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Abstract

Generative Adversarial Networks (GANs) can pro-
duce photo-realistic results using an unconditional image-
generation pipeline. However, the images generated by
GANs (e.g., StyleGAN) are entangled in feature spaces,
which makes it difficult to interpret and control the con-
tents of images. In this paper, we present an encoder-
decoder model that decomposes the entangled GAN space
into a conceptual and hierarchical latent space in a self-
supervised manner. The outputs of 3D morphable face mod-
els are leveraged to independently control image synthesis
parameters like pose, expression, and illumination. For this
purpose, a novel latent space decomposition pipeline is in-
troduced using transformer networks and generative mod-
els. Later, this new space is used to optimize a transformer-
based GAN space controller for face editing. In this work,
a StyleGAN2 model for faces is utilized. Since our method
manipulates only GAN features, the photo-realism of Style-
GAN2 is fully preserved. The results demonstrate that our
method qualitatively and quantitatively outperforms base-
lines in terms of identity preservation and editing precision.

1. Introduction
Generative Adversarial Networks (GANs) [15, 20, 12]

are formulated as a two-step learning procedure via gen-
erator and discriminator models. This pipeline can pro-
duce photo-realistic images that are hard to distinguish. Es-
pecially, generative models such as StyleGAN2 [20] have
become one of the most effective image synthesis tools.
They are capable of generating high-resolution images us-
ing nonlinear features learned from low-dimensional fea-
ture spaces. In the end, coarse and fine details of synthe-
sized images are simply derived from these spaces. How-
ever, existing GAN models do not offer intuitive control,
i.e., not human understandable parameterization, for image
generation. Recent works [16, 39, 32, 36] have shown that
the outputs of GAN models can be edited by disentangling
their features spaces without the need of employing full su-
pervision or updating pre-trained model parameters.

Figure 1: Rather than finding a direct mapping between a
GAN space X of learned features (⋆), and a space P of pa-
rameters of face concepts (▲) [39], our method estimates an
intermediate latent space Q whose latent codes (•) are con-
ceptual and hierarchical. After all, a GAN space controller
trained on this space can edit each concept independently
while preserving the details at different abstraction levels of
GANs for face editing.

There have been multiple efforts in the literature to
achieve controllable content manipulation of features of
GANs with supervised and unsupervised learning methods.
In [17, 7], they use labelled data to expand user control
onto a GAN space of features (depicted by X in Fig. 1).
These labels are used to decouple the entangled represen-
tations with learnable projections. However, this control
needs costly manual annotations that usually involve gath-
ering many images and labels with clear definitions. Hence,
performance is significantly impacted by the total number
of annotations and the quality of labels. In contrast to the
supervised methods, unsupervised approaches [34, 16, 28]
achieve disentanglement by finding principal directions in
feature spaces without relying on labeled data. In the end,
each direction alters a different visual content so that a semi-
automatic control is provided for the existing GAN models.
Other studies [36, 22, 37] have suggested that manipulating
the GAN spaces may be limited by biases present in pre-
trained models. Hence, their goal is to train a new generator
model from scratch using generative priors for controllable
image synthesis. Although the models have robust control
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over the feature space, they are difficult and costly to train.
A setting [39] for face editing is to use concepts such as

pose, light, expression, and likeness, derived from 3D Mor-
phable face models [24, 30], as pseudo-labels. Each concept
has a unique parameter set, and these parameters are used
as pseudo-labels to disentangle a pre-trained GAN space.
For this purpose, the authors propose a model (called Dif-
ferentiable Face Reconstruction (DFR)) and fix the original
GAN parameters. This model directly maps a GAN space
X to a face parameter space P (i.e., morphable faces) as il-
lustrated in Fig. 1. Later, with a differentiable face renderer,
the DFR model is used to decouple the GAN space X . To
be specific, a face renderer is adapted to generate face im-
ages from single-dimensional parameters estimated by the
DFR model. Thus, multi-resolution GAN features must be
projected onto a concept parameter set. However, the draw-
back is that a face parameter space P with no hierarchical
information is utilized to edit a GAN space X . Thereby,
the level of details in the GAN space is degraded and con-
ceptual information in multi-resolution features may not be
truly captured. Ultimately, the model fails to associate fa-
cial concepts with a multi-resolution GAN space.

