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Abstract

Despite all recent progress, it is still challenging to edit and
manipulate natural images with modern generative models.
When using Generative Adversarial Network (GAN), one
major hurdle is in the inversion process mapping a real im-
age to its corresponding noise vector in the latent space,
since it is necessary to be able to reconstruct an image to
edit its contents. Likewise for Denoising Diffusion Implicit
Models (DDIM), the linearization assumption in each inver-
sion step makes the whole deterministic inversion process
unreliable. Existing approaches that have tackled the prob-
lem of inversion stability often incur in significant trade-
offs in computational efficiency. In this work we propose an
Accelerated Iterative Diffusion Inversion method, dubbed
AIDI, that significantly improves reconstruction accuracy
with minimal additional overhead in space and time com-
plexity. By using a novel blended guidance technique, we
show that effective results can be obtained on a large range
of image editing tasks without large classifier-free guidance
in inversion. Furthermore, when compared with other diffu-
sion inversion based works, our proposed process is shown
to be more robust for fast image editing in the 10 and 20
diffusion steps’ regimes.

1. Introduction
Diffusion models are a class of generative models that learn
to generate high-quality images by iteratively applying a de-
noising process from a random noisy starting point. They
are capable to achieve state-of-the-art (SOTA) image qual-
ity since the very early stage of denoising diffusion prob-
abilistic models (DDPM) [21] and score-based generative
modeling [42]. While the number of sampling steps re-
quired for high quality image generation was initially very
large, several follow-up studies [34, 7, 29, 30] have reduced
significantly the number of steps without degrading the im-
age quality, making the widespread use of diffusion models
possible. In particular, denoising diffusion implicit models
(DDIM) [41] are widely used for their speed and flexibility
in deterministic and stochastic generations. Further reduc-

ing the number of sampling steps for both image generation
or editing is still nevertheless an open research problem.

Diffusion models were initially designed for image gen-
eration; for this reason, their usefulness for real image edit-
ing is limited without a proper inversion process, similar to
the inversion challenge [46] faced by real image editing us-
ing a Generative Adversarial Network (GAN) [17]. GAN
inversion is limited by the reduced dimensionality in latent
space; diffusion inversion is comparably less restricted as
the latent space has the same dimensionality as the origi-
nal image. Naı̈ve one-step inversion step, i.e. simply per-
turbing an image with random noise, was initially used for
early image editing works such as SDEdit [31] and Blended
Diffusion [6]. Later, an Euler method based inversion pro-
cess that applies deterministic step-by-step noise injection
was used for image-to-image translation in DDIB [43] and
DiffusionCLIP [27]. However, as shown in the text-guided
image editing tests in Prompt-to-Prompt (PTP) [19], such
inversion is not reliable for real image editing because the
inversion often leads to failed reconstruction even when no
editing is performed. Follow-up works like null-text inver-
sion (NTI) [32] and exact diffusion inversion (EDICT) [45]
have focused on improving the reconstruction accuracy by
introducing auxiliary variables like the learned null-text em-
bedding in NTI, or processes like the coupled diffusion pro-
cess in EDICT. The reconstruction accuracy improvements
come however with regressions in computational complex-
ity of the inversion and/or the editing processes.

In this paper, we are the first to look beyond the simple
inversion process that is based on the Euler method and in-
vestigate a better numerical solver for improved inversion
stability. Modeling the inversion process as an ordinary dif-
ferential equation (ODE) problem, the implicit backward
Euler method is well suited as its solution results in an ex-
act reconstruction using Euler’s method, assuming the same
time steps are used. Given that, we propose an Acceler-
ated Iterative Diffusion Iteration (AIDI) method that adopts
a fixed-point iteration process for each inversion step. Com-
bined with Anderson acceleration [5] method which helps
convergence of this iteration, it is demonstrated through ex-
periments of large test set that it results in significantly im-
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Figure 1. Quantitative assessment for various diffusion inversion
based methods, using a challenging image editing task of swap-
ping dog to cat in AFHQ test set. Image editing quality are as-
sessed jointly by LPIPS and FID. Lower LPIPS score is preferred
for perception similarity with original image and lower FID in ref-
erence to the AFHQ cat train set translates to better image editing
quality. Circle areas and their outer ring represent average latency
time for editing and inversion respectively.

proved reconstruction accuracy. Alternatively, an empirical
acceleration method is invented for equivalent performance
with less computational overhead.

