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Abstract

Learning a feature point detector presents a challenge
both due to the ambiguity of the definition of a keypoint and,
correspondingly, the need for specially prepared ground
truth labels for such points. In our work, we address both
of these issues by utilizing a combination of a hand-crafted
Shi-Tomasi detector, a specially designed metric that as-
sesses the quality of keypoints, the stability score (SS), and
a neural network. We build on the principled and localized
keypoints provided by the Shi-Tomasi detector and learn the
neural network to select good feature points via the stability
score. The neural network incorporates the knowledge from
the training targets in the form of the neural stability score
(NeSS). Therefore, our method is named NeSS-ST since it
combines the Shi-Tomasi detector and the properties of the
neural stability score. It only requires sets of images for
training without dataset pre-labeling or the need for recon-
structed correspondence labels. We evaluate NeSS-ST on
HPatches, ScanNet, MegaDepth and IMC-PT demonstrat-
ing state-of-the-art performance and good generalization
on downstream tasks. The project repository is available
at: https://github.com/KonstantinPakulev/
NeSS-ST.

1. Introduction

Feature point detection (keypoint detection) is usually
the first step in camera localization and scene reconstruc-
tion pipelines based on sparse features commonly used in
robotics [29], computer vision [33], augmented, mixed and
virtual reality [7, 22] and other systems.

Whilst feature description is successfully approached in
the literature as metric learning [27, 36] problem, applying

deep learning to the feature detection task still poses a chal-
lenge with classical solutions showing competitive results
on the state-of-the-art benchmarks [15]. The difficulty is
caused by the innate vagueness of point of interest defini-
tion [40] that greatly complicates the formulation of feature
detection as a learning problem.

The data required to learn keypoints with sufficient ro-
bustness to illumination and viewpoint changes presents an-
other challenge. Structure-from-Motion (SfM) [33, 10] and
Multi-View Stereo (MVS) [34, 10] reconstructions that are
used by some methods [41, 30, 31, 13, 37] to obtain pixel-
accurate correspondences are hard to build properly and
lack full image coverage [19, 9].

We approach the problem of “defining a keypoint” by
leveraging principled assumptions that make up reasonable
keypoints [35]: we employ the Shi-Tomasi [35] detector to
provide locations for keypoints as well as to perform sub-
pixel localization. At the same time, we propose a quanti-
tative metric to measure the stability of detected keypoints
to viewpoint transformations, the stability score (SS), that
randomly perturbs detected points and their surrounding
patches for later aggregation of their statistics. This met-
ric can be calculated in an online fashion for a set of key-
points from a single image, so it is ideal for automatically
generating a supervised signal for training a neural network
that predicts the neural stability score (NeSS). We empower
a classical method, the Shi-Tomasi detector, with a neural
approach, NeSS, getting a method, NeSS-ST, that provides
accurate locations of keypoints that are more likely to re-
main stable under viewpoint changes.

The design presented in our work does not rely on
ground-truth poses or reconstructed correspondences along-
side [11, 3, 18]. These methods are sometimes referred
to as self-supervised [11, 18]. Compared to the prior art,
NeSS-ST needs only a set of real images without any la-
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bels for training. Out of self-supervised methods, only
Key.Net [3] and REKD [18] work in a similar setting while
SuperPoint [11] relies on pre-labeled datasets and requires
pre-training a base detector on a synthetic dataset (see Ta-
ble 1).

Our contributions are as follows. We present a novel
metric, the stability score, to estimate the quality of key-
points. We propose a method, NeSS-ST, that employs the
stability score to learn a neural network and requires only
images for training. In terms of pose accuracy, NeSS-ST
surpasses state-of-the-art on MegaDepth [19], is on par on
IMC-PT [15], ScanNet [9] and HPatches [2] being the best
among the self-supervised methods (see Table 6).

Methods Pre-training
base detector

Dataset
pre-labeling

Ground-truth
generation

SuperPoint [11] Yes Yes Offline
Key.Net [3] No No Offline
REKD [18] No No Offline

NeSS-ST No No Online

Table 1: Comparison of self-supervised methods for learn-
ing keypoints.

2. Related work
Handcrafted detectors. Since Moravec [28], feature

detection methods focused on finding local extrema in sig-
nals derived from images that correspond to meaningful
structures, e.g. corners [40]. Therefore, the earliest designs
of detectors employ the grayvalue analysis via differential
expressions [40, 14, 5, 35, 20].

