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Abstract

Large-scale pre-training tasks like image classification,

captioning, or self-supervised techniques do not incentivize

learning the semantic boundaries of objects. However, re-

cent generative foundation models built using text-based la-

tent diffusion techniques may learn semantic boundaries.

This is because they have to synthesize intricate details

about all objects in an image based on a text description.

Therefore, we present a technique for segmenting real and

AI-generated images using latent diffusion models (LDMs)

trained on internet-scale datasets. First, we show that the

latent space of LDMs (z-space) is a better input representa-

tion compared to other feature representations like RGB im-

ages or CLIP encodings for text-based image segmentation.

By training the segmentation models on the latent z-space,

which creates a compressed representation across several

domains like different forms of art, cartoons, illustrations,

and photographs, we are also able to bridge the domain

gap between real and AI-generated images. We show that

the internal features of LDMs contain rich semantic infor-

mation and present a technique in the form of LD-ZNet

to further boost the performance of text-based segmenta-

tion. Overall, we show up to 6% improvement over standard

baselines for text-to-image segmentation on natural images.

For AI-generated imagery, we show close to 20% improve-

ment compared to state-of-the-art techniques. The project

is available at https://koutilya-pnvr.github.io/LD-ZNet/.

1. Introduction

Teaching neural networks to accurately find the bound-

aries of objects is hard and annotation of boundaries at

internet scale is impractical. Also, most self-supervised

or weakly supervised problems do not incentivize learning

boundaries. For example, training on classification or cap-

tioning allows models to learn the most discriminative parts

of the image without focusing on boundaries [42, 60]. Our

insight is that Latent Diffusion Models (LDMs) [38], which
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Figure 1: Coarse segmentation results from an LDM for two dis-

tinct images, demonstrating the encoding of fine-grained object-

level semantic information within the model’s internal features.

can be trained without object level supervision at internet

scale, must attend to object boundaries, and so we hypothe-

size that they can learn features which would be useful for

open world image segmentation. We support this hypothe-

sis by showing that LDMs can improve performance on this

task by up to 6%, compared to standard baselines and these

gains are further amplified when LDM based segmentation

models are applied on AI generated images.

To test the aforementioned hypothesis about the pres-

ence of object-level semantic information inside a pre-

trained LDM, we conduct a simple experiment. We com-

pute the pixel-wise norm between the unconditional and

text-conditional noise estimates from a pretrained LDM as

part of the reverse diffusion process. This computation

identifies the spatial locations that need to be modified for

the noised input to align better with the corresponding text

condition. Hence, the magnitude of the pixel-wise norm

depicts regions that identify the text prompt. As shown in

the Figure 1, the pixel-wise norm represents a coarse seg-

mentation of the subject although the LDM is not trained

on this task. This clearly demonstrates that these large scale

LDMs can not only generate visually pleasing images, but

their internal representations encode fine-grained semantic

information, that can be useful for tasks like segmentation.

Recently, text-based image segmentation has gained

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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Figure 2: Overview of the proposed ZNet and LD-ZNet architectures. We propose to use the compressed latent representation z as input

for our segmentation network ZNet. Next, we propose LD-ZNet, which incorporates the latent diffusion features at various intermediate

blocks from the LDM’s denoising UNet, into ZNet.

traction for creating and editing AI generated content (like

AI art, illustrations, cartoons etc.) in image inpainting

workflows 1 as it provides a conversational interface. Since

the latent space z [11], extracted by a VQGAN is trained

on several domains like art, cartoons, illustrations and real

photographs, we posit that it is a more robust input represen-

tation for text-based segmentation on AI-generated images.

Furthermore, the internal layers of the LDM are responsible

for generating the structure of the image and hence contain

rich semantic information about objects. Soft masks from

these layers have also been used as a latent input in recent

work on image editing [15, 2]. Since this information is

already present while generating the image, we propose an

architecture in the form of LD-ZNet (shown in Figure 2)

to decode it for obtaining the semantic boundaries of ob-

jects generated in the scene. Not only does our architecture

benefit segmentation of objects in AI generated images, but

it also improves performance over natural images. Overall

our contributions are as follows:

• We propose a text-based segmentation architecture,

ZNet that operates on the compressed latent space of

the LDM (z).

