 1e−4 EER

FaceQnet [21] 0.554 0.460 0.423 0.396 0.536 0.421 0.372 0.513
MagFace [31] 0.700 0.646 0.594 0.542 0.599 0.486 0.428 0.573

SDD-FIQA [33] 0.741 0.673 0.606 0.575 0.651 0.541 0.484 0.618
EQBM-M (Ours) 0.715 0.665 0.606 0.562 0.604 0.493 0.440 0.576
EQBM-S (Ours) 0.750 0.703 0.627 0.576 0.657 0.546 0.490 0.632

Table 6. Ablation study on the RFW dataset.
Method Caucasian African Indian Asian

SDD-FIQA [33] 0.493 0.301 0.374 0.287
DAN-S [27] - 0.378 0.426 0.387

DANN-S [18] - 0.393 0.445 0.406
RSD-S [14] - 0.405 0.473 0.424

w/o Curriculum design - 0.439 0.474 0.428
w/o Quality ranking - 0.433 0.469 0.426

EQBM-S (Ours) - 0.452 0.488 0.434

DANN [18], and RSD [14]. Herein, both DAN and DANN
are mainstream unsupervised domain adaptation methods
for classification, which require mapping the annotations
from the source domain into the Likert-scale quality prob-
abilities by Eq. (1). Meanwhile, to ensure a fair compari-
son, we maintained consistency in the feature extractor and
training set with our setting, while adopting the remaining
training parameters from their papers. As demonstrated in
the upper part of Table 6, the EQBM surpasses these meth-
ods across various ethnic groups, suggesting the advantage
of our domain adaptation for FIQA.

5. Conclusion

This paper has proposed a novel Ethnic-Quality-Bias
Mitigation (EQBM) framework in Face Image Quality As-
sessment (FIQA) to address the generalization problem
caused by quality bias in ethnic-based demographic dis-
tributions. Specifically, we first compute the Likert-scale
quality probability distributions as quality annotations to
remove the restriction of domain adaptation for regres-
sion. Meanwhile, to explore the full potential of mitigating
FIQA quality bias in target domains, we design an easy-
to-hard training scheduler based on the inter-domain un-
certainty and intra-domain quality margin as well as the
ranking-based domain adversarial network. Experimental
results demonstrate that the EQBM significantly improves
the generalization capability of FIQA methods under vari-
ous ethnic-based demographic distributions.
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[2] Žiga Babnik, Peter Peer, and Vitomir Štruc. FaceQAN: Face
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