Our paper proposes a novel method to manipulate GAN
spaces for face editing. For this purpose, we propose an
encoder-decoder model that estimates an intermediate la-
tent space (Q in Fig. 1) while learning a mapping between a
GAN space X and a face parameter space P . Compared to
baseline, employment of this new space is crucial, since it
derives hierarchical and conceptual latent codes for further
usages. In other words, face concepts are independently
represented while hierarchical details at different abstrac-
tion levels of GANs are maintained. Later, these latent
codes are used to learn controlling a GAN space for face
editing. Pseudo-labels estimated by 3D morphable models
are used, and our pipeline does not require to update the
GAN models. Our approach has two main components:

(i) A transformer-based latent code decomposer that
computes conceptual and hierarchical latent codes from a
GAN space X of features, and the parameters of face con-
cepts from P . A novel encoder-decoder model is pro-
posed to compute intermediate latent codes, with an en-
coder model based on transformer networks. These inter-
mediate latent codes are then reprojected to the face pa-
rameter space P using a multi-resolution generative model.
The proposed pipeline performs the decomposition in a self-
supervised manner during the space mapping, relying solely
on the reconstruction error at the output of our model.

(ii) A GAN space controller that manipulates GAN space
X of features with face control parameters. To optimize the
model, we enforce the consistency between the projected
representations of the original and manipulated GAN fea-
tures on the intermediate latent space Q. The model is based
on a transformer network that uses face control parameters

to manipulate the GAN space X .
Our contributions can be summarized as follows:
• We propose a novel encoder-decoder model that de-

composes a multi-resolution GAN space X into an in-
termediate latent space Q in a self-supervised man-
ner. The decomposition is performed by our novel NN-
architecture, relying solely on the reconstruction error
during the space mapping.

• The intermediate latent space Q is used to train a GAN
space controller for face editing. To this end, we in-
troduce a transformer-based network inspired by [18]
where user-specific control inputs are first encoded
to multi-resolution representations. These representa-
tions are then used to alter the GAN features.

• In the analyses, our method outperforms baselines in
terms of identity preservation (achieving relative accu-
racy improvement by 33%) and editing precision under
extreme pose, expression and illumination manipula-
tion, both qualitatively and quantitatively.

2. Related Work
Image Synthesis with GANs: In GAN domain [15], recent
advancements have led to significant improvements for im-
age synthesis by focusing on designing architectures, loss
functions, and training schemes [4, 19, 20, 12]. Among
them, StyleGAN2 [20] is the most advanced GAN model
that produces high-resolution images. However, GANs do
not naturally promise explicit visual control over the image
generation. Therefore, we will explore the techniques that
manipulate image content particularly by focusing on faces.
Conditional GANs (CGANs): They [27, 6] have been
widely employed for semantic face manipulation. Here,
generator models are controlled by random noise and class
labels/features that limit the content of synthesized images.
Some studies focus on training auto-encoders using images
as conditional information [17, 29, 23]. Later, this class
of work is extended to train CGANs with unpaired data
using cycle-consistency learning [25, 7]. However, these
methods allow users to control a limited number of dis-
crete classes/attributes [10]. Furthermore, the image res-
olution and quality are significantly limited compared to
StyleGAN-based methods.
Embedding GANs: The aim is to project input images
onto the feature space of a GAN before performing any
content modifications. To be specific, encoder and gen-
erator models are trained together to map input images
to a feature space and later synthesize manipulated im-
ages [8, 31, 47, 22, 37, 36]. The advantage is that images are
directly embedded into a disentangled feature space. Other
methods apply the inversion of a pre-trained generator for
disentanglement in post-processing. These methods opti-
mize GAN features with a different encoder by minimizing
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the reconstruction error [1, 42, 44, 32, 40]. Style Trans-
former [18] employs a transformer network to update the
GAN features by learning an encoder model.
Manipulating GAN Features: A distinct field of study
for image manipulation is to project the features of a pre-
trained GAN into controllable sub-groups. These models
are practical and easily to train. Note that our method
must be considered under this category of image manipu-
lation. Earlier works explore to obtain meaningful space
directions with linear operations [34, 16, 35, 28]. However,
linear techniques are not enough to disentangle the nonlin-
ear components in feature spaces [43]. Later, other stud-
ies attempt to incorporate nonlinear models using facial at-
tributes [2, 45, 44]. The drawback of these methods is that
the contributions of each GAN feature at various abstraction
levels for different face concepts are manually determined
by the authors. StyleRig [39] utilizes 3D morphable face
models to control face rigging information such as pose,
expression, illumination, and likeness. Here, an important
property of this method is that it aims to learn the multi-
resolution characteristics automatically.

