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Abstract

Score-based Generative Models (SGMs) have demon-
strated exceptional synthesis outcomes across various tasks.
However, the current design landscape of the forward dif-
fusion process remains largely untapped and often relies
on physical heuristics or simplifying assumptions. Utilizing
insights from the development of scalable Bayesian poste-
rior samplers, we present a complete recipe for formulating
forward processes in SGMs, ensuring convergence to the
desired target distribution. Our approach reveals that sev-
eral existing SGMs can be seen as specific manifestations
of our framework. Building upon this method, we introduce
Phase Space Langevin Diffusion (PSLD), which relies on
score-based modeling within an augmented space enriched
by auxiliary variables akin to physical phase space. Empiri-
cal results exhibit the superior sample quality and improved
speed-quality trade-off of PSLD compared to various compet-
ing approaches on established image synthesis benchmarks.
Remarkably, PSLD achieves sample quality akin to state-of-
the-art SGMs (FID: 2.10 for unconditional CIFAR-10 gener-
ation). Lastly, we demonstrate the applicability of PSLD in
conditional synthesis using pre-trained score networks, offer-
ing an appealing alternative as an SGM backbone for future
advancements. Code and model checkpoints can be accessed
at https://github.com/mandt-lab/PSLD.

1. Introduction
Score-based Generative Models [15, 50, 53, 56] are a
class of explicit-likelihood based generative models that
have recently demonstrated impressive performance on
various synthesis benchmarks, such as image generation
[7, 16, 39, 42, 43], video synthesis [17, 62] and 3D shape
generation [32, 68]. SGMs employ a forward stochastic
process to add noise to data incrementally, transforming the
data-generating distribution to a tractable prior distribution
that enables sampling. Subsequently, a learnable reverse
process transforms the prior distribution back to the data
distribution using a parametric estimator of the gradient field

Figure 1: Unconditional PSLD generated samples. AFHQv2
128 x 128 (Top), CelebA-64 (Bottom Left, FID=2.01) and
CIFAR-10 (Bottom Right, FID=2.10)

of the log probability density of the data (a.k.a score).
However, a principled framework for extending the cur-

rent design space of diffusion processes is still missing. Al-
though some studies have proposed augmenting the forward
diffusion process with auxiliary variables [9] to improve
sample quality, their design is primarily motivated by physi-
cal intuition and non-obvious how to generalize. Therefore,
a principled framework is required to explore the space of
possible diffusion processes better.

In this work, we propose a complete recipe for the design
of diffusion processes, motivated by the design of stochas-
tic gradient MCMC samplers [5, 33, 61]. Our recipe leads
to a flexible parameterization of the forward diffusion pro-
cess without requiring physical intuition. Moreover, under
the proposed parameterization, the forward process is guar-
anteed to converge to a prior distribution of interest. We
show that several existing SGMs can be cast under our dif-
fusion process parameterization. Furthermore, using our
proposed recipe, we introduce PSLD, a novel SGM which
performs diffusion in the joint space of data and auxiliary
variables. We demonstrate that PSLD generalizes Critically
Damped Langevin Diffusion (CLD) [9] and outperforms
existing baselines on several empirical settings on standard
image synthesis benchmarks such as CIFAR-10 [25] and
CelebA-64 [30]. More specifically, we make the following
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theoretical and empirical contributions:

1. A Complete Recipe for SGM Design: We propose a
specific parameterization of the forward process, guar-
anteed to converge asymptotically to a desired station-
ary “prior” distribution. The proposed recipe is com-
plete in the sense that it subsumes all possible Marko-
vian stochastic processes which converge to this distri-
bution. We show that several existing SGMs [9, 56] can
be cast as specific instantiations of our recipe.

2. Phase Space Langevin Diffusion(PSLD): To exem-
plify the proposed diffusion parameterization con-
cretely, we propose PSLD: a novel SGM which per-
forms diffusion in the phase space by adding noise in
both data and the momentum space.

3. Superior Sample Quality and Speed-Quality Trade-
offs: Using ablation experiments on standard image
synthesis benchmarks like CIFAR-10 and CelebA-64,
we demonstrate the benefits of adding stochastic noise
in both the data and the momentum space on overall
sample quality and the speed quality trade-offs associ-
ated with PSLD. Furthermore, using similar score net-
work architectures, our proposed method outperforms
existing diffusion baselines on both criteria across dif-
ferent sampler settings.

4. State-of-the-Art Sample Quality: We show that PSLD
outperforms competing baselines and achieves compet-
itive perceptual sample quality to other state-of-the-art
methods. Our model achieves an FID [13] score of 2.10,
an IS score [45] of 9.93 on unconditional CIFAR-10
and an FID score of 2.01 on CelebA-64.

5. Conditional synthesis: We show that pre-trained un-
conditional PSLD models can be used for conditional
synthesis tasks like class-conditional generation and
image inpainting during inference.

Overall, given the superior performance of PSLD on several
tasks, we present an attractive alternative to existing SGM
backbones for further development. We organize the rest of
our work as follows: Section 2 presents some background on
SGMs and our proposed recipe for SGM design. Section 3
presents the construction of our novel PSLD model. Section
4 presents our empirical findings. Lastly, Section 5 compares
our proposed contributions to several existing works while
we present some directions for future work in Section 6.

