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Abstract

Recent methods on privacy-preserving image-based lo-
calization use a random line parameterization to protect
the privacy of query images and database maps. The lift-
ing of points to lines effectively drops one of the two ge-
ometric constraints traditionally used with point-to-point
correspondences in structure-based localization. This leads
to a significant loss of accuracy for the privacy-preserving
methods. In this paper, we overcome this limitation by de-
vising a coordinate permutation scheme that allows for re-
covering the original point positions during pose estima-
tion. The recovered points provide the full 2D geomet-
ric constraints and enable us to close the gap between
privacy-preserving and traditional methods in terms of ac-
curacy. Another limitation of random line methods is their
vulnerability to density based 3D line cloud inversion at-
tacks. Our method not only provides better accuracy than
the original random line based approach but also provides
stronger privacy guarantees against these recently pro-
posed attacks. Extensive experiments on standard bench-
mark datasets demonstrate these improvements consistently
across both scenarios of protecting the privacy of query im-
ages as well as the database map.

1. Introduction
The interest in commercial solutions for cloud-based lo-

calization and mapping in mixed reality and robotics (e.g.,
Google VPS [34], Microsoft Azure Spatial Anchors [21], or
Facebook LiveMaps [1]) has raised a host of privacy con-
cerns [24, 31, 35, 51]. Recently, several approaches have
been introduced by the research community to address these
concerns [14,17–19,25,45–47]. The common theme under-
lying these methods is based on the principle of lifting tra-
ditional point-based features to randomly oriented lines to
conceal the appearance of query images and database maps.

While this family of approaches is successful in enabling
privacy preserving image-based localization and mapping,
it comes at significant trade-offs in terms of accuracy and
recall. These trade-offs are primarily caused by the fact that

Figure 1: Privacy-preserving localization. Top Left: The
client extracts keypoints and descriptors from the query im-
age. Top Right: The client secretly pairs keypoints and per-
mutes their coordinates; hiding their true position from the
server. Bottom Left: Server performs localization using the
permuted points and recovers the original 2D positions for
points that exist in both query and map. Bottom Right: Fea-
ture inversion on the set of recovered points only reveals
objects that are already present in the map.

the privacy preserving line-to-point or point-to-line corre-
spondences provide weaker geometric constraints than the
traditional point-to-point correspondences [46]. When con-
cealing the content of images or maps, the number of con-
straints is effectively halved, as each point-to-line or line-
to-point reprojection only contributes a 1D geometric con-
straint compared to the 2D constraint from a point-to-point
reprojection. Especially for the hard to localize images,
where only few correspondences can be recovered during
feature matching, this limitation makes a significant differ-
ence in terms of accuracy and recall.
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Furthermore, without careful construction of random
line maps, density based attacks have been shown to be ef-
fective in uncovering information from the privacy preserv-
ing representations, which was already mentioned as a limi-
tation by Speciale et al. [46]. The main idea behind density
based attacks exploits the fact that pairs of randomly ori-
ented lines have a relatively higher chance of intersecting
near the true surface as compared to empty or unobserved
space. As such, a naive attack could simply gather statis-
tics from pairwise intersections of random lines and assume
the true surface in dense regions of the intersected space.
More sophisticated attacks based on this idea can yield re-
alistic image renderings from 3D line maps when attacking
naively constructed line maps [9].

In this work, we revisit the approach of lifting points to
lines in order to improve upon these two main limitations.
In contrast to the original approach, we introduce a coor-
dinate permutation scheme by which we effectively con-
struct axis-aligned lines. During the pose estimation rou-
tine, the permutation scheme enables us to recover the orig-
inal points for a large fraction of the inlier correspondences.
Therefore, we can use the same 2D geometric constraints
as in the traditional setup. This significantly improves the
accuracy of the localization results. Moreover, when ap-
plying our approach for hiding the 3D map, we drastically
increase the combinatorial complexity for density based at-
tacks as well as reduce the chance for line intersections due
to constructing axis-aligned lines. Counter-intuitively, our
proposed method therefore not only leads to better accu-
racy but also provides a stronger level of privacy preserva-
tion. We experimentally demonstrate these improvements
on standard benchmark datasets and by attacking our axis-
aligned line maps using the approach by Chelani et al. [9].
In summary, we make the following contributions:

• Propose a new privacy-preserving lifting approach, ap-
plicable to protecting the map and query.