Depending on image resolution or scale, both location
and strength of keypoints response change [40], thus, spa-
tial extrema do not necessarily constitute good features.
The most productive way to tackle this problem is mod-
eling scale via the scale-space [20] - the backbone of
some famous methods like SIFT [21], SURF [4], Harris-
Laplace [23], Harris-Affine [24], KAZE [1]. Features are
detected either as extrema in the scale-space [21, 4, 1],
or extrema are found at scales first, and then features are
selected among extrema by using transformation invariant
scores [23, 24].

Learned detectors. Existing designs of learned detec-
tors are quite diverse. The majority of the methods employ
correspondence labels for training which are obtained via
SfM and MVS [41, 30, 13, 37] or optical flow [31]. Prepar-
ing dense pixel-accurate ground-truth correspondence la-
bels poses the problem by itself [34, 10] - special pre-
processing of data and validation of obtained results is re-
quired [31, 9, 19]. Although avoiding surface reconstruc-
tion can ease the problem formulation [33, 34], accurate

poses can still be hard to obtain [43]. In this regard, self-
supervised methods that do not require reconstructed cor-
respondences, such as [11, 3, 18] or the method proposed
here, present a viable alternative.

Self-supervised methods rely on sampling of homogra-
phies [11], affinities [3] and in-plane rotations [18] to gen-
erate ground truth correspondences. To detect keypoint
candidates SuperPoint [11] employs a base detector that is
trained on a synthetic dataset with corner-like structures.
Key.Net [3] and REKD [18] follow an anchorless approach
for detection: keypoints are discovered as a result of a loss
function optimization. To address the problem of scale
SuperPoint [11] prepares ground truth feature points us-
ing accumulated repeatability-like scores obtained with the
help of the base detector and generated correspondences.
Key.Net [3] and REKD [18], on the other hand, average
values of the loss function over different window sizes.

In our method, similarly to [23, 24], we find extrema
at a scale using the detector based on the structure ten-
sor [14, 35], the Shi-Tomasi [35] detector (see Sec. 3.1 and
Sec. 4.3.1), and perform feature selection using the scores
predicted by the neural network that assess the stability of
points to viewpoint changes. Like SuperPoint [11], we uti-
lize a combination of a base detector and homography gen-
eration to calculate ground truth scores. We leverage a spe-
cially designed keypoint quality measure that, unlike Su-
perPoint, assesses feature points locally, using only a small
neighbourhood (see Sec. 3.2 and Sec. 4.3.2). That, coupled
with the handcrafted detector, allows us to prepare the re-
quired ground truth during the training using the same GPU
(see Table 1, Sec. 3.3 and Sec. 3.4).

3. Method

NeSS-ST is the combination of the handcrafted Shi-
Tomasi [14, 35] detector and the neural network (see Fig. 1).
We briefly present the formulation of the Shi-Tomasi detec-
tor as well as describe the sub-pixel localization procedure
in Sec. 3.1. In Sec. 3.2 we describe the measure that allows
us to quantitatively assess keypoints, the stability score (SS).
Sec. 3.3 discusses how the stability score can be used to
prepare the ground truth for training the neural network to
predict the stability score for good feature points, the neural
stability score (NeSS). Finally, Sec. 3.4 gives an account of
implementation details.

3.1. Shi-Tomasi detector

We use the Shi-Tomasi [14, 35] detector to get locations
of feature points (see Sec. 4.3.1 for the motivation behind
the choice). We calculate the second-moment matrix for
each pixel using the Gaussian weighting function [14, 35]
and assign the pixel with a score that is equal to the smallest
eigenvalue of the second-moment matrix [35]. By applying
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Figure 1: The method applies the Shi-Tomasi detector to an input image to get the Shi-Tomasi score S. Next, a binary mask
of extrema S̃ is obtained via non-maximum suppression of S. Simultaneously, the method uses the neural network to regress
the neural stability score Λ̂. A set of best feature points {ki}ni=1 is selected from the combined score map Λ̂final that is
a multiplicative combination of S̃ with the negative exponential of Λ̂. Obtained keypoints are localized using S and are
provided with corresponding {si}ni=1 and {λ̂i}ni=1.

the non-maximum suppression over the obtained score map,
we get the locations of keypoints.