2. A Complete Recipe for SGM Design
2.1. Background

Consider the following forward process SDE for converting
data xt ∈ Rd to noise,

dxt = f(xt, t) dt+G(t) dwt, t ∈ [0, T ],

with continuous time variable t ∈ [0, T ], a standard Wiener
process wt, drift coefficient f : Rd × [0, T ] → Rd, and
diffusion coefficient G : [0, T ] → Rd×d. Given this forward
process, the corresponding reverse-time diffusion process
[1, 56] that generates data from noise is given by

dxt = f̄(xt, t) dt+G(t)dw̄t, (1)

f̄(xt, t) =
[
f(xt, t)−G(t)G(t)⊤∇xt log pt(xt)

]
.

Given an estimate of the score ∇xt log pt(xt) of the
marginal distribution over xt at time t, the reverse SDE
can then be simulated to recover the original data samples
from noise. In practice, the score is intractable to compute
and is approximated using a parametric estimator sθ(xt, t),
trained using denoising score matching [15, 53, 56, 60]:

min
θ

EtEp(x0)Ept(xt|x0)

[
λ(t)∥sθ(xt, t)−∇xt log pt(xt|x0)∥22

]
.

Above, the time t is usually sampled from a uniform dis-
tribution U(0, T ). Given an appropriate choice of f and G,
the perturbation kernel p(xt|x0) can frequently be computed
analytically (e.g., it is typically Gaussian). Consequently,
samples xt can be generated in constant time, allowing for
fast stochastic gradient updates. The choice of the weighting
schedule λ(t) plays an essential role during training and can
be selected to optimize for likelihood [52] or sample quality
[56]. The forward SDE asymptotically converges to an equi-
librium distribution (usually a standard isotropic Gaussian)
which can be used as a prior to initialize the reverse SDE,
which can then be simulated using numerical solvers.

2.2. A General Recipe for Constructing Stochastic
Forward Processes

As has been shown in the MCMC literature [3, 5], it is often
beneficial to extend the sampling space into an augmented
space according to z = [x,m]T ∈ Rdz , where x ∈ Rdx is
the original state space variable and m ∈ Rdm corresponds
to some additional auxiliary dimensions. Simulating the
dynamics of the variable z may have desirable properties,
such as faster mixing. Inspired by the naming conventions
in statistical physics, we call x the position variable and
m the momentum variable. Accordingly, we denote their
joint space as augmented space (or phase space if x and m
have equal dimensions). Note that our notation also captures
the scenario where m is absent (zero-dimensional). We
now consider the following form of the stochastic process
modeled using an Itô SDE:

dz = f(z)dt+
√
2D(z)dwt, (2)

with drift term f(z) ∈ Rdz and diffusion coefficient D(z) ∈
Rdz×dz . We assume a desired stationary state distribution
ps(z) specified as

ps(z) ∝ exp(−H(z)),
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H(z) = H(x,m) = U(x) +
mTM−1m

2
, (3)

where H represents the Hamiltonian associated with ps(z).
The first term in H(z) represents the potential energy U(x)
associated with the configuration x while the second term
represents the kinetic energy associated with the auxiliary
(or momentum) variables m and mass matrix MIdm

. In the
context of Bayesian inference, [33] propose a framework to
elucidate the design space of possible MCMC samplers that
sample from ps(z). In this framework, the drift f(z) can be
parameterized as

f(z) = −(D(z) +Q(z))∇H + τ(z), (4)

τi(z) =

d∑
j=1

∂

∂zj
(Dij(z) +Qij(z)) ,

where Q(z) represents a skew-symmetric curl matrix. Fur-
thermore, the following result holds:

Theorem 2.1 (Yin et. al. [64]). For the dynamics defined
in Eqn. 2, if f(z) is parameterized as in Eqn. 4 with D(z)
positive semidefinite and Q(z) skew-symmetric, then the dis-
tribution ps(z) ∝ exp (−H(z)) is a stationary distribution
for the dynamics.

Theorem 2.1 implies that for a specific choice of matrices
D(z) and Q(z), the process defined in Eqn. 2 always asymp-
totically samples from the target distribution ps(z). More-
over, [33] showed in the context of MCMC that the parame-
terization defined in Eqn. 4 is complete as follows:

Theorem 2.2 (Ma et. al. [33]). Assume the stochastic pro-
cess in Eqn. 2 converges to a unique stationary distribution
ps(z). Then, under mild regularity assumptions, there ex-
ists a corresponding skew-symmetric matrix Q(z), such that
f(z) assumes the form of Eqn. 4.

We include the proofs for Theorems 2.1 and 2.2 in Appendix
A.1 for completeness. These results provide a general recipe
for designing forward processes in SGMs.

For the SGM to be a useful forward process, we need it
to converge to a simple factorized distribution that serves
as the initialization point of the backwards (generative) pro-
cess. Consequently, we consider the following form of the
stationary distribution ps(z):

ps(z) = N (x;0dx , Idx)N (0dm ,MIdm). (5)

This form results from setting U(x) = xTx
2 in Eqn. 3.

Therefore, for a positive semidefinite matrix D(z) and a
skew-symmetric matrix Q(z), the most general class of for-
ward processes which lead to an invariant distribution ps(z)
can be specified by substituting the form of ∇H(z) (corre-
sponding to ps(z) defined in Eqn. 5) in Eqn. 4. A similar

characterization of forward processes has also been explored
in a concurrent work by [48] in the context of likelihood
estimation; see Section 5 for more details.