• Attacking the lifted representation has a higher combi-
natorial complexity compared to random lifting, ren-
dering previous density based attacks ineffective.

• In contrast to previous work, we can recover the orig-
inal 2D or 3D points, allowing for stronger geometric
constraints and more accurate poses.

• Experimentally, we show significant improvements
over previous privacy preserving work, closing the gap
to traditional point-based non-private methods.

2. Related Work
Image-based Localization Methods in image-based lo-
calization have made tremendous progress. Over the years,
the methods have been scaled for robust localization in

large-scale scenes [27,38,40,54] with compressed map rep-
resentations [8,15], while some of the methods can even run
in real-time on mobile devices [4, 20, 22, 27, 28, 39]. Some
of the recent works focus on improving the robustness to
drastic environmental changes [3, 42, 50] or enabling cross-
device localization and mapping scenarios [13]. The devel-
oped approaches are generally divided into structure-based
methods [20, 38–40] using on an explicit geometric map
representation or learning-based methods [7,22,44] with an
implicit map representation.

Privacy Risks Image-based localization is subject to pri-
vacy risks due to requiring images as an input [24, 31, 35,
51]. For example, in a cloud-based localization system,
users may be concerned about sharing images of private
spaces with the service provider. In a practical setting, the
clients could only send local image features to the cloud
to avoid these risks. However, recent inversion attacks have
proven extremely effective in recovering the original images
from only sparse local image features [12,30,32]. Recently,
Chelani et al. proposed a method to query a localization ser-
vice with a database of objects to recover information about
scene contents [10].

Privacy Preservation To protect against these risks, sev-
eral methods have been developed recently. The first work
on this topic [46, 47] proposed a solution to preserve the
privacy of 2D image or 3D map points in image-based lo-
calization. Their main idea was to lift 2D or 3D points to
random lines by dropping one of the two geometric con-
straints during the pose estimation problem. Based on the
same idea, a number of works followed up to address the
problems of structure-from-motion [18, 19] and real-time
SLAM [45], or to directly protect the high-dimensional fea-
ture representations instead of the geometry [14].

Underlying all these approaches, there are two funda-
mental limitations that were already observed by the orig-
inal work [47]. First, by dropping one geometric con-
straint per correspondence for pose estimation, the accuracy
of these approaches is significantly lowered, especially in
the challenging cases with few matches between query and
database. Second, without careful sparsification of the 3D
map, density based attacks can recover information from
3D line clouds [9]. Sparsification of the map is an effective
protection against density based attacks but comes with a
further reduction of accuracy as well as recall.

To protect in a more principled manner against these at-
tacks, Geppert et al. [17] proposed to decompose the full 3D
map into 1D partial maps, which are distributed across dif-
ferent servers. Each server then solves a partial localization
problem and sends back the answer to the client, which can
assemble a full 6-DoF localization result from the partial
answers. Despite being effective against density based at-
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Figure 2: Method overview for localization with private queries. The client extracts keypoints in the query image and
secretly pairs them to swap one of their coordinates. The server only receives the permuted points, which can be considered
as axis-aligned lines. The secretly paired points form rectangles, which can be leveraged during RANSAC to efficiently
recover the original point positions for pairs that are both inliers. The scoring of candidate poses and the final non-linear pose
refinement jointly leverage the stronger 2D constraints for recovered points and otherwise the weaker 1D constraints.

tacks, the system is complex and it comes with further accu-
racy and recall trade-offs. In contrast, our method does not
require a complex multi-server setup and we improve upon
the two main limitations of the random lifting approaches
simultaneously. Our method provides both stronger privacy
guarantees while also closing the accuracy gap to traditional
localization approaches.