3. Proposed Method
In this section, we describe our full pipeline for face edit-

ing. In our setup, the parameters of original GAN models
are fixed, and only their features are manipulated.

3.1. Overview

GAN space X : In GANs, a feature z is sampled from
a probability distribution p(z). Later, a NN model σ(·) is
utilized to synthesize an image Iz ∈ R3×h×w from the fea-
ture by Iz = σ(z). In several GANs, such as StyleGAN,
a multi-resolution feature obtained from various abstraction
levels x = [xi ∈ Rd]Ni=1 is computed with nonlinear fully-
connected networks by x = V (z). To this end, both theoret-
ical and algorithmic improvements [19, 20] enable to gener-
ate high-quality and high-resolution images (configuration
of StyleGAN is w = h = 1024, N = 18 and d = 512).

In StyleGAN [19], utilization of “style mixing” regular-
ization during training aims to find a multi-resolution GAN
space X where the feature xi ∈ X at the ith abstraction
level enforces to scatter its own details to the overall image
content. In other words, image content can be manipulated
by simply swapping or editing GAN features at different
abstraction levels. However, since these features are entan-
gled, this manipulation operation is not controllable.

Parameter space P: In 3D morphable face models
(e.g., FLAME [24], FaceWarehouse [5] or Basel [30]),
an input face can be represented by a set of concepts
p = (β, ψ, θ, γ,R, t) ∈ Rl. Here, each term denotes a
face concept such as the facial shape β, the skin tex-
ture/reflectance ψ, the facial expression θ, the scene illumi-
nation γ, the head pose rotation R and translation t. In these

Figure 2: The overall architecture of Transformer-based La-
tent Space Decomposer. Transformer-based Latent Code
Encoder H(·) (left) and Controllable NN-based Morphable
Face Decoder G(·) (right) are used to estimate the interme-
diate latent codes q in a self-supervised manner. Details are
given in the Subsection 3.2

models, each concept can be independently controllable.
Thereby, various face combinations Ip = R(p) can be de-
rived (with a differentiable rendererR(·)) by sampling a pa-
rameter tuple p from a face parameter space P =

⋃M
i=1 Pi.

Here,M denotes the number of concepts and Pi denotes the
ith sub-concept space. Beyond this, efforts are also made
towards estimating these parameters [9, 13] from real im-
ages If using an encoder model E(·) by pf = E(If ).

In a self-supervised learning setup, our method first
learns an intermediate latent space Q that represents both
hierarchical and conceptual information existing in X and
P , respectively. Then, this space is used to obtain an opti-
mum GAN space controller for face editing.

3.2. Transformer-Based Latent Space Decomposer

Our baseline method [39] computes a model f that
maps a GAN space X onto a face parameter space P by
f : x ∈ X 7→ p ∈ P . Later, the space P is used to optimize
a GAN space controller (i.e., an encoder-decoder model) for
face editing. However, the space P encapsulates only the
conceptual information so that the hierarchical information
in X is eventually degraded during manipulation.