2.3. Additional constraints on D(z) and Q(z)

Theorems 2.1 and 2.2 show that the proposed forward pro-
cess parameterization is complete upon specifying the target
distribution ps(z) (such as Eqn. 5). However, we need addi-
tional requirements for the resulting generative model and
the corresponding training objective to be tractable. Specifi-
cally, when using the denoting score matching objective [60],
we require the perturbation kernel p(zt|z0) to be computable
in closed form. In practice, this restricts our possible choices
for D(z) and Q(z) to constant matrices (i.e., independent
of the state variable z). Yet, even with this requirement, the
framework provides a large design space of models. We
provide several examples of existing SGMs that can be un-
derstood as special cases of our recipe in Appendix A.2.
We stress that training paradigms other than denoting score
matching (e.g., such as Sliced Score matching [55]) may
enable a wider range of possible models with non-constant
matrices D and Q.

3. Phase Space Langevin Diffusion
We next use the proposed recipe to construct a specific SGM
with favorable properties.

3.1. Model Definition

We restrict the family of forward processes considered in
this work by constraining D(z) and Q(z) as constant ma-
trices, i.e., independent of state z. Moreover, we assume
that x and m have the same dimension d, i.e. z ∈ R2d.
Consequently, the drift f(z) becomes affine in z and the
perturbation kernel p(zt|z0) can be computed analytically
[47]. Among the possible samplers, we choose a specific
form involving d−dimensional position and momentum co-
ordinates, zt = [xt,mt]

T where xt ∈ Rd, mt ∈ Rd. Our
choice for D(z) and Q(z) is as follows:

D :=
β

2

((
Γ 0
0 Mν

)
⊗ Id

)
, Q :=

β

2

((
0 −1
1 0

)
⊗ Id

)
.

(6)
Above, Γ, M , ν and β are positive scalars. Along with these
choices of D and Q, we have τ(z) = 0. The resulting
forward process is given by:

dzt = f(zt)dt+G(t)dwt, (7)

f(zt) =

(
β

2

(
−Γ M−1

−1 −ν

)
⊗ Id

)
zt,

G(t) =
√

2D(zt) =

(√
Γβ 0
0

√
Mνβ

)
⊗ Id.
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We denote the form of the SDE in Eqn. 7 as the Phase Space
Langevin Diffusion (PSLD). Note that PSLD generalizes
Critically Damped Langevin Diffusion (CLD) proposed in
[9], which can be obtained by setting Γ = 0, ν̄ = Mν, and
β̄ = β

2 . Like CLD, the parameter M−1 couples the data
space state xt with the auxiliary state mt. The parameters
β, Γ, and ν control the amount of noise in the forward
SDE. Without loss of generality, we use a time-independent
β. However, unlike CLD or any physical system, PSLD
adds stochastic noise in the data space in addition to the
noise injected into the momentum component of phase space.
While we are not aware of any physical system that displays
such behavior, it is a valid stochastic process compatible with
our framework. Our experiments reveal the strong benefits
of having these two independent noise sources.

Furthermore, CLD [9] proposes setting ν̄2 = 4M , corre-
sponding to critical damping in a physical system. Under
critical damping, an ideal balance is achieved between the
oscillatory Hamiltonian dynamics and the noise-injecting
Ohrnstein-Uhlenbeck (OU) term, leading to faster conver-
gence to equilibrium. We generalize this line of argument
in Appendix B.1, where we derive (Γ− ν)2 = 4M−1 as the
equivalent condition for critical damping in PSLD. Through-
out this work, we choose Γ, ν, and M−1 such that the critical
damping condition in PSLD is satisfied.

3.2. PSLD Training

Since the drift coefficient in PSLD is affine, the perturbation
kernel p(zt|z0) of PSLD can be computed analytically. We
can then use DSM to learn the score function sθ(zt, t). More
specifically, following the derivation in [52], it can be shown
that the Maximum-Likelihood (ML) based DSM objective
for PSLD can be specified as (Proof in Appendix B.2.1)

min
θ

EtEp(z0)Ept(zt|z0)

[
Lx(θ, zt, z0) + Lm(θ, zt, z0)

]
,

(8)

Lx = Γβ∥sθ(zt, t)|0:d −∇xt
log pt(zt|z0)∥22,

Lm = Mνβ∥sθ(zt, t)|d:2d −∇mt log pt(zt|z0)∥22,

where sθ(zt, t)|0:d and sθ(zt, t)|d:2d represent the first
and the last d components of the vector sθ(zt, t) respec-
tively. In the above DSM objective, the perturbation kernel
p(zt|z0) = N (µt,Σt) is a multivariate Gaussian while
p(z0) = p(x0)N (m0; 0,MγId), where p(x0) is the data
distribution. In this work, we reformulate the DSM objective
in Eqn. 8 as follows (also see Appendix B.2.1):

min
θ

EtEp(z0)Ept(zt|z0)

[
λ(t)∥sθ(zt, t)−∇zt log pt(zt|z0)∥

2
2

]
.

Furthermore, due to its gradient variance reduction prop-
erties, we instead use the Hybrid Score Matching (HSM) ob-
jective [9] by marginalizing out the momentum variables m0

as p(zt|x0) =
∫
p(zt|x0,m0)p(m0)dm0. Since both dis-

tributions p(zt|x0,m0) and p(m0) are Gaussian, p(zt|x0)
will also be a Gaussian.
Score Network Parameterization: Since the perturbation
kernel p(zt|x0) in the HSM objective is also a multivariate
Gaussian, we have p(zt|x0) ∼ N (µt,Σt). Furthermore, let
Σt = LtL

T
t be the Cholesky factorization of the matrix Σt.