• Next, we study the internal representations at differ-

ent stages of pretrained LDMs and show that they are

useful for text-based image segmentation.

• Finally, we propose a novel approach named LD-ZNet

to incorporate the visual-linguistic latent diffusion fea-

tures from a pretrained LDM and show improvements

1https://github.com/brycedrennan/imaginAIry,

https://github.com/AUTOMATIC1111/stable-diffusion-webui

across several metrics and domains for text-based im-

age segmentation.

2. Related work

2.1. Text­based image segmentation

Text-based image segmentation is the general task of

segmenting specific regions in an image, based on a text

prompt. This is different from the referring expression

segmentation (RES) task, which aims to extract instance-

level segmentation of different objects through distinctive

referring expressions. While RES helps applications in

robotics that require localization of a single object in an

image, text-based segmentation benefits image editing ap-

plications by being able to also segment 1) “stuff” cate-

gories (clouds/ocean/beach etc.) and 2) multiple instances

of an object category applicable to the text prompt. How-

ever, both these tasks have some shared literature in terms

of approaches. Preliminary works [16, 25, 43, 24, 56] fo-

cused on the multi-modal feature fusion between the lan-

guage and visual representations obtained from recurrent

networks (such as LSTM) and CNNs respectively. The

subsequent set of works [28, 59, 50, 54] included varia-

tions of multi-modal training, attention and cross-attention

networks etc. Recently, [50, 26] used CLIP [34] to ex-

tract visual linguistic features of the image and the ref-

erence text separately. These features were then com-

bined using a transformer based decoder to predict a binary

mask. Alternately, [18, 62], proposed vision-language pre-

training on other text-based visual recognition tasks (ob-

ject detection and phrase grounding) and later finetuned

for the segmentation task. The concurrent works segment-
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anything (SAM) [22] and segment-everything-everywhere-

all-at-once (SEEM) [67] allow interactive segmentation via

point clicks, bounding boxes and text inputs etc. demon-

strating good zero-shot performance. Different from all

these works, we show the significance of using the latent

space and the internal features from a pretrained latent dif-

fusion model [38] for improving the more generic text-

based image segmentation task.

2.2. Text­to­Image synthesis

Text-to-Image synthesis has initially been explored using

GANs [53, 66, 45, 61, 55, 65] on publicly available image

captioning datasets. Another line of work is by using au-

toregressive models [36, 9, 13] via a two stage approach.

The first stage is a vector quantized autoencoder such as

a VQVAE [48, 37] or a VQGAN [11] with an image re-

construction objective to convert an image into a shorter

sequence of discrete tokens. This low dimensional latent

space enables the training of compute intensive autoregres-

sive models even for high resolution text-to-image synthe-

sis. With the recent advancements in Diffusion Models

(DM) [32, 8], both in unconditional and class conditional

settings, they have started gaining more traction compared

to GANs. Their success in the text-to-image tasks [40, 35]

made them even more popular. However, the prior diffu-

sion models worked in the high-dimensional image space

that made training and inference computationally intensive.

Subsequently, latent space representations [31, 14, 44, 38]

were proposed for high resolution text-to-image synthesis

to reduce the heavy compute demands. More specifically,

the latent diffusion model (LDM) [38] mitigates this prob-

lem by relying on a perceptually compressed latent space

produced by a powerful autoencoder from the first stage.

Moreover, they employ a convolutional backed UNet [39]

as the denoising architecture, allowing for different sized

latent spaces as input. Recently this architecture is trained

on large scale text-image data [41] from the internet and re-

leased as Stable-diffusion2, which exhibited photo-realistic

image generations. Subsequently, several language guided

image editing applications such as inpainting [5, 27, 52],

text-guided image editing [3, 2] became more popular and

the usage for text-based image segmentation has surged, es-

pecially for AI generated images. We propose a solution for

text-based image segmentation by leveraging the features

which are already present as part of the synthesis process.