Therefore, our objective is first to find an intermediate
latent space Q in the course of transforming the space X to
the space P with a set of models by ϕ : X → Q → P . After
all, instead of the space P , intermediate latent space Q is
employed for the optimization of the controller model. This
space essentially must comprise two properties to overcome
the weakness of our baseline:

(I) Employment of hierarchical representations: At each
abstraction level, representations with different levels
of detail are learned and encoded in GAN spaces. In
order to preserve these varying details and information
granularity for face editing, they must be projected to
a hierarchical intermediate latent space in training.

(II) Mutually exclusive and conceptually consistent repre-
sentations: In order to control generating faces for dif-
ferent concepts, each concept must be represented by
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a unique sub-space with distinct and diverse character-
istics. Therefore, the representations of concepts must
be mutually independent.

To achieve these properties while learning the interme-
diate latent space Q, we propose a latent space decompo-
sition method that is formulated by encoder-decoder map-
ping functions h : X → Q and g : Q → P which decom-
pose ϕ(x) = g ◦ h(x). Briefly, h(·) denotes a transformer-
based latent space encoder, and g(·) represents a control-
lable NN-based morphable face decoder. Fig. 2 visualizes
these two models and the input-output relations.
Transformer-based Latent Space Encoder (TLSE):
Given a multi-resolution feature x, a function is learned
to decompose it into conceptual (M dimensional) and hi-
erarchical (N dimensional) codes by Q = H(x) where
Q = [Qi,j ∈ Rk]M,N

i,j=1. These decomposed codes should
capture information from both face parameter and GAN
spaces. In other words, they must be conceptual and hi-
erarchical. These codes are then used to train a GAN space
controller for face editing by measuring the hierarchical and
conceptual consistencies between original and manipulated
latent codes. Details are explained in the next subsection.

In practice, our model first projects each GAN feature
obtained at the ith abstraction level xi to M different codes
[ej,i]

M
j=1 using multiple linear layers by ej,i = Wjxi. As a

result, each code ej,i represents an embedding of one of the
face concepts. Later, we arrange these embeddings to create
a code sequence [ej,i]Ni=1 for each concept (i.e., Level-Order
Shuffle in Fig. 2) and feed them to multiple transformer net-
works. To this end, we trainM different transformer blocks
for each concept [Ti(.)]Mi=1. Fig. 2 illustrates the encoder.
In our model, transformers are particularly selected for their
ability to unveil the hierarchical dependencies among inputs
(property (I)). Furthermore, the codes are deliberately sep-
arated for each concept to achieve independent control for
the GAN space (property (II)). The distribution of repre-
sentations belonging to the intermediate latent space Q is
visualized with t-SNE [41] in Fig. 3. It indicates that the
space Q contains disentangled representations of different
concepts.
Controllable NN-based Morphable Face Decoder
(CMFD): Unsupervised learning of the intermediate latent
space Q is a challenging task. To be specific, there is no
labeled data obtained from the intermediate latent space
(neither supervised nor pseudo labels). Therefore, one
of the property of 3D morphable face models must be
leveraged with multi-resolution generative models where
the generator produces a single image output using a multi-
resolution representation. Here, we use 3D morphable
face models in a flexible data generation pipeline for our
generative model, since multiple face renderings can be
generated for the same person by preserving or discarding
some of the facial concepts.

Figure 3: (a) GAN space X and (b) intermediate latent
space Q are visualized with t-SNE. Intermediate latent
space Q contains disentangled representations that cover
multiple and independent sub-spaces (each member of each
space is depicted with a different color) by Q =

⋃M
i=1 Qi

(M = 6 in (b)), while the GAN space X is entangled.