3. Method

We now present our method for privacy-preserving lo-
calization. We address both the scenario of protecting the
client’s 2D image points in the localization query (Sec-
tion 3.2) as well as protecting the service’s 3D points in the
database map (Section 3.3).

Our approach follows the main idea in Speciale et
al. [46, 47], where the exact 2D or 3D point positions are
hidden by introducing ambiguity in the coordinates. In the
original works, this is done by lifting each point to a random
line. The line representation still enables localization, using
line-to-point instead of point-to-point correspondences, but
makes it difficult to identify potentially sensitive image or
map content. Similar to the original idea [46], we also ob-
scure the true position of the point. However, instead of
replacing it with a random line, we select a subset of the
point coordinates and corrupt them. This is done by secretly
forming pairs of points and swapping their coordinates at
random. Since the list of pairs is not known to an attacker,
it is practically intractable to recover the original point po-
sitions. As we will later show, for point-pairs that exist in
both the query and the map, we can devise a scheme to re-
cover the true positions, allowing us to use the full 2D-3D
geometric constraints for accurate pose refinement.

An overview of our pipeline can be found in Figure 2 and
we detail the steps of our method in the following sections.
For ease of presentation, we first review the traditional setup
and then explain the 2D setting that hides the query, but the
same principle generalizes to the 3D setting as well.

3.1. Review of Traditional Localization

Traditionally, localization is performed by establishing a
set of tentative 2D-3D point correspondences between the
query image and the database map. Each correspondence
(x,X) ∈ R2 × R3 yields two geometric constraints on the
unknown camera pose (R, t) ∈ SE(3) as

λx̄ = RX + t , (1)

where we let x̄ denote the homogeneous 2D point in the
normalized image plane (after removing the intrinsic cali-
bration), and λ represents the unknown depth. To identify
outlier matches and estimate an initial pose, the standard
approach is to use hypothesize-and-test frameworks, such
as RANSAC [16], in order to generate multiple pose can-
didates by fitting (R, t) to minimal subsets of the points,
followed by measuring the consensus among the rest of the
matches. The consistency between a candidate pose and a
2D-3D match is computed using the 2D reprojection error

dp = ∥x− π(RX + t)∥ , (2)

where π : R3 → R2 is the projection mapping. Once a
candidate pose, together with the inlier matches, have been
established, it is refined by minimizing the reprojection er-
rors for all inliers jointly.

3.2. Localization with Private Queries

The traditional method relies on the availability of the
original 2D image points, and is thus not privacy preserving.
To preserve the privacy of the image, Speciale et al. [47]
proposed to lift 2D image points into random 2D lines. Our
method also builds upon 2D lines but aligns them with the
coordinate axes through a random coordinate permutation
scheme. The following paragraphs first establish notation
by reviewing (random) line constraints for localization and
then explain our permutation scheme in detail.

Random Line Constraints In Speciale et al. [47], each
2D line ℓ back-projects into a 3D plane Πi = P⊤ℓi passing
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Figure 3: Illustration of geometric constraints induced by
coordinate permutation and point recovery mechanism in
the scenario of private queries. Red image points are se-
cretly permuted. Black points are 3D map points. Blue
points are the recovered, original image points obtained by
back-swapping and form a rectangle together with their re-
spective permuted points.

through camera projection center and the line in the image
plane. The corresponding 3D point X is expected to lie on
this plane, which constrains the pose as

ℓ⊤ (RX + t) = 0 . (3)

Note that this only yields a single geometric constraint in-
stead of two as in Equation (1). In this case, it is still
possible to estimate the pose, though the minimal problem
now requires 6 instead of 3 correspondences. The minimal
solver for this problem is known as p6LP [33] and was used
in [47]. Further, to validate a match, we can only measure
the distance between the 2D line and the projected 3D point

dl =
|ℓ⊤π̄(RX + t)|√

l21 + l22
, (4)

where ℓ = [l1, l2, l3]
⊤ and π̄ is the homogeneous projected

2D point. This is a weaker constraint compared to the 2D
error measured in Equation (2) and thus explains the ob-
served loss in accuracy by this approach.