2.3. Semantics in generative models

Semantics in generative models such as GANs have been

studied for binary segmentation [49, 29] as well as multi-

class segmentation [64, 46, 33] where the intermediate fea-

tures have been shown to contain semantic information for

2https://github.com/CompVis/stable-diffusion
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Figure 3: Reconstructions from the first stage of the LDM. Given

an input image, the latent representation z generated by the en-

coder, can be used to reconstruct images that are perceptually in-

distinguishable from the inputs. The high quality of these recon-

structions suggests that the latent representation z, preserves most

of the semantic information present in the input images.

these tasks. Moreover, [23] highlighted the practical advan-

tages of these representations, such as out-of-distribution

robustness. However, prior generative models (GANs etc.)

as representation learners have received less attention com-

pared to alternative unsupervised methods [4], because of

the training difficulties on complex, diverse and large scale

datasets. Diffusion models [32], on the other hand are an-

other class of powerful generative models that recently out-

performed GANs on image synthesis [8] and are able to

train on large datasets such as Imagenet [7] or LAION [41].

In [1], the authors demonstrated that the internal features

of a pre-trained diffusion model were effective at the se-

mantic segmentation task. However, this type of analysis

[64, 1] has mostly been done in limited settings like few

shot learning [12] or limited domains like faces [19], horses

[57] or cars [57]. Different from these works, we analyze

the visual-linguistic semantic information present in the in-

ternal features of a text-to-image LDM [38] for text based

image segmentation, which is an open world visual recog-

nition task. Furthermore, we leverage these LDM features

and show performance improvements when training with

full datasets instead of few-shot settings.

3. LDMs for Text-Based Segmentation

The text-to-image latent diffusion architecture intro-

duced in [38] consists of two stages: 1) An auto-encoder

based VQGAN [11] that extracts a compressed latent rep-

resentation (z) for a given image 2) A diffusion UNet that

is trained to denoise the noisy z created in the forward dif-

fusion process, conditioned on the text features. These text

features are obtained from a pretrained frozen CLIP text en-

coder [34] and is conditioned at multiple layers of the UNet

via cross-attention.

In this paper, we show performance improvements on the
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text-based segmentation task in two steps. Firstly, we ana-

lyze the compressed latent space (z) from the first-stage and

propose an approach named ZNet that uses z as the visual

input to estimate segmentation mask when conditioned on

a text prompt. Secondly, we study the internal representa-

tions from the second stage of the stable-diffusion LDM for

visual-linguistic semantic information and propose a way

to utilize them inside ZNet for further improvements in the

segmentation task. We name this approach as LD-ZNet.

3.1. ZNet: Leveraging Latent Space Features

We observe that the latent space (z) from the first-stage

of the LDM is a compressed representation of the image

that preserves semantic information, as depicted in Figure

3. The VQGAN in the first-stage achieves such semantic-

preserving compression with the help of large scale training

data as well as a combination of losses - perceptual loss

[63], a patch-based [17] adversarial objective [10, 11, 58],

and a KL-regularization loss.

In our experiments, we observe that this compressed la-

tent representation z is more robust compared to the original

image in terms of their association with the text prompts.

We believe this is because z is a H

8
× W

8
× 4 dimensional

feature with 48 × fewer elements compared to the original

image, while preserving the semantic information. Several

prior works [47, 21, 6], show that compression techniques

like PCA, which create information preserving lower di-

mensional representations generalize better. Therefore, we

propose using the z representation along with the frozen

CLIP text features [34] as an input to our segmentation net-

work. Furthermore, because the VQGAN is trained across

several domains like art, cartoons, illustrations, portraits,

etc., it learns a robust and compact representation which

generalizes better across domains, as can be seen in our ex-

periments on AI generated images. We call this approach

ZNet. The architecture of ZNet is shown in the bottom box

of Figure 2, and is the same as the denoising UNet mod-

ule of the LDM. We therefore initialize it with pretrained

weights of the second-stage of the LDM.