For this purpose, we propose a controllable NN-based
morphable face encoder model and a scheme to train the
model. This model aims to find a projection between
the hierarchical intermediate latent space Q and concep-
tual face parameter space P , and train the parameters of
the TLSE. Hence, it is a function that synthesizes a ren-
dered morphable face IQ ∈ R3×h×w and facial landmarks
LQ ∈ R1×h×w projected onto a 2D binary image using
intermediate latent codes Q by [IQ,LQ] = G(Q). In
essence, this model serves as a differentiable renderer, but
it receives multi-resolution latent codes. Here, the ren-
dered images also do not need to be high-resolution (i.e.,
h << 1024, w << 1024, and we use h = w = 64 in
our experiments). The architecture of our generative model
is based on [3], where pixel coordinates are encoded with
latent Fourier blocks. This provides two advantages: 1)
it encodes the geometric properties better, and 2) it rep-
resents the higher frequency content better, as discussed
in [38]. Indeed, we require a differentiable renderer model
(that is, the renderer in 3D morphable face models is used)
R : Rl → R3×h×w to generate ground-truth renders and
optimize our models. Note that its parameters are also fixed.

Furthermore, we introduce a stochastic sampler S(·, ·)
to be used for both intermediate latent codes Q̃ = S(Q, ω)
and face concept parameters p̃ = S(p, ω). Here, this func-
tion stochastically activates (preserves codes) or deactivates
(codes are set to zero) some of the concepts with a random
binary mask ω ∈ ZM at each training iteration. Specifi-
cally, this regularization method provides a better concep-
tual decomposition for intermediate latent codes by ran-
domly combining/dropping some of face concepts at each
iteration. For the sake of simplicity of the notation, we will
denote p and Q instead of p̃ and Q̃ from now on. The de-
coder model is visually summarized in Fig. 2. We then train
both H and G models minimizing the following loss Lall;

Lall = Lphoto(IQ,p) + Lland(LQ,p)

+λganLgan(IQ,p) + λorthLorth(W),
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Figure 4: The overall architecture of Transformer-based La-
tent Space Controller C(·). It is used for manipulating input
GAN features x with face parameters p. Details are given
in the Subsection 3.3.
where λgan and λorth are regularization parameters. The
pixel-wise photometric loss is defined as the Euclidean dis-
tance (|| · ||2) between face images rendered by our genera-
tive model and differentiable renderer model by

Lphoto(IQ,p) = ||IQ −R(p)||2, (1)

Landmark loss is also adapted to enhance face renders for
the concepts related to face meshes like expression and head
pose using a pixel-wise binary-cross entropy loss by
Lland(LQ,p) = Lr log(LQ)+(1−Lr) log(1−LQ), (2)

where log(·) is the element-wise logarithm. Lr ∈ R1×h×w

denotes the landmark positions that are computed using the
concept parameters p and then projected onto a 2D binary
image with a differentiable face renderer. To find the as-
sociation of the rendered images and landmark positions in
the intermediate latent space, we introduce a GAN-based
penalty term inspired by [26]:

Lgan(IQ,p) = log(1−D(IQ,Lr)), (3)

where,D(·, ·) denotes a conditional discriminative network.
To ensure the conceptual independence for the intermediate
codes, an orthogonal regularization term is incorporated by

Lorth(W) = ||WWT − I||1. (4)

where I denotes the identity matrix and || · ||1 is the ℓ1 norm.

3.3. Latent Space Face Editing with Transformers

For each multi-resolution GAN feature x, a synthetic im-
age can be generated using a pre-trained GAN model by
Ix = σ(x) (we implement σ using StyleGAN2 [20] in the
analyses). Our goal is to edit a GAN feature x using a con-
trol parameter pe and a trainable controller C(·, ·) by

xe = x+∆xe, (5)

where xe and ∆xe = C(x,pe) denote the edited GAN
feature and residual feature, respectively. An image for the
edited feature can be also generated by Ixe = σ(xe).