We further refine the locations of feature points follow-
ing [21]. By assuming that the Shi-Tomasi score S can be
approximated by a function S(x), we perform the second
order Taylor expansion around a point x and find the cor-
rection dx that maximizes S(x) by solving:

dx = −∂2S
∂x2

−1
∂S
∂x

. (1)

3.2. Stability score

In this work, we design a quantitative description to as-
sess the stability of feature points to viewpoint transforma-
tions. Given a keypoint k we apply to it a set of generated
homographies {Hj}mj=1 to produce a set of m warped key-
points {k′

j}mj=1:

k′
j = Hjk. (2)

We generate homographies by sampling random per-
spective distortions while restricting the deformation along
the x and y axes, see the details in the supplementary mate-
rial. We do not add rotation or translation transformations
since the Shi-Tomasi detector with Gaussian weighting that
we use is invariant to them [14, 35, 12].

Next, we create a grid Gj of the predetermined size p
around each of the warped points k′

j , warp the grid back to

the image coordinates and sample values in these locations
to get a deformed patch Pj around k′

j :

Pj = sample(H−1
j Gj). (3)

The Shi-Tomasi detector is not invariant to scale [12] or
perspective transformations, hence, in general, we cannot
accumulate its scores from different warped patches [20].
However, we can accumulate locations of maximum scores
and analyze their distribution.

We run the Shi-Tomasi detector fShi on each patch Pj

getting a score patch Spatch
j = {spatchl }p

2

l=1 and extract from
it the location l̂j that corresponds to the maximum score:

l̂j = argmax
spatchl

fShi(Pj). (4)

Next, we warp each l̂j back to the original reference
frame and calculate the sample covariance Σ with respect
to the original position k:

Σ =

m∑
j=1

(H−1
j l̂j − k)(H−1

j l̂j − k)⊤

m
. (5)

Finally, we characterize a feature point by the largest of
eigenvalues λ1 and λ2 of Σ:

λ = max(λ1, λ2) = ∥Σ∥2. (6)
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The stability score λ captures the maximum deviation of
a point from its location under perspective transformations
of the neighbourhood of the point. The measure prioritizes
feature points that deviate the least from the initial location
k in any direction and, hence, are more likely to be accu-
rately detected and localized. For further discussion of the
design of the stability score see Sec. 4.3.2.

Since λ assesses keypoints based on their local perturba-
tions, the patch size p is set to be small. It allows to quickly
calculate λ with a sufficient number of samples m for a rea-
sonable number of keypoints n. This particular trait makes
a foundation for the training process of the NeSS regression
network which is discussed next.

3.3. Neural stability score

Not every point with a good stability score λ makes a
good training target: given that λ is calculated over a small
window, image artifacts in low-textured regions can be per-
fectly stable. These unreliable responses can be filtered by
the Shi-Tomasi detector assuming a threshold tShi . Thus,
the neural network is trained on feature points that both have
good stability scores and are more likely to correspond to
meaningful patterns in an image. This gives rise to a new,
better, kind of score, the neural stability score, see Sec. 4.3.2
for more details. In this regard, the stability score can be
viewed as the necessary (but not sufficient) condition for a
good keypoint. See the supplementary material for results
on the influence of tShi on the quality of the model.

In line with several works [30, 3, 37], we get keypoints
for training the neural network by running keypoint extrac-
tion using the trained-so-far weights of the model. More
specifically, for each image we extract n feature points
{ki}ni=1, their Shi-Tomasi scores {si}ni=1 and neural sta-
bility scores {λ̂i}ni=1 regressed by the neural network (see
Fig. 1). Such an approach not only narrows the gap be-
tween train and test regimes of the neural network, but it
also allows to significantly reduce the time for preparing
the ground truth. The combination of during-the-training
feature extraction and fast calculation of λ enables online
ground truth generation.