3.2. LD­ZNet: Leveraging Diffusion Features

Given a text prompt and a timestep t, the second-stage

of the LDM is trained to denoise zt - a noisy version of the

latent representation z obtained via forward diffusion pro-

cess for t timesteps. A UNet architecture is used whose

encoder/decoder elements are shown in Figure 2 (top right).

A typical encoder/decoder block contains a residual layer

followed by a spatial-attention module that internally has

self-attention and then cross-attention with the text features.

We analyze the semantic information in the internal visual-

linguistic representations developed at different blocks of

encoder and decoder right after these spatial-attention mod-

ules. We also propose a way to utilize these latent diffusion
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Figure 4: Semantic information present in the LDM features at

various blocks and timesteps for the referring image segmentation

task. AP is measured on a small validation subset of the PhraseCut

dataset.

features using cross-attention into the ZNet segmentation

network and we call the final model as LD-ZNet.

3.2.1 Visual-Linguistic Information in LDM Features

We evaluate the semantic information present in the pre-

trained LDM at various blocks and timesteps for the text-

based image segmentation task. In this experiment, we

consider the latent diffusion features right after the spatial-

attention layers 1-16 spanning across all the encoder and

decoder blocks present in the UNet. At each block, we

analyze the features for every 100th timestep in the range

[100, 1000]. We use a small subset of the training and val-

idation sets from the Phrasecut dataset and train a simple

decoder on top of these features to predict the associated bi-

nary mask. Specifically, given an image I and timestep t,

we first extract its latent representation z from the first stage

of LDM and add noise from the forward diffusion to obtain

zt for a timestep t. Next we extract the frozen CLIP text

features for the text prompt and input both of them into the

denoising UNet of the LDM to extract the internal visual-

linguistic features at all the blocks for that timestep. We use

these representations to train the corresponding decoders

until convergence. Finally, we evaluate the AP metric on

a small subset of the validation dataset. The performance

of features from different blocks and timesteps is shown in

Figure 4.

Similar to [1], we observe that the middle blocks

{6,7,8,9,10} of the UNet contain more semantic informa-

tion compared to either the early blocks of the encoder or

the later blocks of the decoder. We also observe that the

timesteps 300-500 contain the maximum visual-linguistic

semantic information compared to other timesteps, for these

middle blocks. This is in contrast to the findings of [1]

that report the timesteps {50, 150, 250} to contain the
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most useful information when evaluated on an uncondi-

tional DDPM model for the few shot semantic segmenta-

tion task for horses [57] and faces[19]. We believe that the

reason for this difference is because, in our case, the image

synthesis is guided by text, leading to the emergence of se-

mantic information earlier in the reverse diffusion process

(t=1000→0), in contrast to unconditional image synthesis.

3.2.2 LD-ZNet Architecture

We propose using the aforementioned visual-linguistic rep-

resentations at multiple spatial-attention modules of the pre-

trained LDM into the ZNet as shown in Figure 2. These la-

tent diffusion features are injected into the ZNet via a cross-

attention mechanism at the corresponding spatial-attention

modules as shown in Figure 5. This allows for an interaction

between the visual-linguistic representations from the ZNet

and the LDM. Specifically, we pass the latent diffusion fea-

tures through an attention pool layer that not only acts as a

learnable layer to match the range of the features participat-

ing in the cross-attention, but also adds a positional encod-

ing to the pixels in the LDM representations. The outputs

from the attention pool are now positional-encoded visual-

linguistic representations that enable the proposed cross-

attention mechanism to attend to the corresponding pixels

from the ZNet features. ZNet when augmented with these

latent diffusion features from the LDM (through cross-

attention) is referred to as LD-ZNet.

Following the semantic analysis of latent diffusion fea-

tures (Sec. 3.2.1), we incorporate the internal features from

blocks {6,7,8,9,10} of the LDM into the corresponding

blocks of ZNet, in order to make use of the maximum se-

mantic and diverse visual-linguistic information from the

LDM. For AI generated images, these blocks are anyways

responsible to generate the final image and using LD-ZNet,

we are able to tap into this information which can be used

for segmenting objects in the scene.