While a large classifier-free guidance [22] scale is often
needed for effective image editing, inversion with the same
large guidance scale is not reliable even for our proposed
AIDI. We have demonstrated nevertheless that it is possible
to apply different guidance scales for inversion and edit-
ing respectively and still achieve effective editing using our
proposed blended guidance strategy. Inspired by the cross-
attention map replacement method proposed in PTP [19],
we utilize the cross-attention map from the image recon-
struction using the same guidance setting of inversion to
blend different guidance scales in image editing. Higher
guidance scales up to 7 are applied for pixels that require
more editing and the low scale used in inversion, default as
one, is used for irrelevant pixels.

As shown in Fig. 1, using a challenging image editing
task that swaps dogs in high-resolution AFHQ [9] images
to cats, our method is the best overall in terms of both edit-
ing quality, evaluated with the FID [20] score as related to
the target cat domain in AFHQ, and perceptual similarity,
evaluated using the LPIPS [47] metric in reference to the
input image. Fig. 1 also shows the average latency time
as proportional circular areas. Here the number of func-
tion evaluations (NFE) is not used because it is not an ac-
curate metric of computational complexity for all methods.
For example, in NTI there is substantial overhead in back
propagation caused by learning the null-text embeddings in
the inversion process. Here we fix the number of diffusion
steps to assess average latency time instead, as it is corre-
lated with image editing quality for all methods. Note that a
small number of 20 inversion and editing steps is used for all
methods here. As the inversion process is only needed once

per image while editing could be applied multiple times, the
latency time is split to editing and inversion, represented as
inner circle and outer ring respectively. For latency times,
ours is only slower in inversion than the original PTP while
as fast as PTP and NTI in editing.

In summary, based on pretrained text-to-image diffusion
models, we propose a framework for text-based real image
editing with the following key advantages:

• We are the first to our knowledge to apply fixed-point
iteration and acceleration in diffusion inversion, show-
ing significant improvements in reconstruction accu-
racy based on a large 5000 image COCO test set. The
LPIPS value for a 20-step reconstruction is reduced to
0.063 compared to 0.148 for the baseline.

• For inversion without classifier-free guidance or low
guidance scale, we propose a blended guidance
method to apply larger guidance scales for effective
editing in relevant areas, while maintaining fidelity
elsewhere with low scales.

• Our proposed image editing method is still effective
for inversion steps as low 10, where competing ap-
proaches exhibit significant artifacts.

2. Related Works

2.1. Text-to-Image Diffusion Models

The rapid progress of Diffusion-based generative models
has advanced the state-of-the-art for many generative tasks,
including text-to-image generations. A highly capable un-
conditional diffusion model was shown in [12], using sam-
pling guidance to match the CLIP scores of the text input
and generated image. More recently techniques such as
GLIDE[33], DALL·E 2 [37] and Imagen[40], have used text
embeddings from large language models to train conditional
diffusion models, all of them capable of generating diverse
and high quality images that match with the arbitrarily com-
plex prompt texts. Both GLIDE and DALL·E 2 are condi-
tional to CLIP textual embeddings, while DALL·E 2 trains
instead a diffusion prior to first generate image embeddings
from the input text CLIP embedding, before the image em-
bedding is then fed into another diffusion model for im-
age generation. To handle high-resolution image genera-
tion, both GLIDE and Imagen generate the text conditional
image at low-resolution using cascaded diffusion models,
which are conditional to both text and image to progres-
sively increase resolution. In alternative to that, LDM [39]
proposed to conduct the conditional text-to-image diffusion
in a latent space of reduced dimensionality for faster train-
ing and sampling. Based on the LDM architecture, a large
text-to-image model Stable Diffusion [13] was trained with
a huge dataset and released for open research.
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2.2. Real Image Editing in Generative Models

Since the successful implementation of disentangled rep-
resentation by StyleGAN [24, 25], image editing in GAN
has become very apt at separating different modes of vari-
ation such as pose, expression, color, and texture. Vari-
ous methods [36, 16] have been published for text-guided
image editing using the contrastive language-image model
CLIP. While powerful for manipulating generated images,
applying it to real image editing is not straightforward since
the inversion of a real image to latent variables is trivial.
Earlier GAN inversion methods focused on inversion with-
out changing the GAN model weights, either via optimiza-
tion [1, 2, 10, 23] or learning [8, 44, 38, 3]. Two recent
works, HyperStyle [4] and HyperInverter [15], introduced
hypernetworks [18] to modify the GAN weights for each
image and help recovering lost details during reconstruc-
tion. It was shown that the modified weights have no adver-
sarial effects on generated image quality when the inverted
latent variables are modified for image editing. However,
even with modified weights, GAN inversion is far from per-
fect due to the significantly reduced dimensionality of the
latent space as compared to the original image pixel space.