For each point ki we calculate the ground-truth stability
score λi (Eq. 6). Next, we define 1(si, tShi) as an indicator
function that gives 1 if si > tShi and 0 otherwise. Finally,
we learn {λ̂i}ni=1 by formulating the training objective as a
regression problem:

L = 0.5

∑n
i=1(λ̂i − λi)

21(si, tShi)∑n
i=1 1(si, tShi)

. (7)

3.4. Implementation details

We train our detector from scratch on the same subset of
the MegaDepth [19] dataset as used in DISK [37]. We do
not use poses, depth maps or any other information from

the dataset other than images. We use full-resolution im-
ages cropped to a square of length 560 pixels for training.
We perform validation and model selection on the valida-
tion subset of the IMC-PT [15] dataset.

We set p = 5 to correspond to the size of the non-
maximum suppression kernel. The value of n = 1024 was
found to be enough to cover the most of salient points above
tShi for our choice of the threshold and resolution of train-
ing images. We pick m = 100 as it provides consistent
estimates of λ. Further increasing m gives diminishing re-
turns.

We use a U-Net [32] architecture with 4 down-sampling
layers and 3×3 convolutions. To train the model we employ
Adam [16] optimizer with learning rate 10−4. The model
that is used in experiments in Sec. 4 was trained on a single
NVIDIA 2080 Ti GPU for 22 hours.

4. Experiments
The means of detector evaluation deserve special atten-

tion. Originally, detectors were mostly evaluated using clas-
sical metrics like repeatability and matching score [26].
Since feature points require supplying them with a descrip-
tion in order to obtain the correspondences, a descriptor has
to be accounted for to ensure a proper assessment of the
quality of detected keypoints. A common solution is to fix
a descriptor for all detectors in the evaluation [26, 38, 44, 3].
More recent publications reported evidence that gains in
classical metrics do not necessarily translate to the gains
in the downstream tasks performance [15]. For this reason,
in our work, we mostly perform the evaluation on a range
of downstream tasks. To get a more comprehensive assess-
ment, we test our method on a variety of datasets and tasks.

In our evaluation, we consider the following meth-
ods: Shi-Tomasi [14, 35], SIFT [21], SuperPoint [11],
R2D2 [31], Key.Net [3], DISK [37] and REKD [18]. Some
of these methods use detectors that have assigned names,
e.g. SIFT utilizes the difference of Gaussians (DoG) de-
tector, while some don’t, e.g. the detector of R2D2 doesn’t
have a name. Since we report the evaluation results for ”de-
tector+descriptor” pairs, for consistency, we refer to both
detectors and descriptors by the name of a complete solu-
tion that they belong to. For example, ”SIFT+DISK” im-
plies that the detector of SIFT, DoG, is used with the de-
scriptor of DISK.

Image resolution plays an important role in the accuracy
of correspondences, thus we provide images in the origi-
nal resolution to all methods in our evaluation. It also al-
lows to assess the ability of a detector to generalize beyond
the training resolution. The number of keypoints that is
extracted from each image plays no lesser role: we found
the regime of 2048 keypoints per image from [15, 37] to
be a good trade-off between performance and consumption
of computational resources. We use mutual nearest neigh-
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bour matching and employ the Lowe ratio test [21, 15]. As
choosing proper hyper-parameters for a method is of utmost
importance for downstream tasks [15], we employ a hyper-
parameter tuning procedure similar to one in [15]. We ex-
tract feature points for all methods using only the original
scale with the exception of Key.Net [3] and REKD [18]
that have multi-scaling as an essential built-in part of the
method. To ensure a fair comparison, we do not employ the
orientation estimation for REKD [18] and SIFT [21] since
other methods in the evaluation don’t have it. As long as the
sub-pixel localization is a part of our solution, the version
of the Shi-Tomasi [14, 35] detector employed in our evalu-
ation includes it since we focus on assessing the influence
of NeSS.

4.1. Evaluation on HPatches

The HPatches [2] dataset features sequences with planar
surfaces related by homographies under a variety of illumi-
nation and viewpoint changes. We use the same test subset
as in [13] totaling 540 image pairs from 108 scenes among
which 260 image pairs are with illumination changes and
280 - with viewpoint.

We report Mean Matching Accuracy (MMA) [25, 13]
under different pixel thresholds following [11, 13, 39, 37,
18]. We evaluate on a downstream task of homography es-
timation using a protocol similar to [11, 39] and report the
homography estimation accuracy for different pixel thresh-
olds. Additionally, we integrate the accuracy-threshold
curve up to a 5-pixel threshold to get a single-valued quality
measure, mean Average Accuracy [42, 15].