4. Experiments

Implementation details: In this paper, we use the

stable-diffusion v1.4 checkpoint as our LDM that internally

uses the frozen ViT-L/14 CLIP text encoder [34]. We im-

plement the above described ZNet and LD-ZNet in pytorch

inside the stable-diffusion library. We also initialize our net-

works with the weights from the LDM wherever possible,

while initializing the remaining parameters from a normal

distribution. We train ZNet and LD-ZNet on 8 NVIDIA

A100 gpus with a batch size of 4 using the Adam optimizer

and a base learning rate of 5e−7 per mini-batch sample, per

gpu. For all our experiments, we keep the text encoder

frozen and use an image resolution of 384 for a fair com-

parison with the previous works.

Datasets: We use Phrasecut [51], which is currently the
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Figure 5: We propose to incorporate the visual-linguistic repre-

sentations from LDM obtained at the spatial-attention modules

via a cross-attention mechanism into the corresponding spatial-

attention modules of the ZNet through an attention pool layer.

largest dataset for the text-based image segmentation task,

with nearly 340K phrases along with corresponding seg-

mentation masks that not only permit annotations for stuff

classes but also accommodate multiple instances. Follow-

ing [34], we randomly augment the phrases from a fixed

set of prefixes. For the images, we randomly crop a square

around the object of interest with maximum area, ensuring

that the object remains at least partially visible. We avoid

negative samples to remove ambiguity in the LDM features

for non-existent objects.

We create a dataset consisting of AI-generated images

which we name AIGI dataset, to showcase the usefulness of

our approach for text-based segmentation on a different do-

main. We use 100 AI-generated images from lexica.art and

manually annotated multiple regions for 214 text-prompts

relevant to these images.

We also use the popular referring expression segmenta-

tion datasets namely RefCOCO [20], RefCOCO+ [20] and

G-Ref [30] to demonstrate the generalization abilities of

ZNet and LD-ZNet. In RefCOCO, each image contains two

or more objects and each expression has an average length

of 3.6 words. RefCOCO+ is derived from RefCOCO by

excluding certain absolute-location words and focuses on

purely appearance based descriptions. For example it uses

“the man in the yellow polka-dotted shirt” rather than “the

second man from the left” which makes it more challeng-

ing. Unlike RefCOCO and RefCOCO+, the average length

of sentences in G-Ref is 8.4 words, which have more words

about locations and appearances. While we adopt the UNC

partition for RefCOCO and RefCOCO+ in this paper, we

use the UMD partition for G-Ref.

Metrics: We follow the evaluation methodology of [26]
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Method mIoU IoUFG AP

MDETR [18] 53.7 - -

GLIPv2-T [62] 59.4 - -

RMI [51] 21.1 42.5 -

Mask-RCNN Top [51] 39.4 47.4 -

HulaNet [51] 41.3 50.8 -

CLIPSeg (PC+) [26] 43.4 54.7 76.7

CLIPSeg (PC, D=128) [26] 48.2 56.5 78.2

RGBNet 46.7 56.2 77.2

ZNet (Ours) 51.3 59.0 78.7

LD-ZNet (Ours) 52.7 60.0 78.9

Table 1: Text-based image segmentation performance on the

PhraseCut testset. The performance of ZNet and LD-ZNet is high-

lighted in gray. Both these models outperform the baseline RGB-

Net on all the metrics.

(a) Input (b) GT mask (c) RGBNet (d) ZNet (e) LD-ZNet

Figure 6: Qualitative comparison on the PhraseCut test set. Each

row contains an input image with a text prompt as an input, with

the goal being to segment the image regions corresponding to the

reference text. The text prompts are “hanging clock” and “castle”

for the top and bottom rows. We show improvements using ZNet

and LD-ZNet compared to the RGBNet.

and report best foreground IoU (IoUFG) for the foreground

pixels, the best mean IoU of all pixels (mIoU), and the Av-

erage Precision (AP).