For this purpose, we propose a transformer-based GAN
space controller C(x,pe) inspired by [18]. Since the con-
trol face parameter pe is a single variable, we first decom-
pose the vector representation into level-wise representa-
tions with a multi-head self-attention. Next, we design a

multi-head concept attention that intuitively manipulates the
GAN features with the face control parameters. Compared
to self-attention models, the query is projected from GAN
features x, while key and value are computed from con-
trol face parameters pe. The transformer architecture is il-
lustrated in Fig. 4. Compared to baseline [39] (i.e., fully-
connected encoder-decoder), this model can capture hier-
archical dependencies at multiple abstraction levels during
the manipulation step. As a result, the model can learn these
dependencies and can edit the coarse, medium, and fine de-
tails in the GAN space using control parameters.
Optimization: Given the GAN feature and face parameter
pairs (x1, px1 ) and (x2, px2 ), we optimize the controller
without using ground-truth labels. During training, we sam-
ple a random binary mask ω ∈ {0, 1}M at each iteration.
A new control parameter pe is calculated as a linear mix-
ture of px1 and px2 by pe = ωpx1 + (1 − ω)px2 . Next,
the feature x1 is edited by the parameters pe to estimate
x1→e. We train the controller C(·, ·) by minimizing the
conceptual dissimilarity between the original and manipu-
lated GAN features with the loss

Lconsist = ||S(H(x1), ω)− S(H(x1→e), ω)||1
+||S(H(x2), 1− ω)− S(H(x1→e), 1− ω)||1
+λedit||x1 − x1→e→1||2 + λsparse||∆xe||1,

where, S(·, ·) and H(·) denote the stochastic sampler and a
pre-trained TLSE model presented previously. λedit is the
coefficient that scales effects of cycle-consistency loss, and
λsparse is used to control the sparsity of disentanglement.
Multi-Task Learning: The consistency loss used in our
model can be separately calculated for each concept. To
be specific, the mean absolute error between the outputs
of the pre-trained TLSE H(·) employed using the origi-
nal and edited codes can be computed for each concept.
Thereby, we formulate the optimization step in a multi-task
learning setting to prevent overfitting to a particular concept
during training. An uncertainty-based multi-task learning
method [21] is utilized to better learn shared representations
by scaling the loss objectives for each concept, and by mit-
igating the sensitivity for weight selection.

4. Experimental Analyses
Implementation Details: We train our models using the
LAMB optimizer [46] with a learning rate of 0.0032, a
batch size of 1024 and an iteration of 40K. For the trans-
formers implementing the model H(·), we use the architec-
ture presented in [11] (2 layers with 8 multi-heads). For
the transformer implementing C(·), we used 4 layers with
8 multi-heads. Training time for our pipeline takes approxi-
mately 1 hour with multiple GPUs. Empirically, the dimen-
sion of intermediate codes k is set to 16. In addition, λgan,
λorth, λedit and λsparse coefficients are set to 0.01, 1e− 4,
0.01 and 1e− 4, respectively.
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Figure 5: Samples for transferring pose, expression, and illumination simultaneously from target to source images.

Figure 6: Results on real faces.

Dataset: We use a pre-trained StyleGAN2 model [20]
trained on FFHQ dataset in all our experiments. For this
purpose, our pipeline requires StyleGAN2 features and
corresponding 3D morphable face parameters for training.
Therefore, we randomly sample 200K features from Style-
GAN2 space where 190K parameters are reserved for train-
ing and the rest is used for testing. To increase the diversity
of facial patterns, up to 5 separate features are combined
to produce one feature, leveraging the idea of style mix-
ing. To implement a 3D morphable model and estimate the
face parameters, a NN-method [9] based on the Basel Face
model [30] is used. Note that we tested our approach with
FLAME face model [24] computed by DECA [13], and still,
equivalent results are obtained. To compare our method
with baselines, we also use a synthetic dataset released by
StyleFlow [2] for qualitative and quantitative evaluations.
Baselines: As baselines, we compare our method with
five works: InterfaceGAN (IG) [34], GANSpace (GS) [16],
SeFa [35], StyleRig (SR) [39] and StyleFlow (SF) [2]. For
GS, SeFa and SF, we used the code provided by the au-
thors. For IG, we used the previously reported results and
the code provided in [33] for limited concepts. Lastly, we
implemented SR model from scratch based on their paper.
Metrics: We evaluate our results using face identity, edit
consistency and edit precision scores on the StyleFlow

dataset. To reproduce the same results [2], the embeddings
of a face model [14] on the original and edited images
are used to calculate the cosine similarity for face identity
scores. Furthermore, we report the edit permutation consis-
tency proposed in [2] only for the light parameter with DPR
model [48] (for other concepts, attribute model is not open-
sourced, so we couldn’t report any score). Lastly, we ran-
domly swap the facial concepts between source and target
image parameters to transfer expression, pose and illumi-
nation concepts. We calculate the mean error between the
edited and target images using Basel outputs for edit scores.