Diffusion models are not subject to this limitation since
there is no dimensionality changes between input and out-
put for each inversion step. Earlier image editing methods
using diffusion models, including SDEdit [31] and blended
diffusion [6], didn’t utilize the potential of accurate diffu-
sion inversion as they inject random noises into input image
to synthesize a noisy start. Another recent work Imagic [26]
achieved mask-less real image editing without involving
diffusion inversion, utilizing optimized textual embedding
and diffusion model fine tuning instead.

DiffusionCLIP [27] was the first to adopt the more ac-
curate step-by-step diffusion inversion process but it relied
on diffusion model refinement to achieve text-guided im-
age editing, without addressing the inversion accuracy chal-
lenge directly. DiffEdit [11] also avoided the inaccuracy
concern by controlling an encoding ratio and applying a
generated mask. Prompt-to-Prompt (PTP) [19] was the first
to achieve comprehensive text guided image editing without
diffusion model refinement, including local editing without
a known mask. However it focused on generated image
editing, citing that the simple step-by-step inversion is not
reliable for real images, especially with larger classifier-free
guidance scales. Null-text inversion (NTI) [32] proposed to
change the constant null-text embedding to image-specific
optimal ones in order to achieve accurate reconstruction and
it then applies PTP techniques for real image editing. Later
EDICT [45] proposed to use an auxiliary diffusion branch
to achieve exact inversion and reconstruction of the input
image, resulting in improved image editing quality. Most
recently, pix2pix-zero [35] learns editing directions in the
textual embedding space for corresponding image transla-

tion tasks but it adopts the original diffusion inversion pro-
cess used in PTP without making efforts to avoid the known
inversion divergence. To our knowledge, our paper is the
first to address the inversion accuracy challenge without
change in model configuration or system architecture so the
proposed iterative inversion could be applied to and bene-
fit other methods like pix2pix-zero that do not address the
inversion accuracy issue yet.

3. Proposed Method
3.1. Diffusion Inversion Preliminaries

Our proposed generative compression method is built on
pre-trained, unmodified text-to-image diffusion models.
Without loss of generality, the publicly available Stable Dif-
fusion model [13], which uses the latent diffusion model
(LDM) [39] architecture, is adopted for all experiments.
Given the LDM architecture, the diffusion process is con-
ducted in the latent space z, which can be decoded to the
image space x. Nevertheless our method is equally appli-
cable to other diffusion models conducted in native image
space instead of a latent space.

For a text-to-image diffusion model learned from a large
set of paired image latent variable z and image caption
p, the process is optimized using a simple standard mean-
squared error (MSE) loss:

Lsimple = Et,z,p,ϵ||ϵ− ϵθ(zt, p, t)||2 (1)

where ϵ is a random Gaussian noise added to z to synthesize
zt, t is a randomly-set time-step chosen from 1, 2, . . . , T ,
and ϵθ denotes the diffusion model trained to estimate the
injected noise using optimized parameters θ. As the goal of
our proposed iterative inversion is accurate reconstruction,
here we use a DDIM sampler where the sampling noise is
σt = 0 for all t to achieve a deterministic sampling process.
The iterative sampling step to generate an image latent z0
from a random sample zT is:

zt0 = (zt −
√
1− ᾱtϵt)/

√
ᾱt

zt−1 =
√
ᾱt−1z

t
0 +

√
1− ᾱt−1ϵt

(2)

ϵt is typically calculated as follows:

ϵt = ωϵθ(zt, p, t) + (1− ω)ϵθ(zt, ∅, t) (3)

where ω is the classifier-free guidance scale and ∅ is the
null-text reference.