Coordinate Permutation Constraints In our case, we
have 2D image points, where we know that only one of the
two coordinates is correct because of the a priori secret per-
mutation (illustrated in Figures 2 and 3). In the context of
the line-based framework from Speciale et al. [47], this can
be considered as, instead of having a random line, having
two axis-aligned lines passing through the given point. The
original point will share one of the coordinates, and thus
lie on one of these two lines. Mathematically, each point
x = [x1, x2]

⊤ gives rise to two axis-aligned lines ℓ1, ℓ2,
where ℓ1 = [1, 0,−x1]

⊤, ℓ2 = [0, 1,−x2]
⊤. Each corre-

spondence then gives us the following constraint

ℓ⊤1 (RX + t) = 0 ∨ ℓ⊤2 (RX + t) = 0 , (5)

where we only know that one of the two constraints should
be satisfied. For n point correspondences, we thus have 2n

possible combinations of constraints to choose from.
While considering all n points leads to a combinato-

rial explosion and would be computationally intractable,
we only need to consider small subsets of matches to hy-
pothesize candidate poses inside RANSAC. For a minimal
sample of 6 correspondences, there exist 26 = 64 different
combinations of lines in Equation (5). One of these com-
binations will correspond to having the true (uncorrupted)
coordinate in all 6 lines, and should give a correct camera
pose for an all-inlier minimal sample. So, to find a camera
pose, we can simply iterate exhaustively over all 26 = 64
combinations. Each of these combinations corresponds to a
p6LP minimal estimation problem, which can be efficiently
solved. If gravity is known, we can efficiently solve the
minimal up4LP problem [33] from 24 = 16 combinations.

The key observation is now that, if we have a candidate
pose, then for any inlier correspondence, we can easily re-
solve which of the two axis-aligned lines (i.e., coordinates)
is the correct one by simply projecting the 3D points to the
image and taking the one with the smaller 1D residual dl.
By determining the inlier coordinates I within the threshold
(i.e., dl < ε), we can score candidate poses and thereby em-
bed our method into a standard RANSAC loop to robustly
estimate a camera pose. This approach still uses the weaker
1D constraints. The next paragraph explains how we can
efficiently recover the original 2D points in this framework
to benefit from stronger 2D constraints.

Original Point Recovery After finding a candidate pose
using RANSAC, we devise an efficient scheme for recover-
ing the original points x from the set of inliers I. Note that
our scheme can only recover the positions for points that are
visible in both the query and the map. As such, recovering
the original points is not a concern for privacy, as they are
known to both client and server.

Let’s recall that we randomly picked pairs of points and
swapped one of their coordinates to preserve their privacy.
To recover the original points, we need to rely on the pro-
jected points and the property that the swapped back points
should be close to the projected points (within ε distance)
if it is an inlier. As for outliers points, there is no proper
mechanism to distinguish a correct pair from an incorrect
one, thus they remain unrecoverable.

One way of recovering points is to iterate through
all pairwise combinations of inlier correspondences and
choose a configuration with the most swapped back points
close to the projected points. However, this method has
a squared complexity in the number of correspondences
and is thus computationally expensive to execute inside a
RANSAC loop. To achieve a better complexity, it is help-
ful to notice that each pair of points, that are selected for
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coordinate permutation, their original points and the per-
muted points form a 2D rectangle in the image (c.f . Fig-
ures 2 and 3). Using this observation, we can devise a more
efficient recovery algorithm. For bookkeeping of recovered
point coordinates, we first define the two sets

Sj = {(xkj , k) | x̂k = [xk1 xk2]
⊤}, j = {1, 2} (6)