5. Results

5.1. Image Segmentation Using Text Prompts

On the PhraseCut dataset, we compare the performance

of previous approaches with our ZNet and LD-ZNet for the

text-based image segmentation task (Table 1). In order to

showcase the performance improvement of our proposed

networks, we create a baseline named RGBNet with the

same architecture as ZNet except we use the original im-

ages as the input instead of its latent space z. For RGBNet,

we use additional learnable convolutional layers to map the

original image to match the input resolution of ZNet. From

Table 1, we observe that our ZNet and LD-ZNet signifi-

cantly outperform RGBNet. Specifically, the performance

improvement from using the latent representation z over the

original images is clear (i.e. ZNet vs RGBNet baseline).

Performance further improves upon incorporating the LDM

visual-linguistic representations (LD-ZNet) - by 6% overall

Method mIoU AP

MDETR [18] 53.4 63.8

CLIPSeg (PC+) [26] 56.4 79.0

SEEM [67] 57.4 70.0

RGBNet 63.4 84.1

ZNet (Ours) 68.4 85.0

LD-ZNet (Ours) 74.1 89.6

Table 2: Generalization of the proposed LD-ZNet on our AIGI

dataset when compared with other state-of-the-art text-based seg-

mentation methods.

on the mIoU metric compared to RGBNet. We also high-

light this qualitatively in Figure 6. In the figure, we show the

original image and the GT mask along with outputs from the

RGBNet baseline followed by ZNet and LD-ZNet, where

both ZNet and LD-ZNet help improve results consistently.

For example in the top row, RGBNet detects light fixtures

for the “hanging clock” prompt, and although ZNet does not

have as strong activations for these incorrect detections, it is

LD-ZNet that correctly segments the “clock”. Similarly in

the bottom row, while RGBNet completely got the “castle”

wrong, ZNet correctly has activations on the right buildings,

but with lower confidence. However, LD-ZNet improves it

further.

We outperform in all the metrics when compared to

previous works, other than MDETR [18] and GLIPv2

[62]. Notably, these works are pre-trained on detection and

phrase grounding for predicting bounding boxes on huge

corpus of text-image pairs across various publicly available

datasets with bounding box annotations and are later fine-

tuned on the Phrasecut dataset for the segmentation task.

However, our work is orthogonally focused towards explor-

ing and utilizing LDMs and its internal features for improv-

ing the text-based segmentation performance. Note that

object detection datasets have a good overlap with the vi-

sual content in PhraseCut, however, they are not represen-

tative of the diversity in images available on the internet.

For example, while they could learn common concepts like

sky, ocean, chair, table and their synonyms, methods like

MDETR would not understand concepts like Mikey Mouse,

Pikachu etc., which we will show in Section 6.

5.2. Generalization to AI Generated Images

With the growing popularity of AI generated images,

text-based image segmentation is extensively being used by

content creators in their daily workflows. Many public li-

braries 3 widely employ methods such as CLIPSeg [26] for

performing segmentation in AI-generated images. So we

study the generalization ability of our proposed segmenta-

tion approach on AI-generated images. To this extent, we

3https://github.com/brycedrennan/imaginAIry,

https://github.com/AUTOMATIC1111/stable-diffusion-webui
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Input MDETR [18] CLIPSeg [26] SEEM [67] LD-ZNet

Figure 7: Qualitative comparison on the AI-generated images for

text-based segmentation. The text prompts are “Mickey mouse”,

“Goblin”, “Ramen” and “animals” respectively.

first prepare a dataset of 100 AI-generated images from lex-

ica.art and manually annotate them using 214 text-prompts.