Early image editing works like SDEdit use the same
noise injection step used in model training for inversion at
any t. That is:

zt =
√
ᾱtz0 +

√
1− ᾱtϵ. (4)

Since ϵ is a random noise independent of z0, this is a
stochastic inversion process that cannot reliably reconstruct
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Figure 2. Flowchart of the proposed effective real image editing.
From top to bottom, (i) the image is transformed to an inverted
noise vector using AIDI; the inverted noise vector is used to either
(ii) reconstruct the original image using the same prompt p or (iii)
generate an edited image using prompts p∗, ∅ with classifier-free
guidance, where the reconstruction process is also used to supply
the mask for blended guidance and attention injection. Note that
the visible noise is not Gaussian, as all images are decoded from
latent space z to image space x for display.

z0 from zt when t is close to T . In later works, a simple
DDIM inversion process is adopted base on a linear ODE
solver:

zt0 = (zt −
√
1− ᾱtϵt̃)/

√
ᾱt

zt+1 =
√
ᾱt+1z

t
0 +

√
1− ᾱt+1ϵt̃.

(5)

To allow for better reconstruction accuracy, here ϵt̃ is in-
stead approximated using t+1 as follows:

ϵt̃ = ωϵθ(zt, p, t+ 1) + (1− ω)ϵθ(zt, ∅, t+ 1). (6)

3.2. Accelerated Iterative Diffusion Inversion

For an inversion step where zt−1 is known, we aim to find
the optimal zt so that we can recover zt−1. We can rewrite
Equation 2 as:

zt=

√
ᾱt

ᾱt−1
zt−1+

[
√
1− ᾱt −

√
(1− ᾱt−1)ᾱt

ᾱt−1

]
ϵt. (7)

Since ϵt depends on zt (cf. Equation 3), it can be denoted
as an implicit function zt = f(zt). The ideal inversion step,
finding zt that results in zt−1 exactly, becomes a step to
find a fixed-point solution for f . In numerical analysis, this
is often solved via the iterative process:

zn+1
t = f(znt ), n = 0, 1, . . . (8)

The convergence of this iterative process can often be accel-
erated using established techniques such as Anderson accel-
eration. We also propose and employ an alternative empir-
ical acceleration method which is simpler and faster than

Algorithm 1: Accelerated Iterative Diffusion In-
version

1 Input: A latent image z0 and prompt p, acceleration
method C, iteration parameters I,m.

2 Function: f(z) is the implicit function defined in
Equation 7, g(z) is the residual function f(z)− z

3 Output: An inverted noise vector zT .

4 for t = 1, 2, . . . , T do
5 z0t , z

1
t ← zt−1, f(z

0
t ) ;

6 for i = 1, . . . , I do
7 if C is AIDI A then
8 mi ← min(m, i);
9 Gi ← [g(zi−mi

t ), . . . , g(zit)];
10 γi ← argminγ∈Γi

∥Gi · γ∥2, where
Γi = {(γ0, . . . , γmi) :

∑mi

j=0 γ
j = 1};

11 else if C is AIDI E then
12 mi, γi ← 1, (0.5, 0.5);
13 Set zi+1

t ←
∑mi

j=0 γ
j
i f(z

i−mi+j
t );

14 end
15 zt ← zIt ;
16 end
17 Return zT

Anderson’s. With appropriate acceleration, the iterative in-
version process can become more efficient and stabler than
a simple forward Euler method. We summarize our full pro-
posed process in Alg. 1, and refer to it as AIDI, short for
accelerated iterative diffusion inversion. Note that for the
residual function g(z) used in the AIDI A variant with An-
derson acceleration, it is defined as g(z) = f(z)−z. For the
AIDI E variant, it is a simplified version of Anderson ac-
celeration with fixed setting for m and γ as 1 and (0.5, 0.5),
saving the additional optimization process to find γ.

3.3. Blended Guidance

While the proposed AIDI can significantly improve the in-
version stability at different guidance scales, it is not suffi-
cient on its own for reliably reconstructing and then even-
tually editing an image when the guidance scale is large.
Adopting the PTP pipeline for real image editing, we first
fix a small guidance scale like ω = 1 for the inversion
using source prompt p. For the following editing, we es-
tablish two parallel sampling processes, one conditional to
prompt p with same small ω and the other conditional to
the target prompt p∗. For the p∗ process, we introduce a
blended ω∗ to apply larger guidance scales for pixels rel-
evant to editing and lower ones for the rest to keep them
unedited. To support this blended guidance, a soft editing
mask M̃t is generated concurrently with the image editing
process. First the cross-attention map Mt with an anchor to-
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Figure 3. Visual examples of the effective editing abilities of our proposed real image editing based on AIDI, using only 20 editing steps.