Each element in the sets consists of a single coordinate (x1

or x2) and its index k in the ordered list of points. The in-
dex uniquely identifies coordinates to enable swapping of
point pairs. For example, if the query image has 3 points
{x̂1=[0, 10]⊤, x̂2=[20, 30]⊤, x̂3=[40, 50]⊤}, then S1=
{(0, 1), (20, 2), (40, 3)}, S2 = {(10, 1), (30, 2), (50, 3)}.
For each projected image point x̃, we first decide which co-
ordinate could be the original one by comparing x̃ and the
permuted image point x̂. We label coordinate j as correct
if the j-th coordinate is within ε from the projected point,
that is |x̂j − x̃j | < ε. Denoting the other coordinate as
j′, we collect the possible swapped point candidates C by
lookuping in the set Sj′ , and finding points with the respec-
tive coordinate close to the projected point

C = {k | |xkj′ − x̃j′ | < ε, (xkj′ , k) ∈ Sj′} (7)

Since this set likely contains multiple candidates for each
point (having a similar x1 or x2 coordinate), and the can-
didate points after swapping back can be distant from their
projected points, we use a symmetric swapping error to fil-
ter out the coincident candidates

εsym = ∥x̃− [xj xkj′ ]
⊤∥2 + ∥x̃k − [xkj xj′ ]

⊤∥2 (8)

We only consider a candidate to be valid, if both points are
close to the respective reprojected image points after swap-
ping them back. If multiple candidates are valid, we keep
the one with the smallest εsym. Notice that, with such a
selection mechanism, the recovered original points may not
be symmetric. However, we have not found any drawbacks
from this asymmetry in our experiments.

By implementing the sets Sj using hashing, we achieve
amortized linear runtime complexity on average w.r.t. the
number of correspondences for our recovery scheme. More
details can be found in the suppl. material.

Pose Refinement To further improve the accuracy of our
pose estimates, we conduct a non-linear refinement over all
inliers using the stronger 2D constraints from Equation (2)
for recovered points Ip and the weaker 1D constraints from
Equation (4) for coordinates Il that could not be swapped
back. The overall cost function is defined as∑

k∈Ip

ρ
(
dp(xk, PX̄k)

)
+

∑
k∈Iℓ

ρ

(
softmin
i∈{1,2}

(
dl(ℓki, PX̄k)

))
(9)

Figure 4: Illustration of point recovery mechanism in the 3D
scenario with private maps, where the permuted red points
form a cuboid in 3D. The reprojection of the 3D points is
used for thresholding of errors in image space.

where ρ is a robustifier. To smoothly select between
the two possible axis-aligned lines, we use the (Boltz-
mann) soft-min operator [5], defined as softmin

i
{di} =

(
∑

i die
−di)/(

∑
i e

−di). We incorporate this non-linear re-
finement into LO-RANSAC [11] using the Arctan loss as ρ
inside the RANSAC loop and Cauchy as the robust loss for
the final pose refinement.

Degenerate Configurations Note that when all ℓi lines
are parallel (i.e., originating from the same coordinate), the
configuration becomes degenerate as the full 6-DoF of the
pose cannot be recovered. This happens for 2 out of 64 con-
figurations that we can trivially discard. For the two degen-
erate cases, it would be possible to solve for the rotation and
two translation parameters using 5 correspondences. We
initially explored this direction as well yet found the solu-
tions to be less stable, as they provide less accurate pose
estimates, so we do not include them in our final method.

3.3. Localization with Private Maps

In the previous section, we described our coordinate per-
mutation scheme for 2D image points to preserve the pri-
vacy of localization queries. Similar to the 2D case, we can
also permute coordinates of 3D points to hide the contents
of private maps. This is a scenario that was originally ad-
dressed by Speciale et al. [46] using lifting to random 3D
lines. We denote a random 3D line L as

L =

[
p
d

]
∈ R3 × P2 , (10)

where p and q are 3D points on L subject to d =
p− q

∥p− q∥2
and such that the line passes through the original 3D point
X . The reprojection of the 3D line to the image defines a
1D geometric constraint

0 = L̂⊤
i x̄ = ([Rdi]×P p̄i)

⊤x̄ (11)

that can be used for privacy-preserving pose estimation. To
solve for the full 6-DoF pose, at least 6 correspondences are
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needed to solve the minimal p6L problem [48] in RANSAC.
If gravity is known, only 4 correspondences are needed to
solve the up4L problem [49].