We name this dataset AIGI and release it on our project

website 4 for future research. Next, we evaluate our ap-

proaches ZNet and LD-ZNet along with our RGBNet base-

line and other text-based segmentation methods - CLIPSeg

(PC+) [26], MDETR [18] and SEEM [67]. Glipv2 and the

SAM model [22] with textual input were not publicly avail-

able for us to evaluate at the time of this submission. All

these methods are trained on the Phrasecut dataset except

for SEEM and we measure the IoU metric as shown in Ta-

ble 2. It can be seen that RGBNet outperforms CLIPSeg,

MDETR and SEEM because its built on the UNet archi-

tecture initialized from the LDM weights that contains se-

mantic information for good generalization. Our methods

ZNet and LD-ZNet further improve the generalization to

these AI-generated images by more than 20% compared to

MDETR. This is largely due to the robust z-space of the

LDM that resulted from a VQGAN pre-training on a variety

4https://koutilya-pnvr.github.io/LD-ZNet/

Method RefCOCO RefCOCO+ G-Ref

IoU AP IoU AP IoU AP

CLIPSeg (PC+) [26] 30.1 14.1 30.3 15.5 33.8 23.7

RGBNet 36.3 15.7 37.1 16.7 41.9 27.8

ZNet (Ours) 40.1 16.8 40.9 17.8 47.1 29.2

LD-ZNet (Ours) 41.0 17.2 42.5 18.6 47.8 30.8

Table 3: Generalization of our proposed approaches to different

types of expressions from other datasets. Z-Net and LD-ZNet out-

perform both the RGBNet baseline and CLIPSeg on the general-

ization across all datasets.

Diffusion features via mIoU IoUFG AP

LD-ZNet with concatenation 50.2 59.0 78.1

LD-ZNet with cross-attention 52.7 60.0 78.9

Table 4: Incorporating LDM features into ZNet via cross-attention

(LD-ZNet) leverages the visual-linguistic information present in

them, compared to concatenation, leading to better performance

on the text-based image segmentation task.

of domains like art, cartoons, illustrations etc. Furthermore,

the latent diffusion features that contain useful semantic in-

formation for the synthesis task, also help in segmenting the

AI-generated images. We show the qualitative comparison

of these methods in Figure 7 for four AI-generated images

from our dataset. While CLIPSeg can estimate most distinc-

tive regions such as face of the Mickey mouse or rough lo-

cations of Goblin, Ramen and animals, MDETR and SEEM

incorrectly segment them because these concepts are un-

known to them and because of the domain gap between

their training data and AIGI images respectively. In both

such cases, our proposed LD-ZNet estimates accurate seg-

mentation. More qualitative results for LD-ZNet on images

from the AIGI dataset are shown in Figure 9.

5.3. Generalization to Referring Expressions

Reference expression segmentation task is aimed for

robot-localization kind of applications, where segmenting

at instance-level is performed through distinctive referring

expression. Many works such as [54, 50] also train the text

encoder to learn the complex positional references in the

text. However, we are focused on generic text-based seg-

mentation that has support for stuff categories as well as

for multiple instances. We study the generalization abil-

ity of the proposed approach - using LDM features, to this

complex task. Specifically, we use the models trained on

the PhraseCut dataset and evaluate them on the RefCOCO

[20], RefCOCO+ [20] and G-Ref [30] datasets whose com-

plex referring expressions are for single-instance localiza-

tion and segmentation. We also evaluated the generaliza-

tion of CLIPSeg (PC+) [26] model that was trained on an

extended version of the PhraseCut dataset (PC+), to further

demonstrate the generalization capability of our methods.

Table 3 summarizes the performance for our models along
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“Books”

“Flowers”

“Sofa”

“Table”

“Trees” “Chair”

“Clouds”

“Grass”

“Mountains”

“River”

Figure 8: LD-ZNet text-based image segmentation results for a real image and a cartoon on diverse set of things and stuff classes. High

quality segmentation across multiple classes suggests that LD-ZNet has a good understanding of the overall scene.

“Hoodie”

“Spiderman”

“Owl”

“Trump”

“Pikachu”

“Joker”

“Godzilla”

“Eiffel”

Figure 9: More qualitative results of LD-ZNet from AIGI dataset.

with the RGBNet baseline. We observe a similar trend

in performance improvements across RGBNet < ZNet <

LD-ZNet. These experiments demonstrate that the LDM

features enhance the generalization power of the LD-ZNet

model even on complex referring expressions.