We have

∇zt log p(zt|x0) = −Σ−1
t (zt − µt) = −L−T

t ϵ, (9)

where L−T
t is the transposed inverse of the Lt and

ϵ ∼ N (02d, I2d). Therefore, we parameterize our score
function estimator as sθ(zt, t) = −L−T

t ϵθ(zt, t). Although
alternative parameterizations of the score network sθ(zt, t)
like mixed score can be possible [9, 20, 58], we do not
explore such parameterizations in this work and leave
further exploration to future work. We provide additional
details on the score network parameterization in PSLD in
Appendix B.2.2 and the analytical form of the perturbation
kernel p(zt|x0) in Appendix B.3.

Final Training Objective: Using our score parameterization
from Eqn. 9 with λ(t) = 1

∥L−T
t ∥2

2

, we get the following
epsilon-prediction form of the HSM objective (See Appendix
B.2.3 for a complete derivation):

min
θ

Et∼U(0,T )Ep(x0)Eϵ∼N (0,Id)

[
∥ϵθ(µt +Ltϵ, t)− ϵ∥22

]
.

(10)

The epsilon-prediction objective has been shown to gener-
ate superior sample quality [9, 15, 56]. In this work, we
optimize for sample quality and therefore use this objec-
tive for training all models. One key difference between
the objective in Eqn. 10 and the HSM objective in CLD
is that, unlike CLD, we predict the full 2d-dimensional ϵ
due to the structure of our diffusion coefficient G(t) (see
Appendix B.2 for more details). Therefore, for a non-zero Γ,
the neural-net-based score predictor in PSLD has twice the
number of output channels as in CLD. However, the increase
in parameters due to this architectural update is negligible.

3.3. PSLD Sampling

Following the result from [56], the reverse process SDE
corresponding to the forward process SDE defined in Eqn. 8
can be formulated as follows:

dz̄t = f̄(z̄t)dt+G(T − t)dw̄t, (11)

f̄(z̄t) =
β

2

(
Γx̄t −M−1m̄t + 2Γsθ(z̄t, T − t)|0:d
x̄t + νm̄t + 2Mνsθ(z̄t, T − t)|d:2d)

)
,

G(T − t) =

(√
Γβ 0
0

√
Mνβ

)
⊗ Id,
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Method Size NFE FID@50k (↓)

Ours (Baseline)

CLD (w/o MS) 97M 1000 2.41

Ours (Proposed)

PSLD (Γ=0.02) 39M 1000 2.80
PSLD (Γ=0.01) 55M 1000 2.34
PSLD (Γ=0.02) 55M 1000 2.30
PSLD (Γ=0.01) 97M 1000 2.23
PSLD (Γ=0.02) 97M 1000 2.21

CLD (w/ MS) [9] 108M 1000 2.27
VPSDE (deep)† [56] 108M 1000 2.46
VESDE (deep)† [56] 108M 1000 2.43
DDPM [15] 35.7M 1000 3.17
iDDPM [36] - 1000 2.90
DiffuseVAE [38] 35.7M 1000 2.80
NCSNv2 [54] - - 10.87
NCSN [53] - 1000 25.32
VDM [21] - 1000 7.41

Table 1: PSLD (SDE) sample quality comparisons for
CIFAR-10. PSLD outperforms competing SDE baselines for
a similar sampling budget. FID computed using 50k samples.
MS: Mixed Score †: Results from [9].

where z̄t = zT−t, x̄t = xT−t, m̄t = mT−t. We can
simulate this reverse process SDE using standard numerical
SDE solvers like the Euler-Maruyama (EM) sampler [23].
As an alternative, [9] propose SSCS: a symmetric splitting-
based integrator and show that SSCS exhibits a better speed-
sample quality tradeoff than EM. Consequently, we extend
SSCS for PSLD by using the following splitting formulation:(

dx̄t

dm̄t

)
= A+ S, (12)

A =
β

2

(
−Γx̄t −M−1m̄t

x̄t − νm̄t

)
dt+G(T − t)dw̄t,

S = β

(
Γx̄t + Γsθ(z̄t, T − t)|0:d

νm̄t +Mνsθ(z̄t, T − t)|d:2d

)
dt.

Indeed for Γ = 0, the sampler in Eqn. 12 resembles the
SSCS sampler proposed in [9]. It is worth noting that despite
an updated formulation, the order of the SSCS sampler, as
analyzed in [9], remains unchanged. We discuss the exact
solution of the analytical part of the Modified-SSCS sampler
in Eqn. 12 and other relevant details in Appendix B.4.2.

4. Experiments
Datasets: We run experiments on three datasets: CIFAR-10
[25], CelebA [30] at 64 x 64 resolution and the AFHQv2 [6]
dataset at 128 x 128 resolution.
Baselines: We primarily compare PSLD with two popular
SGM baselines: VP-SDE [56] and CLD [9] (a particular case
of PSLD with Γ = 0). For PSLD and CLD, unless specified
otherwise, we operate in the critical damping regime with a
fixed M−1 = 4 and therefore choose Γ and ν accordingly
(ν = 2

√
M−1 + Γ, ν ≥ 0, Γ ≥ 0).