Instead of lifting to random 3D lines, we construct axis-
aligned 3D lines by coordinate permutation of randomly se-
lected pairs of 3D points. Analogous to the 2D case, we
can hypothesize pose candidates in RANSAC by generat-
ing the different 36 = 729 combinations of line constraints,
and we can also recover the original 3D point positions by
back-swapping with sets Sj=1,2,3. Notice that the origi-
nal 3D point may lie on any of the three axis-aligned lines
and the randomly selected point pairs form a cuboid in 3D
(see Figure 4). To robustify the back-swapping algorithm
against non-isotropic noise on the (triangulated) 3D points,
we define the error εsym in image space through reprojec-
tion. Moreover, if runtime is a concern for the final applica-
tion, we can also choose to expose one of the 3 coordinates,
so the number of line combinations would be 26 = 64.

Pose Refinement For pose refinement in the 3D case, we
again add constraints from two sources: the ones from inlier
lines IL and the ones from recovered inlier points Ip. The
overall cost function is defined as∑

k∈Ip

ρ
(
dp(xk, PX̄k)

)
+

∑
k∈IL

ρ

(
softmin
i∈{1,2}

(
dL(xk, L̂ki)

))

where dL =
|L̂⊤

kix̄k|√
L̂2

ki1 + L̂2
ki2

(12)
and we use the same setup of LO-RANSAC and choice of
robustifiers as in the 2D scenario.

4. Experiments
In our experiments, we first focus on demonstrating the

effectiveness of our proposed point recovery mechanism us-
ing an ablation study. We then compare our method against
the traditional non-privacy preserving approach (PnP) and
the original privacy-preserving approach based on ran-
dom lines. Results are reported on existing benchmark
datasets [23,46,52] for image-based localization, evaluated
for the two scenarios of private localization queries (PnLP)
and maps (PnL). All results assume unknown gravity and
we show further results with known gravity in the supple-
mentary material. Finally, we show image inversion results
using the density-based attack by Chelani et al. [9].

Implementation Details We embed our method into LO-
RANSAC [11] with Levenberg–Marquardt [2, 26] as non-
linear optimizer for pose refinement. Inlier reprojection
thresholds on 2D points are set to 12px for the Cambridge
dataset [23] and to 4px otherwise. Reprojection thresh-

olds on lines are chosen as
12px√

2
and

4px√
2

, respectively.

Figure 5: Ablation study on King’s college sequence [23]
w.r.t. the number of correspondences. Our method closes
the performance gap, that is especially pronounced in diffi-
cult cases with few correspondences.

We re-implement all methods in the same framework for a
fair comparison of accuracy, recall, and runtime. All point
clouds are triangulated using COLMAP [41, 43].

4.1. Ablation Study

4.1.1 Impact of Number of Correspondences

As argued in previous sections, the reduced accuracy and
recall in privacy-preserving localization methods based on
random lines is largely attributed to the weaker geometric
constraints. To showcase this performance gap, we con-
duct an experiment on the King’s College sequence in the
Cambridge dataset [23]. Localization performance is tested
on varying number of correspondences per query image by
randomly dropping input matches. Cases with few cor-
respondences typically depict the challenging localization
scenarios, where feature matching only yields few matches
and only few constraints can be used for pose estimation.
The results of this experiment are summarized in Figure 5.
First, we observe that the performance gap between the
privacy-preserving and traditional approach is especially
pronounced for low number of matches, which in turn sug-
gests that the impact of the number of constraints on the
localization accuracy saturates eventually. We also see that
our method closes the accuracy gap to the traditional ap-
proach across the board.