5.4. Inference Time

During inference, our proposed LD-ZNet relies on the

LDM to extract the internal features for just a single time

step (as opposed to around 50 reverse diffusion time steps

for the text-to-image synthesis task). We then use these

LDM features for further cross-attention into LD-ZNet via

the attention pool layer to extract the final mask. Therefore,

using the diffusion model increases the overall run time by

only a small amount. For the stable-diffusion model, in-

ference takes 2.57s for 50 timesteps to synthesize an image

(roughly 51ms per timestep), whereas the average inference

times for RGBNet, ZNet and LD-ZNet are only 62ms, 55ms

and 101ms, respectively, per image on the AIGI dataset with

an RTX A6000 gpu. SEEM [67] takes 293ms for the same

task. Since we use an architecture similar to UNet (from the

second stage of the LDM), as our segmentation network, the

proposed LD-ZNet has 925M trainable parameters.

5.5. Cross­attention vs Concat for LDM features

In LD-ZNet, we inject LDM features into the ZNet

model using cross-attention (Figure 5). In order to under-

stand the importance of the cross-attention layer, we also

train and evaluate another model where the LDM features

are concatenated with the features of the ZNet right before

the spatial-attention layer. The results are summarized in

Table 4 and it shows that concatenating the LDM features

yields inferior results compared to the proposed method.

This is because of the attention pool layer which serves

as a learnable layer and also encodes positional informa-

tion into the LDM features for setting up the cross-attention.

Moreover, the cross-attention layer learns how feature pix-

els from the ZNet attend to feature pixels from the LDM,

thereby leveraging context and correlations from the entire

image. With concatenation however, we only fuse the corre-

sponding features of LDM and ZNet which is sub-optimal.

6. Discussion

In this section we present more qualitative results to

demonstrate several interesting aspects of our proposed

technique when applied towards downstream segmentation

tasks. In Figs. 7 to 10, we visualize results of text-based im-

age segmentation on a diverse set of images, which include

AI generated images, illustrations and generic photographs.

In Figure 8, we show that when LD-ZNet is applied on the

same image with various text prompts, it is able to correctly

segment the object and stuff classes being referred to in both

examples. This capability is crucial for open-world segmen-
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RGBNet LD-ZNet

Figure 10: More qualitative examples where RGBNet fails to lo-

calize “Guitar”, “Panda” from animation images (top row), fa-

mous celebrities “Scarlett Johansson”, “Kate Middleton” (sec-

ond row) and objects such as “Lamp”, “Trees” from illustrations

(bottom row). LD-ZNet benefits from using z combined with the

internal LDM features to correctly segment these text prompts.

tation and overall understanding of the scene. The results

also highlights that the algorithm works remarkably well

on other domains like cartoons/illustrations. It is notewor-

thy that LD-ZNet can perform accurate segmentation for

text prompts which include cartoons (Pikachu, Godzilla),

celebrities (Donald Trump, Spiderman), famous landmarks

(Eiffel Tower), as seen in Figure 9. Finally, Figure 10 shows

the advantages of leveraging semantic information present

in the latent diffusion features. Compared to our baseline

RGBNet, the proposed LD-ZNet generates better segmen-

tation maps across animations, celebrity images and illus-

trations.

7. Conclusion

We presented a novel approach for text-based image seg-

mentation using large scale latent diffusion models. By

training the segmentation models on the latent z-space, we

were able to improve the generalization of segmentation

models to new domains, like AI generated images. We also

showed that this z-space is a better representation for text-

to-image tasks in natural images. By utilizing the internal

features of the LDM at appropriate time-steps, we were able

to tap into the semantic information hidden inside the im-

age synthesis pipeline using a cross-attention mechanism,

which further improved the segmentation performance both

on natural and AI generated images. This was experimen-

tally validated on several publicly available datasets and on

a new dataset of AI generated images, which we will make

publicly available.
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