The DISK [37] descriptor shows the state-of-the-art per-
formance on HPatches, thus we pick it for this dataset.
We employ OpenCV [6] routines for homography estima-
tion. For tuning hyper-parameters we use sequences of
HPatches [2] left out from the test set [13] as well as hyper-
parameters obtained from validation sequences of IMC-
PT [15] on the task of relative pose estimation. This com-
bination provides the best results for all methods, see the
details in the supplementary material.

Results. Our method shows inferior performance to the
Shi-Tomasi [14, 35] detector when evaluated on the MMA
metric as illustrated in Fig. 3. However, the evaluation
on the task of homography estimation completely changes
the ranking, and our method shows strong performance on
scenes with viewpoint changes (see Table 2 and Fig. 2).
These results correlate with recent findings that classical
methods can show state-of-the-art performance if tuned
properly, and that classical metrics might not fully capture
the complicated dependency between features and down-
stream tasks [15]. Since we do not address the problem of
illumination invariance in our work, NeSS-ST shows aver-
age results on illumination sequences. Refer to the supple-

mentary material for more results.

4.2. Evaluation on downstream tasks

We evaluate on a downstream task of relative pose esti-
mation following the protocol of [15]. We use our own eval-
uation pipeline to provide consistency in evaluations across
different datasets. We calculate pose estimation accuracy
for different angular thresholds and report mean Average
Accuracy (mAA) [42, 15] for both rotation and translation
by integrating the area under the accuracy-threshold curve
up to a 10-degree threshold. Errors for rotation and transla-
tion are calculated in degrees [42, 39, 15].

4.2.1 Evaluation on IMC-PT

The IMC-PT [15] dataset is a collection of photo-tourism
images supplied with depth maps and poses, which are
reconstructed via SfM and MVS, that features landmarks
(mostly buildings). We use a full test set release that
consists of 800 unique images from 8 different locations.
By considering image pairs with co-visibility larger than
0.1 [15], we get 37k test image pairs.

Like on HPatches, we choose the DISK [37] descriptor
as it shows the state-of-the-art performance on this dataset.
We utilize a robust fundamental matrix estimator with DE-
GENSAC [8]. We calculate the essential matrix from the
estimated fundamental matrix using ground-truth intrinsics
and then recover the poses using OpenCV [6]. The tuning
of hyper-parameters is performed on the validation subset
of IMC-PT [15], see the details in the supplementary mate-
rial.

Results. Comparison in Table 3 shows that we consider-
ably outperform other self-supervised approaches like Su-
perPoint [11], Key.Net [3] and REKD [18]. We explain the
gap between DISK [37] and our method by the difference
in the strategies that the methods employ to detect points.
DISK [37] tends to densely detect points on semantically
meaningful objects (mostly, buildings), whereas our method
doesn’t employ any knowledge of scene semantics and, in-
stead, relies on the local properties of points, which results
in sparsified detections. Given that IMC-PT [15] contains
a lot of extreme viewpoint and scale changes, the former
strategy looks more advantageous in such an environment.
Refer to the supplementary material for additional results.

4.2.2 Evaluation on MegaDepth

The MegaDepth [19] dataset is another photo-tourism col-
lection of images that also provides depth maps and poses.
As the IMC-PT dataset has a limited diversity of scenes and
their semantics and has only 800 unique images, we create
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Methods Overall
mAA (5px)

Illumination
mAA (5px)

Viewpoint
mAA (5px)

Shi-Tomasi [14, 35] + DISK [37] 0.716 0.892 0.552
SIFT [21] + DISK [37] 0.688 0.877 0.512
SuperPoint [11] + DISK [37] 0.706 0.883 0.541
R2D2 [31] + DISK [37] 0.690 0.888 0.506
Key.Net [3] + DISK [37] 0.678 0.844 0.524
DISK [37] 0.699 0.867 0.542
REKD [18] + DISK [37] 0.689 0.895 0.498

NeSS-ST + DISK [37] 0.714 0.883 0.556

Table 2: Evaluation on HPatches [2] with 2048 keypoints and full resolution images. We report homography estimation
mAA [11, 39, 42, 15] up to a 5-pixel threshold. Best results are marked in red, 2nd best - in green, 3rd best - in blue.
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Figure 2: Evaluation on HPatches [2] with 2048 keypoints and full resolution images. We report homography estimation
accuracy [11, 39] in %.