ken is determined. Here the anchor token refers to the word
most relevant to the intended editing area. This token could
be positive, i.e. associating with areas to edit, or negative,
which associates it with areas to keep unedited. In the case
of photo of a dog→ photo of a cat, dog is a positive token.
In contrast, for a dog → a dog on the beach, dog is a neg-
ative one instead. The mask Mt is first normalized to M t,
where all pixels smaller than a threshold δ are normalized to
the range of (−M, 0) and the others normalized to the range
of (0,M). Then a soft mask M̃t is defined as Sigmoid(Mt)
for a positive token and Sigmoid(−Mt) for a negative one.
Given that, the blended guidance scale ω∗ is defined as

ω∗
t (k) = (ωE − ω)M̃t(k) + ω (9)

where ωE is a large guidance scale intended for editing, and
k refers to pixels of the mask image. Note that the soft
mask approaches a binary one when M becomes very large.
Combining our proposed AIDI and blended guidance, the
overall process for our effective real image editing is illus-

trated in Fig. 2, assuming ω = 1 in inversion for simplicity.

3.4. Stochastic Editing

For image editing methods based on deterministic DDIM
inversion methods, the DDIM sampling process is com-
monly set as deterministic to better control editing effects.
Similar to the proposed blended guidance, the same soft
mask is adopted to control the affected area of stochastic
sampling. The deterministic sampling process described in
Equation 2 is made stochastic as:

q(zt−1) ∼ N (
√
ᾱt−1z

t
0 +

√
1− ᾱt−1 − ησ2

t M̃tϵt, ησ
2
t M̃t) (10)

where σ2
t represents the noise injected for stochastic sam-

pling, and M̃t is transformed from M̃t as a diagonal ma-
trix. Here η and M̃t control the scale and range of stochas-
tic editing respectively. While large η increases sampling
diversity, it reduces the perceptual similarity with the origi-
nal image which is often desired in cases such as replacing
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Figure 4. Visual examples of reconstruction accuracy test for various diffusion inversion methods. The AE images on the left are decoded
from Stable Diffusion without inversion and used as the reference for perfect reconstruction. Selected local artifacts are highlighted with
□ for quick reference.

an object with another in a different domain. Based on our
experiments, a small η can result in satisfying results with-
out loosing perceptual similarity when deterministic editing
fails.

4. Experiments

All experiments conducted here are based on the released
version v1.4 of Stable Diffusion using NVIDIA A100
GPU card. For image reconstruction test, 5000 test im-
ages from COCO dataset [28] are used. For image editing,
the test set of AFHQ [9] is used primarily for its high im-
age quality and because it enables comparisons with GAN
inversion-based editing (we denote it as HS-SCLIP, com-
bining HyperStyle [4] and StyleCLIP [14]). Other than HS-
SCLIP, we perform comprehensive comparisons in both re-
construction and editing quality with all related text-based
real image editing techniques which use DDIM inversion,
including PTP [19], NTI [32] and EDICT [45]. NTI’s main
innovation is the null-text inversion, so in image editing
tests it uses PTP editing techniques after the inversion. For
all visual examples, the default inversion and editing steps
are 20 unless specified otherwise.

4.1. Image Editing

Visual examples from Fig. 3 showcase the diverse capabil-
ities of our proposed real image editing process. Using a
pair of text prompts as before and after-editing image cap-
tions, it can either perform local editing, like replacing an
object or background, or global editing, like style transfer.
As an example, for the zebra image, we are able to change
the background to a forest while keeping the unedited area
perceptually unchanged. For partial editing within one ob-
ject, it can change the posture of the zebra from standing
to walking in addition to editing the background, or change
the expression of the dog to happy. It is also able to do
a text-based style transfer, converting a photo to a water-
color painting. While similar range of editing capabilities

have been demonstrated before, we are the first to demon-
strate effective editing using as few as 10 editing steps, a
result enabled by the improved accuracy of AIDI and by
the proposed blended guidance, which focuses editing ef-
fects to specific relevant areas. Note that without an exact
binary mask, the local edits from these prompt-pair based
processes would not be be able to keep certain areas in-
tact. Consider for example the editing task of changing
the background of a castle in the mountains to forest: the
castle itself remains largely the same but some greenery is
blended within its structure, increasing the overall coher-
ence of the resulting image. This is arguably preferable to
a hard blending with the background. The lack of a binary
mask can sometimes give rise to hallucinated artifacts, such
as the lines around the mouth area in the dog wearing sun-
glasses instance.