4.1. Qualitative and Quantitative Comparisons

To demonstrate our ability to produce high-quality dis-
entangled image edits, we conduct tests by transferring face
parameters (i.e., pose, expression, and illumination) from
target images to source images. Results are illustrated in
Fig. 5. The results indicate that our method can successfully
handle extreme changes in pose, expression, and illumina-
tion. Notably, our approach preserves other attributes such
as background, clothing, and hair color from the source im-
ages. This is achieved by utilizing mutually independent
latent codes during optimization, which ensures that other
concepts remain unaffected in GAN space manipulation.

We also compare our results with the reported SF results.
However, the baseline model cannot adequately preserve
face identity for extreme pose and illumination changes (as
seen in the left-column face set - last row - red box). Fur-
thermore, there are significant pose and expression mis-
alignments between the target and SF-edited images (yel-
low boxes). Lastly, altering face concepts with SF leads to
undesired changes on face attributes such as age (as seen
in the right-column face set, last row - orange box). Note
that SR results are not included in this discussion since pre-
vious work [2] has already indicated that the model does
not perform well when all face concepts are simultaneously
applied. However, our supplementary material provides ad-
ditional analyses for IG, SeFa, SR and SF.

In practice, editing real faces is essential for the final ap-
plication. Hence, we report visual results on real faces in
Fig. 6. Real faces are first projected to StyleGAN2 space
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Figure 7: Only pose manipulation. Face identity and other features like background and facial attributes are largely preserved.

Figure 8: Only illumination is manipulated.

Figure 9: Only expression is manipulated.

using [33]. We compare our method with IG model, whose
implementation is shared with the same model that only al-
lows to edit pose and expression concepts, and SeFa model.
The results demonstrate that our method gives significantly
better results compared to IG and SeFa in terms of reduc-
ing distortion (first row), preserving attributes and identities
(first, second and fourth rows), and producing realistic ex-
pressions (third row).

To support our claims and visual results, we evaluate our
method with the quantitative analyses. Tab. 1 presents face
identity similarity scores (higher is better) calculated by
modifying illumination (illum), pose, expression (expr) and
all three concepts simultaneously (all). Our method yields
significantly better results in terms of identity scores com-
pared to baselines. The results show that our method only
manipulates the targeted part(s) without changing identi-
ties. This property is further confirmed in Tab. 2, where

Edit IG [34] GS [16] SR [39] SF [2] Ours
illum 0.945 0.942 0.954 0.963 0.981
pose 0.940 0.939 0.959 0.966 0.986
expr 0.946 0.973 0.975 0.967 0.983
all 0.895 0.902 0.923 0.941 0.963

Table 1: Face identity evaluation (cosine similarity) to com-
pare different methods.

Edit IG [34] GS [16] SF [2] Ours
illum 0.66 0.58 0.53 0.35

Table 2: Edit consistency evaluation (mean absolute error)
to compare different methods.

Edit GS [16] SR [39] Ours
illum 0.48 0.46 0.41
pose 0.20 0.17 0.11

expression 3.74 3.67 3.49
Table 3: Face concept edit precision evaluation (mean ab-
solute error) to compare different methods.

we measure the cycle edit consistency between sequentially
transferred light-expression and pose-light concepts for the
same person, as proposed in [2]. The error is significantly
reduced due to our conceptually independent latent space.
Lastly, we evaluate our method using Basel model outputs
in Tab. 3 which reports the mean absolute error. Our method
again demonstrates superior performance for the manipula-
tion of illumination, expression and pose parameters.