Methods Rotation
mAA (10◦)

Translation
mAA (10◦)

Shi-Tomasi [14, 35] + DISK [37] 0.744 0.422
SIFT [21] + DISK [37] 0.7 0.387
SuperPoint [11] + DISK [37] 0.708 0.37
R2D2 [31] + DISK [37] 0.751 0.403
Key.Net [3] + DISK [37] 0.666 0.327
DISK [37] 0.813 0.489
REKD [18] + DISK [37] 0.601 0.271

NeSS-ST + DISK [37] 0.767 0.438

Table 3: Evaluation on IMC-PT [15] with 2048 keypoints
and full resolution images. We report mAA [42, 15] up to
a 10 degrees threshold for rotation and translation. Best
results are marked in red, 2nd best - in green, 3rd best - in
blue.

a test set from the MegaDepth dataset to perform the as-
sessment with a larger diversity of data. In particular, our
test set consists of 7.5k image pairs with 6k unique images
sampled from 25 scenes belonging to 5 semantically differ-
ent categories. This test set doesn’t have any intersections
neither with validation nor with test sequences of IMC-PT.

Since both IMC-PT and MegaDepth belong to the cate-
gory of outdoors/photo-tourism datasets, we use the same
descriptor, pose estimation routines and hyper-parameters
for the evaluation.

Results. Contents of Table 4 show that the evaluation on a
more diverse set of data narrows the gap between methods
with our method being marginally better than DISK [37].
SuperPoint [11] is the second-best method in the category
of methods that don’t employ reconstructed correspondence
labels. Although our gains in rotation mAA compared to
it are marginal, we obtain noticeably better translation esti-
mates. Refer to the supplementary material for more results.
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Figure 3: Evaluation on HPatches [2] with 2048 keypoints and full resolution images. We report MMA [25, 13].

Methods Rotation
mAA (10◦)

Translation
mAA (10◦)

Shi-Tomasi [14, 35] + DISK [37] 0.858 0.31
SIFT [21] + DISK [37] 0.83 0.299
SuperPoint [11] + DISK [37] 0.873 0.318
R2D2 [31] + DISK [37] 0.871 0.312
Key.Net [3] + DISK [37] 0.84 0.278
DISK [37] 0.877 0.326
REKD [18] + DISK [37] 0.848 0.274

NeSS-ST + DISK [37] 0.878 0.335

Table 4: Evaluation on MegaDepth [19] with 2048 key-
points and full resolution images. We report mAA [42, 15]
up to a 10 degrees threshold for rotation and translation.
Best results are marked in red, 2nd best - in green, 3rd best
- in blue.

4.2.3 Evaluation on ScanNet

To assess the generalization ability of our method we per-
form the evaluation on the ScanNet [9] dataset that con-
tains indoor video sequences provided with camera poses
and depth maps. Following [30, 39], we create validation
and test sets by sampling pairs from video sequences with
different gaps between frames. Our test set consists of 21k
image pairs with 39k unique images sampled from 100 test
sequences of the dataset.

We perform the evaluation using the HardNet [27] de-
scriptor since on this dataset it shows performance that is
superior to DISK [37] for every method. Because ScanNet
is captured on a single RGB camera, we employ a robust es-
sential matrix estimator from OpenGV [17] with the rest of
the pipeline remaining the same as in previous evaluations.
We use the validation subset of ScanNet for tuning hyper-
parameters, see the details in the supplementary material.

Methods Rotation
mAA (10◦)

Translation
mAA (10◦)

Shi-Tomasi [14, 35] + HardNet [27] 0.568 0.196
SIFT [21] + HardNet [27] 0.578 0.197
SuperPoint [11] + HardNet [27] 0.611 0.217
R2D2 [31] + HardNet [27] 0.642 0.235
Key.Net [3] + HardNet [27] 0.606 0.213
DISK [37] + HardNet [27] 0.528 0.162
REKD [18] + HardNet [27] 0.464 0.142

NeSS-ST + HardNet [27] 0.621 0.222

Table 5: Evaluation on ScanNet [9] with 2048 keypoints
and full resolution images. We report mAA [42, 15] up to
a 10 degrees threshold for rotation and translation. Best
results are marked in red, 2nd best - in green, 3rd best - in
blue.