Method Size NFE FID@50k (↓)

Ours (Baseline)

CLD (w/o MS) 97M 352 2.80

Ours (Proposed)

PSLD (Γ=0.01) 55M 243 2.41
PSLD (Γ=0.02) 55M 232 2.40
PSLD (Γ=0.01) 97M 246 2.10
PSLD (Γ=0.02) 97M 231 2.31

Ours (Proposed)

PSLD (Γ=0.01) 97M 159 2.13
PSLD (Γ=0.02) 97M 159 2.34

LSGM† [58] 100M 131 4.60
LSGM [58] 476M 138 2.10
VPSDE† [56] 108M 141 2.76
CLD (w/ MS) [9] 108M 147 2.71
CLD (w/ MS) [9] 108M 312 2.25
ScoreFlow (VP) [52] 108M - 5.34
Flow Matching (w/ OT) [28] - 142 6.35
DDIM (VPSDE)† [51] 108M 150 3.15

Table 2: PSLD (ODE) sample quality comparisons for
CIFAR-10. PSLD outperforms most competing ODE base-
lines. FID computed using 50k samples. MS: Mixed Score.
†: Results from [9].

Metrics: We use the FID [13] score for quantitatively assess-
ing sample quality, while we use NFE (Number of Function
Evaluations) to assess the sampling efficiency of all methods.

We provide full implementation details in Appendix C. The
rest of our experimental section is organized as follows:
Firstly, we compare the state-of-the-art performance of
PSLD with popular SGM baselines on unconditional im-
age generation. We show that PSLD outperforms competing
baselines for similar compute budgets. Secondly, as an ab-
lation experiment, we empirically and theoretically analyze
the impact of the SDE parameters Γ and ν on downstream
sample quality in PSLD. Furthermore, we analyze the speed-
quality trade-off in PSLD and show that PSLD yields better
sample quality than competing baselines across four different
sampler settings. Lastly, we show that pre-trained uncondi-
tional PSLD models can be used for downstream tasks like
class-conditional image synthesis and image inpainting.

4.1. State-of-the-art Comparisons

Setup: We now compare the sample quality of our
proposed method with existing popular SGM methods on
the CIFAR-10 and CelebA-64 datasets for unconditional
image synthesis. We use PSLD with Γ ∈ {0.01, 0.02}
for CIFAR-10 and PSLD with Γ = 0.005 for CelebA-64
for state-of-the-art (SOTA) comparisons (See Section
4.2 for a theoretical and empirical justification of these
choices). Moreover, we use the training objective in Eqn. 10
without any alternative score parameterizations (like mixed
score[9, 58]) to train our models for SOTA comparisons.
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Method NFE FID@50k

(Ours) PSLD (Γ = 0.005) 250 2.01
(Ours) PSLD (Γ = 0.005, ODE) 244 2.56

PNDM [29] 250 2.71
DDIM [51] 250 4.44
VPSDE [56] 1000 2.32
Gamma DDPM [35] 1000 2.92
DDPM [15] 1000 3.26
DiffuseVAE [38] 1000 3.97
VESDE [56] 2000 3.95
NCSN (w/ denoising) [53] - 25.3
NCSNv2 (w/ denoising) [54] - 10.23

Table 3: PSLD sample quality comparisons for CelebA-64.
FID computed using 50k samples.

Unless specified otherwise, we perform sampling using the
EM sampler with Uniform Striding (US) for CIFAR-10
and Quadratic Striding (QS) for CelebA-64 for the SDE
setup and report FID scores on 50k samples (denoted as
FID@50k). We include full details on our SDE and ODE
solver setup for SOTA analysis in Appendix C.5. We report
the FID scores for most competing methods for a maximum
sampling budget of N=1000 while reporting model sizes
whenever available for CIFAR-10 for fair comparisons.

Main Observations: Table 1 compares CIFAR-10 sample
quality between different methods using stochastic sampling.
Our proposed method with Γ = 0.02 and 39M parameters
achieves an FID score of 2.80, outperforming the DDPM
[15] baseline while performing comparably with Diffuse-
VAE [38], for similar model sizes. It is worth noting that
DiffuseVAE refines samples generated from a VAE [22] us-
ing a DDPM backbone and is complementary to our work.
Furthermore, our larger PSLD model achieves an FID of
2.21, which is better than CLD [9] (with or without the Mixed
Score (MS) parameterization) and (VP/VE)-SDE baselines
for similar NFE budget and model sizes. For CelebA-64
(Table 3), PSLD outperforms the VP/VE-SDE baselines by
a significant margin while requiring only 250 NFEs.

We next analyze ODE sample quality in PSLD. Table
2 compares CIFAR-10 sample quality between different
methods using ODE-based samplers. PSLD with Γ = 0.01
achieves an FID score of 2.10 and outperforms most compet-
ing methods except LSGM [58]. Though the original LSGM
model is more than four times the size of our SOTA model,
PSLD performs comparably with LSGM. When scaled to a
similar size, LSGM performs much worse than PSLD (FID:
4.60 for LSGM-100M vs. 2.10 for PSLD). We note that
EDM [20] achieves an FID of 2.05 on unconditional CIFAR-
10 generation (without data augmentation) by analyzing sev-
eral design choices associated with diffusion models (like
score network architectures, loss preconditioning, and sam-
pler design). We did not explore this line of research but
note that their approach complements our proposed method,

CIFAR-10 (39M) CelebA-64 (66M)

Γ
FID@50k ↓

(EM-QS)
FID@50k ↓

(EM-US)
FID@10k ↓

(EM-QS)
FID@10k ↓

(EM-US)

0 3.64 3.60 4.59 4.60
0.005 3.42 3.34 4.17 4.37
0.01 3.15 2.94 4.22 4.34
0.02 3.26 2.80 4.43 4.52
0.25 4.99 9.48 93.99 95.13

Table 4: Impact of increasing Γ (with fixed M−1) on sample
quality (NFE=1000). FID computed using 50k and 10k sam-
ples for the CIFAR-10 and CelebA-64 datasets, respectively.
QS: Quadratic Striding, US: Uniform Striding.

and exploring some of these design choices in the context of
PSLD can be an exciting future direction.