4.2. An Ablation Study for the Individual Concepts

In this section, we qualitatively demonstrate the supe-
riority of our method for handling individual pose, illumi-
nation, and expression changes. The overall results indi-
cate that each of these concepts can be manipulated without
conceptually interfering with the others. Fig. 7 illustrates
the edited faces by rotating them in both left and right di-
rections. Our method preserves face identity and attributes,
even with extreme pose variations. However, our method
is constrained by the biases of StyleGAN2 model. As seen
in the last row of the figure, the rotation is restricted by the
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Figure 10: Change of StyleGAN2 features x at different abstraction levels after expression (left), illumination (middle) and
pose (right) manipulation. Baseline results [39] are also added for each concept.

Figure 11: In plots (a) (illumination), (b) (pose) and (c) (ex-
pression), each sub-space Qi of intermediate latent space Q
is individually visualized to demonstrate that the distribu-
tion of codes in each sub-space is conceptually consistent
with that of the sub-spaces in the face parameter space P .

GAN model. Despite this limitation, our results are photo-
realistic, and the identity and attributes are still preserved.
Fig. 8 and 9 show the results for the exclusive illumina-
tion and expression edits. The results demonstrate that only
the contents related to targeted concepts are edited. Fur-
thermore, the results remain conceptually consistent for the
same face parameters (i.e., each column uses the same con-
trol parameters). The results reported for illumination also
show that our model can implicitly unveil the facial struc-
ture in the latent space.

4.3. Analyses of Intermediate Latent Spaces

In this section, we analyze the intermediate latent space
that is learned by our method. First, we inspect the prop-
erty of employment of hierarchical representations (I). For
this purpose, we visualize how our method edits the Style-
GAN features x for various face concepts in Fig. 10. The
plots illustrate the mean square difference and variance be-
tween the input and edited StyleGAN features at different
abstraction levels. We use 10000 StyleGAN2-generated
features, and the face parameters randomly swap for the
manipulation. Notably, these changes for each concept are
sparse compared to our baseline method [39] (Their plots
are also added.). This means that our approach selectively
alters only the targeted parts of the multi-resolution input
features. In other words, hierarchical learning is achieved
by not disturbing unrelated details in multi-resolution GAN

space. We also compare the indices for each concept which
are manually determined by [2]. These indices overlap with
our results as well.

Second, we analyze the property of mutually exclusive
and conceptually consistent representations (II). Fig. 3 vi-
sualizes t-SNE representations computed on intermediate
latent codes Q. Plots show the distribution of the latent
codes. We can see that these latent codes are well-separated
(i.e., mutually exclusive). This indicates that the intermedi-
ate latent space Q =

⋃M
i=1 Qi is spanned by multiple and

independent sub-spaces. Next, we inspect each conceptual
sub-space Qi individually. For this purpose, we use the cor-
responding face parameter labels (either γ, R or θ of p)
for intermediate latent codes. Since these parameters are
continuous, we first cluster each sub-space of face param-
eters Pi and use the representative cluster centers of each
concept as its sub-classes in our plots. To enhance the in-
terpretibility, we also visualize these cluster centers for each
concept using StyleGAN2 model. Plots for illumination (a),
pose (b) and expression (c) illustrate the space distribution
of each conceptual sub-space Qi by coloring them with the
corresponding sub-classes of each face concept. The results
show that our method obtains a conceptually consistent la-
tent space during self-supervised learning.

5. Conclusion

We propose a method to edit a pretrained GAN space for
face editing. Our model differs from previous techniques
that an intermediate latent space is estimated by an encoder-
decoder model whose latent codes can control manipulation
of conceptual and hierarchical information. The proposed
pipeline performs this decomposition by relying solely on
the reconstruction error during the mapping between the
GAN space and face parameter space. Later, this interme-
diate space is used to optimize a GAN space controller for
face editing. As a result, conceptual controllability of our
method for illumination, pose and expression is enhanced
while the photo-realism of StyleGAN2 is preserved. Both
qualitative and quantitative results indicate the superiority
of our method over baselines.
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