Results. Contrary to photo-tourism datasets that depict
objects with a lot of texture, ScanNet [9] indoor environ-
ments contain a lot of surfaces with little to no texture. We
believe that this is the main reason why DISK [37] shows
significantly inferior performance on this set of data (see Ta-
ble 5). Our method, on the other hand, can consistently cope
with the challenge and shows the second-best result achiev-
ing significant improvements compared to SuperPoint [11],
Key.Net [3] and REKD [18]. R2D2 [31] achieves the best
results on this dataset; we found that the method is able to
provide consistent matches on images with little texture and
poor illumination conditions by performing detection along
the contours of objects. Refer to the supplementary material
for additional results.

To sum up, the experiments show that NeSS-ST is the
only method in the top three across all the datasets (see Ta-
ble 6) as well as has the best performance among the self-
supervised methods listed in Table 1. It has better general-

9584



HPatches IMC-PT MegaDepth ScanNet

First Shi-Tomasi DISK NeSS-ST R2D2
Second NeSS-ST NeSS-ST DISK NeSS-ST
Third SuperPoint R2D2/Shi-Tomasi SuperPoint SuperPoint

Table 6: The top three ranking of detectors on downstream
tasks.

ization ability compared to most of state-of-the-art, compact
model size and a fast running time (see Table 7).

4.3. Ablation study

4.3.1 Base detector ablation

Our method operates on top of the handcrafted Shi-
Tomasi [14, 35] detector, however, NeSS can be used in
combination with other detectors. The choice of a hand-
crafted detector over a learned detector is motivated by the
size of patch p that is required to maintain online ground
truth generation (see Sec. 3.2). Specifically, handcrafted de-
tectors require a small neighbourhood to calculate the score
compared to learned detectors that have a large receptive
field. Another reason for giving the preference to hand-
crafted detectors is their good performance on downstream
tasks, DoG, in particular, reported in [15], which is also
confirmed in our evaluation.

We pick the Shi-Tomasi [14, 35] detector over the Har-
ris [14] detector since the keypoint selection criterion of the
former better fits NeSS. More precisely, the Shi-Tomasi de-
tector doesn’t impose any restrictions on the shape of the
second-moment matrix; an edge-like pattern and a weak
blob-like pattern can look the same to the Shi-Tomasi de-
tector. The Harris detector, on the other hand, draws a
clear distinction between points and edges: eigenvalues
of the second-moment matrix need to be relatively well-
proportioned for a high Harris score.

We explore the performance of various handcrafted de-
tectors by using them as base detectors for NeSS. Based on
the summary given in Sec. 2, handcrafted detectors can be
categorized into those that detect only spatial extrema, and
those that also model the invariance to viewpoint changes.
Since NeSS, by design, assesses the invariance of spatial
extrema to viewpoint transformations (see Sec. 3.2), we
consider only the former kind of methods to serve as base
detectors. In particular, we examine the determinant of
the Hessian (DoH) [20] and the Laplacian of the Gaussian
(LoG) [5, 20] detectors. The latter detector presents a par-
ticular interest since DoG is the approximation of scale-
normalized LoG [20, 21]. All base detectors in the eval-
uation use sub-pixel localization.

Results. Table 8 shows that NeSS noticeably improves
the performance of all base detectors; however, at the same
time, the results indicate that the gains provided by NeSS
depend on the performance of an employed base detec-
tor. Shi-Tomasi [14, 35] has the best performance among
all base detectors and demonstrates the best results when
combined with NeSS. Interestingly, Shi-Tomasi shows no-
ticeable improvements over Harris on translation estimation
that correlates well with the theoretical justification behind
the design of the Shi-Tomasi detector [35]. More results can
be found in the supplementary material.

4.3.2 Stability score design ablation

We highlight the importance of accounting for the uncer-
tainty of a keypoint location in the stability score (see Eq. 5
and Eq. 6) by conducting experiments with another score.
In particular, using the notation from Eq. 5, we formulate
the repeatability score (RS) that acts like ϵ-pixel repeatabil-
ity measure:

r =

m∑
j=1

1rep(H−1
j l̂j − k, ϵ)

m
. (8)

We define 1rep(H−1
j l̂j − k, ϵ) as an indicator function

that gives 1 if |H−1
j l̂j − k|∞ < ϵ and 0 otherwise. Setting

ϵ = 1, we train the neural network to predict the neural
repeatability score (NeRS) in the similar to Eq. 7 manner.