Interestingly, PSLD with the ODE setup obtains a better
FID score than the SDE setup (FID: 2.21 for SDE vs. 2.10
for ODE) while requiring around four times lesser NFEs.
Moreover, when using a solver tolerance of 1e−4, PSLD
achieves an FID score of 2.13, comparable to the best FID
of 2.10 while reducing NFEs significantly. This tradeoff is
worse for other SGMs like CLD and VP-SDE (Table 2). We
report additional SOTA results in Appendix D.3.

4.2. Impact of Γ and ν on PSLD Sample Quality

Figure 2: Impact of increasing Γ = {0, 0.005, 0.02, 0.25}
(Top to Bottom) on CelebA-64 sample quality. The best
sample quality is achieved at Γ = 0.005 (Second Row)
while increasing Γ to 0.25 results in loss of high-frequency
image features.

Setup and Baselines: Since adding stochastic noise in both
the data and the momentum space is one of the primary
aspects of PSLD, we now analyze the impact of the choice
of Γ and ν on downstream sample quality. For subsequent
experimental results, we use our smaller ablation models
(for PSLD and relevant baselines) for comparisons. Table
4 shows the impact of varying Γ on sample quality for the
CIFAR-10 and CelebA-64 datasets. Our ablation CLD
baseline (PSLD with Γ = 0, ν = 4) achieves an FID of 3.60
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using the Euler-Maruyama (EM) sampler with Uniform
striding (US) and 3.64 using the EM sampler with Quadratic
striding (QS). Our results are comparable with the FID
of 3.56 obtained by [9] for their CLD ablation model on
CIFAR-10 without using the mixed-score parameterization.
Our VP-SDE ablation baseline (not shown in Table 4)
obtains an FID of 3.19 using EM-US (with 1000 NFEs).

Main Observations: We observe that setting Γ to a non-
zero value within a specific range improves sample quality
significantly over CLD. Specifically, our ablation CIFAR-10
model achieves FID scores of 2.94 and 2.80 for Γ = 0.01 and
Γ = 0.02 respectively (with EM-US) and outperforms our
VP-SDE and CLD baselines without using alternative score-
network parameterizations like mixed-score which is crucial
for competitive performance of CLD [9]. We make a similar
observation for the CelebA-64 dataset on which our model
achieves the best FID of 4.17 using EM-QS and outperforms
our CLD baseline (FID: 4.59). Interestingly, the sample
quality worsens for both datasets on increasing Γ outside a
range. For instance, for CIFAR-10, further increasing Γ from
0.02 to 0.04 (not shown in Table 4) resulted in an increase in
FID from 2.80 to 2.95. Consequently, the sample quality for
both datasets is the worst at Γ = 4.25, ν = 0.25. We also
note that EM-US works better than EM-QS for CIFAR-10
and vice-versa for CelebA-64.

Figure 2 further validates our findings qualitatively
for the CelebA-64 dataset where for Γ = 0.25, the score
network can only recover high-level semantic structures
(like gender and glasses, among others) but is unable
to recover high-frequency details. Since the diffusion
denoiser recovers most high-frequency information in the
low-timestep regime, these observations suggest denoising
issues near low-timestep indices. We next provide a formal
justification for this observation.

Theoretical justification of adding stochasticity in the
position space: Since PSLD involves adding stochasticity
in both the data and the momentum space, during training,
we need to predict the noise ϵxθ (zt, t) and ϵmθ (zt, t) in both
the data and the momentum space respectively. Therefore,
it is unclear why PSLD leads to better sample quality than
CLD since predicting both noise components can lead to
additional sources of errors during sampling.

However, in the context of the EM sampler, we find (see
Appendix D.1) that setting a small non-zero Γ can signif-
icantly suppress prediction errors from ϵxθ (zt, t) at the ex-
pense of introducing negligible extra errors from ϵmθ (zt, t).
Contrarily, using larger values of Γ results in scaling the
prediction errors from ϵxθ (zt, t) by a significant factor, espe-
cially in the low-timestep regime, leading to worse sample
quality with significant degradations in high-frequency sam-
ple details as observed in Figure 2.