4.2. Reconstruction Accuracy

We conducted a reconstruction test using the COCO test
set with diverse contents using their default captions as text
prompts where the quantitative results are illustrated as a
graphic table, Fig. 6. Compared to the simple inversion
used in PTP, results from both our proposed AIDI vari-
ants are shown to significantly improve the accuracy across
different classifier-free guidance scales and different diffu-
sion steps. For both AIDI E and AIDI A, they are able
to achieve near-exact inversion when there is no classifier-
free guidance. While the accuracy drops when the guidance
scale increases, this does not impact our proposed real im-
age editing process since a low guidance scale like 1 is used
in inversion. We confirm that EDICT is able to maintain
exact inversion with as few as 10 iteration steps, although it
was only tested in the 50 steps’ regime at publication. As for
NTI, it is only applicable to a guidance scale > 1. Despite
its accuracy increasing along with the guidance scale, it is
worse, even at an empirically optimal guidance scale of 3,
than our proposed inversion and reconstruction with a guid-
ance scale of 1. For visual examples in Fig 4, both PTP and
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Figure 5. Visual examples for dog-to-cat editing test using AFHQ test set. Results from of different model are organized horizontally
and results from different settings, 10/20/50 editing steps for all diffusion-based models or 3 hyperparameter settings for HS-SCLIP, are
organized vertically.

NTI’s results contain noticeable errors. Our AIDI A result
is as flawless as the EDICT one. Despite the AIDI E re-
sult missing some minor detail, we find its differences from
AIDI A negligible from both a quantitative and qualitative
perspective. Unless otherwise specified, all image editing
tests are conducted using AIDI E.

Figure 6. Reconstruction accuracy test for different diffusion in-
version methods using COCO test set. Results from combina-
tions of different inversion steps and various classifier-free guid-
ance scales are included. For the two assessed perceptual metrics,
higher SSIM and lower LPIPS are preferred, both color-coded to-
wards green color.

4.3. Quantitative Assessment

EDICT is the first one in diffusion inversion based im-
age editing methods to report quantitative analysis for im-
age editing. We have conducted similar quantitative as-
sessments using the AFHQ dataset. Our rationale for
choosing AFHQ is that the high quality close-up im-
ages do make visual artifacts more noticeable. Another
advantage is that for a dog-to-cat image test, there is
a real cat image set to serve as a photorealistic refer-

ence to evaluate editing results, an arguably better ap-
proach than using a CLIP score that relies on the indirect
text reference. This also enables comparison with GAN
inversion-based methods, since a pre-trained StyleGAN
model is available for this dataset. Using the prompt pair
high quality photo of a dog → high quality photo of a cat,
the task is to replace the dog in the input images with a cat
which not only looks realistic, but perceptually similar to
the original dog in characteristics like color and pose, while
maintaining the background unedited. To evaluate the con-
sistency in color, pose and backgrounds, the LPIPS metric
is evaluated between the edited and original dog image. To
evaluate the editing effects, the FID score in reference to
the AFHQ training set is used over CLIP score. Results for
other metrics, including CLIP, are included as supplemen-
tary materials.

As shown in Fig. 7, our results are the best overall for
any number of editing steps. Our result of 20 editing steps
is better than the next best EDICT at 50 steps. In the ex-
treme case of 10 steps, our method is still relatively effec-
tive while all other methods have significant regressions in
quality. For PTP, in addition to the original setting where the
same guidance scale is used for both inversion and editing,
a PTP∗ version is also tested where the inversion is con-
ducted without guidance, and it has significantly improved
performance comparing to PTP. Similar improvement has
also been reported in EDICT, denoted as the difference be-
tween UC PTP and C PTP. This dual-scale setting is similar
to our blended guidance so the performance gap between
PTP∗ and ours is mainly caused by the increased inversion
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Figure 7. Quantitative assessments for dog-to-cat swap test using
AFHQ test set. The data labels represent editing steps for all meth-
ods except for HS-SCLIP where they are hyperparameters.

accuracy from our AIDI. For HS-CLIP, which is based on
HyperStyle inversion and StyleCLIP editing, three sets of
hyperparameters are included to illustrate similar trade-off
between high perceptual similarity comparing to the source
image and high editing quality in reference to the target do-
main. To out knowledge, this is the first direct quantitative
comparison between editing methods using diffusion inver-
sion and GAN inversion respectively.