To emphasize the role of the neural network in our de-
sign we build detectors that operate without it by directly
calculating SS and RS for all potential feature points on an
image. Apart from the computational concerns, such design
choice requires picking a threshold to filter the noise (see
Sec. 3.3). This poses a problem since the optimal thresh-
old depends on the intensity of depicted patterns that varies
from image to image. Utilizing filtering during the training
is exempt from this limitation: on the contrary, it allows to
select only reliable points for learning a new rule from the
data and, hence, to a certain extent, overcome the limita-
tions of homography sampling. Refer to the supplementary
material for the details.

Results. Results presented in Table 9 indicate that the as-
sessment of the local uncertainty of a keypoint location
(SS, NeSS) yields a better criterion compared to repeata-
bility (RS, NeRS) when the downstream task of pose es-
timation is considered. Notably, although the RS criterion
provides keypoints for training that have better repeatability
and MMA compared to SS (see Table 10), the model trained
using the latter criterion shows much better results on the
downstream task (see Table 9). Table 9 and Table 7 show
the benefits of utilizing the neural network (NeSS, NeRS)
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SuperPoint [11] R2D2 [31] Key.Net [3] DISK [37] REKD [18] NeSS-ST SS-ST

Size (MB) 4.96 1.85 0.02 4.17 99.12 3.54 -
Inference time (ms) 4.0 24.4 5.4 19.5 59.5 8.2 403.9Post-processing time (ms) 1.7 2.2 2.2 0.7 2.0 7.4

Table 7: Comparison of models sizes and running-time for 640 × 480 resolution images on NVIDIA 2080 Ti GPU. Please
note that post-processing procedures (keypoint selection, sub-pixel localization) are not optimized.

Method Rotation
mAA (10◦)

Translation
mAA (10◦)

Shi-Tomasi [14, 35] 0.744 0.422
Harris [14] 0.743 0.405
DoH [20] 0.694 0.363
LoG [5, 20] 0.708 0.376

NeSS-ST 0.766 0.438
NeSS-DoH 0.742 0.39
NeSS-LoG 0.763 0.421

Table 8: Base detector ablation on IMC-PT [15] with
DISK [37] descriptor, 2048 keypoints and full resolution
images. We report mAA [42, 15] up to a 10 degrees thresh-
old for rotation and translation. Best results are marked in
red.

Method Rotation
mAA (10◦)

Translation
mAA (10◦)

SS-ST 0.757 0.417
RS-ST 0.622 0.273
NeSS-ST 0.766 0.438
NeRS-ST 0.75 0.41

Table 9: Stability score design ablation on IMC-PT [15]
with DISK [37] descriptor, 2048 keypoints and full reso-
lution images. We report mAA [42, 15] up to a 10 de-
grees threshold for rotation and translation. Best results are
marked in red.

over the algorithmic approach (SS, RS) from both perfor-
mance and computational standpoints. More results can be
found in the supplementary material.

5. Conclusion

In this work, we proposed the NeSS-ST detector that
combines the handcrafted Shi-Tomasi detector and the neu-
ral stability score. The method doesn’t require any recon-
structed correspondence labels and can be trained from ar-

Method Repeatability
(3 px)

MMA
(3 px)

SS-ST 0.339 0.655
RS-ST 0.423 0.668

Table 10: Stability score design ablation on HPatches [2]
with DISK [37] descriptor, 2048 keypoints and full resolu-
tion images. We report MMA [25, 13] and repeatability [26]
under a 3-pixel threshold. Best results are marked in red.

bitrary sets of images without the need for dataset pre-
labeling. It achieves state-of-the-art performance on a va-
riety of datasets and downstream tasks, has good general-
ization and consistently outperforms other self-supervised
methods. In the future, we plan to address the main limita-
tion of our method which is the lack of illumination invari-
ance as well as use inferences from the evaluation of meth-
ods like DISK and R2D2 to improve our keypoint detection
strategy. Additionally, NeSS may be used as a weight in
non-linear pose refinement or metric learning of feature de-
scriptors.
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