NFE (FID@10k ↓)

Sampler Method 50 100 250 500 1000

EM-QS
CLD 25.01 8.91 5.97 5.61 5.7

VP-SDE 17.72 7.45 5.59 5.51 5.51
(Ours) PSLD 19.94 7.33 5.26 5.20 5.28

EM-US
CLD 119.68 45.60 9.08 5.71 5.65

VP-SDE 84.54 41.93 12.61 5.92 5.19
(Ours) PSLD 100.62 39.96 11.26 5.45 4.82

SSCS-QS CLD 21.31 8.37 5.82 5.75 5.69
(Ours) PSLD 16.12 7.16 5.36 5.35 5.27

SSCS-US CLD 75.45 24.74 6.09 5.74 5.78
(Ours) PSLD 72.42 20.46 5.19 4.92 5.29

Table 5: PSLD exhibits better speed vs. sample quality trade-
offs over competing baseline SDEs (CLD and VP-SDE) on
CIFAR-10 across four samplers configurations. The right-
most five columns indicate NFEs, with bold indicating the
best result for that sampler. QS: Quadratic Striding, US:
Uniform Striding. See Appendix D.2 for extended results.

Therefore, intuitively, Γ introduces a trade-off between
error contribution from both noise predictors ϵxθ (zt, t) and
ϵmθ (zt, t) with small values of Γ providing a favorable trade-
off which improve overall sample quality. As a general guide-
line, we find Γ = 0.01 to work well across datasets. Fig-
ure 1 shows some qualitative samples generated from PSLD
trained on the AFHQv2 [6] dataset with Γ = 0.01, ν = 4.01.

4.3. Sample Speed vs. Quality Tradeoffs for PSLD

Sampler Setup: Since the tradeoff between sample quality
and the number of reverse sampling steps required is crucial
for any SGM backbone, we now examine this tradeoff for
PSLD for the CIFAR-10 dataset (See Appendix D.2 for
extended results on the CelebA-64 dataset). We use our
VP-SDE and PSLD with Γ = 0 (corresponding to CLD)
ablation models as comparison baselines. Furthermore,
we use combinations of the EM and SSCS samplers with
Uniform (US) and Quadratic (QS) timestep striding as
different sampler settings to benchmark the performance
of all methods. It is worth noting that the SSCS sampler
can only be used for augmented SGMs like CLD and
PSLD. For ODE-based comparisons, we use the probability
flow ODE setup with RK45 [10] solver (see Appendix
C.5 for more details). Lastly, we measure sample quality
using FID computed for 10k samples (denoted as FID@10k).

Main Observations: Table 5 shows a comparison between
FID scores for our best performing PSLD models (corre-
sponding to Γ = 0.01 and Γ = 0.02) and our VP-SDE and
CLD baselines from Section 4.2 for the CIFAR-10 dataset
across N ∈ {50, 100, 250, 500, 1000} steps. We primarily
observe that PSLD outperforms the VP-SDE and CLD base-
lines across all comparison points with the most significant
differences at lower NFE (Network Function Evaluations)
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Method log10 tol FID@10k (↓) Avg. NFE

CLD
(Baseline)

-5 5.54 280
-4 5.62 196
-3 6.54 147
-2 9.98 86
-1 397.1 27

(Ours) PSLD
(Γ = 0.02)

-5 4.79 228
-4 4.84 158
-3 5.09 111
-2 16.11 69
-1 418.77 27

VPSDE -5 5.91 123

Table 6: PSLD exhibits better speed vs. sample quality
tradeoffs over competing baselines on CIFAR-10 using a
black-box ODE solver. log10 tol indicates the ODE sampler
(RK45) tolerance. Bold indicates best result for that column.

Method FID (Train) FID (Test)

CLD 1.01 7.10
(Ours) PSLD (Γ = 0.01) 0.85 6.93

Table 7: PSLD outperforms CLD on Image inpainting for
the AFHQv2 dataset. FID (lower is better) is computed on
the full train and test sets.

values. For instance, PSLD (Γ = 0.02) achieves the best
FID of 16.12 at NFE=50 compared to 17.72 and 21.31 by
VP-SDE and CLD, respectively. Moreover, for most sampler
settings across methods, SSCS performs better in the low
NFE regime (N ≤ 250), while EM performs better for a
higher number of NFEs. A similar observation was made in
[9]. Similarly, Quadratic striding works much better in the
low NFE regime, while Uniform striding works better when
using a higher number of NFEs (N > 500).

We next compare our best-performing ablation model
(PSLD with Γ = 0.02) with our VP-SDE and CLD baselines
using the probability flow ODE setup across multiple toler-
ance levels on the CIFAR-10 dataset. Table 6 compares FID
scores (computed on 10k samples) for all methods. Like our
SDE setup, PSLD (Γ=0.02) outperforms both baselines in
sample quality for similar NFE budgets. Moreover, across
the same solver tolerance level, PSLD requires fewer NFEs
on average than its CLD counterpart while yielding better
sample quality. Lastly, we found using black-box solvers to
further improve sample quality compared to the SDE base-
line at a tolerance level of 1e-5 for both our PSLD and CLD
models for CIFAR-10 (FID@10k=4.97 for PSLD for ODE
vs. FID@10k=4.84 for EM-QS (N=1000) with Γ = 0.02).
This observation is consistent with the ODE comparison
results presented in Section 4.1.

4.4. Conditional Generation with PSLD

Following prior work [7, 56], given some conditioning in-
formation y, an unconditional pre-trained score network

sθ(ut, t) can be used for sampling from the distribution
p(zt|y) in PSLD. More specifically,

∇zt log p(zt|y) = ∇zt log p(y|zt) +∇zt log p(zt),

≈ ∇zt log p(y|zt) + sθ(zt, t). (13)

We can then use the estimate of ∇zt log p(zt|y) in Eqn. 13
to sample from the following SDE for conditional generation:

dzt =
[
f(zt)−G(t)G(t)T∇zt

log p(zt|y)
]
dt+G(t)dwt.