The results from NTI, PTP editing with null-text inver-
sion, are worse than PTP baseline even with increased inver-
sion stability. From the visual examples in Fig. 5, they seem
to be able to generate a high quality cat image. However,
these images are often too smooth and the lack of photore-
alistic details are causing degraded performance in both FID
and LPIPS. One possible cause is that the learned null-text
embedding deviates from the original one too much so it is
out-of-distribution for the pre-trained diffusion model. An-
other consideration is that quantitative assessments like this
require a fixed setting of hyperparameters so any method re-
lying on fine-tuning of hyperparameters would not perform
well on average.

The robustness of our methods for reduced number of
inversion steps comparing to others is also noticeable in
Fig. 5. For our method, although the 50-step result has bet-
ter sharpness and more realistic ears, the 10-step version is
of acceptable quality without any glaring artifacts, whereas
all competing approaches are subject to significant degra-
dations at 10-steps. In the case of EDICT, there are obvi-
ous artifacts, dog-like mouth area, for both 10-step and 20-
step results. Note that for this experiment, we used similar
grid-search strategy to find optimal settings for our method,
PTP, PTP∗ and NTI, as we adopted attention map injection
techniques from PTP. For EDICT, its own default optimal
settings are used. For fair comparison, we didn’t change
hyperparameters for different editing steps, except for the
fixed-point iteration steps in AIDI where 11, 6 and 5 are
used for 10/20/50 editing steps respectively.

4.4. Stochastic Editing

When using deterministic DDIM inversion, image editing
through the DDIM sampling process must also be set de-
terministic in order to keep the fidelity of unedited areas.
As a result, there is no direct remedy for failed editing re-
sults. As shown in the middle image in Fig. 8, the original
over-exposed background window was incorrectly edited as
part of the cat face. Using our proposed stochastic editing, it
is possible to improve editing results when such failure case
happens. Different from other stochastic sampling practices
which uses a larger η for increased sampling diversity, we
used a small η = 0.1 for stochastic generation of the same
editing task and resulted in a properly edited result as shown
on the right. We conducted a quantitative analysis using
the dog-to-cat test to measure this benefit. As shown in the
chart in Fig. 8, 20×n represents average performance when
n stochastic editings were repeated for each image to se-
lect the best one based on a combined rank of low FID and
LPIPS. It is shown that the stochastic editing, when tested
only once, is expected to have an equivalent FID score as
the deterministic one but worse in LPIPS. With increased
n, the selected result is expected to further improve in both
FID and LPIPS.

Figure 8. Top: visual examples of stochastic editing recovers from
failure case of deterministic editing; Bottom: quantitative compar-
ison between deterministic and stochastic editing.

5. Conclusions
In this work, we have proposed AIDI, an accelerated iter-
ative diffusion inversion method capable of improving im-
age reconstruction and editing accuracy while significantly
improving the trade-offs between computational cost and
quality. While our proposed real image editing is effective
without auxiliary masks or sketches to specify editable area
and content, it relies on the cross-attention maps between
the image and prompt texts for general guidance, similar to
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other text guided image editing work using diffusion mod-
els. In addition to logically set prompt pairs, the spatial
resolution of these attention maps are very coarse. Detailed
control of editable area remains a subject of future work.

It is also noted that while we don’t use large classifier-
free guidance scales for inversion with introduction of
blended guidance, reducing the difference in guidance
scales between inversion and editing is still useful to re-
duce potential artifacts caused by blended guidance. While
our AIDI can improve inversion stability for large guidance
scales as well, it is not sufficient for reliable inversion yet
and this is also of future research interests.
Ethical considerations: we acknowledge that any image
editing technique such as the one presented in this paper
are unavoidably encumbered by ethical concerns, and will
inherit any bias present in the training data from the under-
lying backbone. Deployments of these systems should em-
ploy appropriate safeguards in regards to allowed prompts
and guidances to prevent malicious and illegal uses.
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