4.1.2 Impact of Point Recovery Mechanism

To analyze the effectiveness of the proposed point recov-
ery mechanism, we conduct experiments on HoloLens data
[47] with our method in different settings: with only line
constraints, with recovered point constraints, and with the
true recovered points using an oracle that has access to
groundtruth information. This dataset contains images with
a large variance on the inlier ratio, which makes it suitable
for this ablation study, as the point recovery mechanism is
strongly influenced by it. Results are summarized in Fig-
ure 6, which shows a significant improvement in accuracy
for our method when using the stronger 2D constraints from
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Figure 6: Ablation study on HoloLens data from [47] to
measure the effectiveness of our point recovery mechanism.

Figure 7: Ablation study on HoloLens data from [47] that
shows effective point recovery across all outlier ratios and
overall low error rates on the recovered points.

MED (◦) AUC@1◦ MED (cm) AUC@10cm (1◦, 10 cm) Time (s)

PnLP [47] 0.08 84.79 0.63 88.88 97.80 0.07
Proposed 0.07 86.69 0.56 90.12 98.41 0.36
PnP 0.07 87.92 0.51 90.85 98.80 0.05

Table 1: Localization performance on HoloLens
dataset [47] with indoor and outdoor scenes.

recovered points. In comparison to the oracle that defines a
theoretical upper bound for our method, there is no signifi-
cant difference in performance.

Furthermore, we also report the correlation between the
outlier ratio and the ratio of recovered points in Figure 7
The expected number is calculated as p2 where p is the in-
lier ratio. From the figure we can see that the ratios of cor-
rectly recovered points matches the expected number across
all outlier ratios. The ratio of mismatched points stays low
in this dataset even when the inlier ratio is as low as 20%.
Those observations combined provide strong evidence that
the recovering mechanism is effective.

4.2. Localization with Private Queries

HoloLens [47] This dataset features mostly small-scale
scenes and unconstrained motion trajectories from a head-
worn augmented reality device with VGA-resolution cam-
eras. Equivalent to the original dataset, we use COLMAP
for reconstruction of the full image sequence while limit-
ing the number of SIFT features per image to at most 500.
There are 3325 query images in total and each query has on
average 320 correspondences. After reconstructing the full

MED (◦) AUC@1◦ MED (cm) AUC@10cm (1◦, 10 cm) Time (s)

PnLP [47] 0.18 71.59 12.13 18.38 41.29 0.36
Proposed 0.18 72.61 11.73 20.03 44.26 2.31
PnP 0.17 73.09 11.66 20.22 43.95 0.20

Table 2: Localization performance on Cambridge
dataset [23] with handheld videos in an outdoor scene.

MED (◦) AUC@1◦ MED (cm) AUC@10cm (1◦, 10 cm) Time (s)

PnLP [47] 0.02 88.32 2.24 59.57 78.23 0.09
Proposed 0.02 89.67 1.92 63.62 81.33 0.68
PnP 0.02 90.74 1.85 64.58 82.62 0.08

Table 3: Localization performance on crowd-sourced Inter-
net photo collections [29, 53].

MED (◦) AUC@1◦ MED (cm) AUC@10cm (1◦, 10 cm) Time (s)

PnL [46] 0.08 84.71 0.64 88.66 97.71 1.16
Proposed 0.07 86.31 0.56 89.71 97.92 6.61
PnP 0.07 87.85 0.51 90.84 98.83 0.07

Table 4: Localization performance on HoloLens
dataset [47] in the private map scenario.

sequence, we hold out every 5-th image as a query, remove
any point correspondences associated to these images from
the reconstruction, and retriangulate the remaining database
images. The pose of the query images in the full reconstruc-
tion serve as the groundtruth for evaluation. The results are
summarized in Table 1, where we can see that our method
performs almost on par with the traditional non-privacy pre-
serving case in terms of accuracy and recall. The additional
combinatorial overhead of evaluating more pose candidates
leads to a roughly 5-fold runtime increase for our method.