(14)
Figure 3 illustrates class conditional samples for the CIFAR-
10 and the AFHQv2 datasets obtained by training an
additional time-dependent classifier p(y|zt) to compute
∇zt

log p(y|zt), followed by sampling from the SDE in Eqn.
14 (full implementation details in Appendix D.4). Similarly,
we can perform data imputation by setting the conditioning
signal y = z̄0 where z̄0 is the observed part of the input data
z0 (See Figure 3). For image inpainting, PSLD exhibits a
better perceptual quality of inpainted samples over CLD on
the AFHQv2 dataset (See Table 7). We include a complete
derivation for inpainting and an analogous framework to [56]
for solving inverse problems using PSLD with additional
conditional synthesis results in Appendix D.4.

5. Related Work
Advances in Diffusion Models: Following the seminal work
on diffusion (a.k.a score-based) models [15, 50, 53, 56],
there has been much recent progress in advancing un-
conditional [7, 9, 18, 19, 36, 42, 46, 58] and conditional
[4, 38, 42, 44, 56] diffusion models for a variety of
downstream tasks like text-to-image synthesis [37, 40],
image super-resolution [27, 44] and video generation
[14, 17, 63, 65]. Our work is closely related to CLD [9],
which is motivated by Langevin heat baths in statistical
mechanics [26]. However, our method is not directly
motivated by physical interpretation but rather directly
constructed from our proposed drift parameterization.
Another line of research in SGMs is to perform score-based
modeling in the latent space [42, 49, 58] of a powerful
autoencoder [12, 57]. Such approaches have been shown to
improve the sampling time in SGMs. Therefore, since we
propose a novel diffusion model backbone, most existing
advances in diffusion models complement PSLD.

Sampler Design in Diffusion Models: Improving the
speed-vs-quality tradeoff in SGMs is a fundamental area
in diffusion model research [2, 24, 29, 51, 66, 67]. One
popular approach to speed up diffusion model sampling
is DDIM [51]. [66] show that DDIM can be cast as an
exponential integrator and propose further improvements.
[67] further leverage these improvements to propose a
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Figure 3: (Left) Class-conditional results on CIFAR-10: Truck, Airplane, and Automobile from Top to Bottom (two rows each).
(Middle) Class conditional results on AFHQv2: Dogs, Cats and Others from Top to Bottom (one row each). (Right) Inpainting
results on AFHQv2. The columns represent the original, corrupted, and imputed samples, respectively, from left to right.

generalized-DDIM (gDDIM) method for CLD. It is worth
noting that gDDIM parameterization requires predicting
the score w.r.t both the data and the auxiliary variables
and is directly compatible with PSLD. Another line of
research involves training to speed up diffusion sampling.
GENIE [8] proposes to utilize higher-order Taylor methods
during training to speed up DDIM sampling. Alternatively,
distillation-based approaches distill a teacher into a student
diffusion model progressively [34, 46] or otherwise [31].
Therefore, exploring some of these directions in the context
of PSLD would be interesting.

Auxiliary Diffusion Models: In a concurrent work, [48]
define an ELBO for multivariate diffusion models (MDM)
and introduce a similar recipe as ours to design new diffu-
sion processes. While [48] optimize for likelihood estimates,
we primarily focus on sample quality in this work. Both
works illustrate a different perspective on the advantages of
constructing a generic recipe for designing diffusion pro-
cesses and, therefore, complementary. Another recent work,
Flexible Diffusion [11], exploits the geometry of the data
manifold to parameterize the forward process. The proposed
framework is complete under linear drift. However, our
proposed parameterization makes no such assumptions.

6. Conclusion
We presented a recipe for constructing forward process pa-
rameterization for diffusion processes that guarantees con-
vergence to a prespecified stationary distribution, such as a
Gaussian. We use the proposed recipe to construct a novel
diffusion process: Phase Space Langevin Diffusion(PSLD)
which achieves excellent sample quality with better speed-
vs-quality tradeoffs compared to existing baselines like the
VP-SDE and CLD on standard image-synthesis benchmarks.
We left the exploration of potentially performance-improving
design choices such as alternative score network parameteri-

zations and loss weighting [20] as directions for future work.
While this work only explores stochastic samplers with

a single auxiliary ”momentum” variable m (of the same di-
mension as x), exploring other design choices of D(z) and
Q(z) [48], which lead to higher-order stochastic samplers
(like the Nosé-Hoover Thermostat) could also be an interest-
ing research direction. Furthermore, our current choices of
D(z) and Q(z) are limited to constant matrices due to rely-
ing on denoising score matching. Therefore, the proposed
parameterization offers a complementary framework for de-
signing diffusion generative models trained using alternative
score-matching techniques.

Lastly, our proposed recipe is only complete under the
assumption that both x and m are required to converge
to prescribed marginals p(x) and p(m). Without this re-
quirement on m, the design space of samplers is potentially
larger (as has been pointed out in the Bayesian MCMC
literature) and may, e.g., include microcanonical samplers
[41, 59]. However, the requirements of generative diffu-
sion models are more strict and demand that the forward
process’s asymptotic joint distribution over x and m has
a simple form that enables sampling in constant time. In
contrast, Bayesian MCMC only requires the x-marginal to
converge to the prescribed posterior. We still think that re-
laxing the requirements on tractability enables potentially
promising new samplers for future exploration.
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