Cambridge [23] This localization benchmark dataset
contains handheld HD-resolution videos taken around Cam-
bridge University in an outdoor setting. We use the same
reference reconstruction as in [6] for the database map and
extract SuperPoint+SuperGlue feature correspondences us-
ing the hloc toolbox [36,37]. The dataset has a total of 1918
query images and an average of around 2850 2D-3D corre-
spondences per image. Results are summarized in Table 2
and the performance trend for accuracy, recall, and runtime
are all consistent with the results on the lower-resolution
HoloLens dataset. This underlines the robustness of our ap-
proach against different sensors, scene types, as well as fea-
ture detection and matching algorithm characteristics.

Internet Photo Collections [29, 53] This collection of
datasets is crowd-sourced from the internet and comprises a
large variety in image resolution and quality, lighting con-
ditions, etc. We conduct experiments on the Dubrovnik6k,
Gendarmenmarkt, Roman Forum, and Trafalgar locations
with equivalent settings as used by Speciale et al. [47]
for generating pseudo-groundtruth and establishing feature
correspondences using COLMAP. On average, there are
around 1000 SIFT correspondences per image with a total
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(a) Original (b) Random line (c) Oracle (d) Proposed

Figure 8: Privacy attack on (private) maps using a combination of 3D image inversion [32] and the density based attack
method Line2Point [9]. The top row shows the 3D map that is recovered using Line2Point for all but the leftmost result. The
3D map is used as an input for rendering synthesized images shown at two different viewpoints in the bottom row. From left
to right: (a) Results on original, non-privacy preserving point cloud. (b) Results on random line cloud. (c) Results on our
method with an attacker that gained access to swapped coordinates. (d) Results on our method with permuted coordinates.

of 2416 query images. Results are summarized in Table 3.
The accuracy of all methods on this dataset is surprisingly
high, yet we can still observe significant improvements.

4.3. Localization with a Private Map

To evaluate localization scenario with a private map, we
conduct experiments on HoloLens data [47] using the same
setup as in the private query scenario described in the pre-
vious section. We adopt the setting of exposing one correct
coordinate in Table 4 and provide results for the computa-
tionally more expensive case with 729 combinations in the
supplementary material. Like in the private query scenario,
we are able to significantly close the accuracy gap but in-
crease run-time by a factor of around six.

4.4. Inversion Attack on Line Cloud

In this section, we analyze and compare the level of pri-
vacy protection for the map representation. We perform this
analysis by attacking the 3D point maps using image inver-
sion techniques, as proposed by Pittaluga et al. [32]. To
render images from the privacy preserving 3D line maps,
we first execute a density based attack on the map repre-
sentations using the Line2Point [9] method and then run
image inversion on the recovered point cloud. Figure 8
shows results for this experiment, where inverted images
from the non-privacy preserving map are nearly indistin-
guishable from original images of the scene. This again
highlights the importance of research on privacy preserv-
ing methods for image-based localization. Images rendered
from naively constructed random line clouds without spar-
sification closely resemble the original images as well and
thus are not sufficient to protect private information in the
map. The results of the attack on our method in column (d)

shows mostly unrecognizable images and demonstrates the
increased level of privacy that our method provides. Even if
an attacker had access to an oracle that knows about which
of the coordinates is correct, the rendered images (c) are
less recognizable than the ones from a random line cloud.
It is important to note that this information is not available
to an attacker in practice, but it allows us to understand the
relative impact on the increased level of privacy. On the one
hand, our method constructs axis-aligned lines, which, by
construction, cannot be intersected in a density based attack.
On the other hand, we increase the combinatorial complex-
ity of executing a density based attack, as significantly more
coordinate pairs must be tried to find a valid intersection. In
the supplementary material we provide additional inversion
results and more discussion regarding potential attacks.

5. Conclusion

In this paper, we present a significant improvement over
existing privacy-preserving image-based localization ap-
proaches. Our method improves upon the accuracy limi-
tation of random line based approaches and closes the gap
to traditional non-privacy preserving methods. At the same
time, our method proves as robust against recently pre-
sented density attacks on random 3D line clouds. An in-
teresting avenue for future work could be in addressing the
increased runtime of our method. One promising idea in-
volves voting for correct coordinate swaps during RANSAC
and progressively sampling from more likely lines.
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