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Abstract

In Class-Incremental Learning (CIL) an image classifi-
cation system is exposed to new classes in each learning
session and must be updated incrementally. Methods ap-
proaching this problem have updated both the classification
head and the feature extractor body at each session of CIL.
In this work, we develop a baseline method, First Session
Adaptation (FSA), that sheds light on the efficacy of exist-
ing CIL approaches, and allows us to assess the relative
performance contributions from head and body adaption.
FSA adapts a pre-trained neural network body only on the
first learning session and fixes it thereafter; a head based on
linear discriminant analysis (LDA), is then placed on top of
the adapted body, allowing exact updates through CIL. FSA
is replay-free i.e. it does not memorize examples from pre-
vious sessions of continual learning. To empirically moti-
vate FSA, we first consider a diverse selection of 22 image-
classification datasets, evaluating different heads and body
adaptation techniques in high/low-shot offline settings. We
find that the LDA head performs well and supports CIL out-
of-the-box. We also find that Featurewise Layer Modulation
(FiLM) adapters are highly effective in the few-shot setting,
and full-body adaption in the high-shot setting. Second, we
empirically investigate various CIL settings including high-
shot CIL and few-shot CIL, including settings that have pre-
viously been used in the literature. We show that FSA sig-
nificantly improves over the state-of-the-art in 15 of the 16
settings considered. FSA with FiLM adapters is especially
performant in the few-shot setting. These results indicate
that current approaches to continuous body adaptation are
not working as expected. Finally, we propose a measure

that can be applied to a set of unlabelled inputs which is
predictive of the benefits of body adaptation.

1. Introduction

Continual learning (CL) is needed to bring machine
learning models to many real-life applications. After a
model is trained on a given set of data, and once deployed
in its test environment, it is likely that new classes will
naturally emerge. For example, in an autonomous driving
scenario, new types of road transportation and traffic sig-
nage can be encountered. The deployed model needs to
efficiently acquire this new knowledge with minimal cost
(e.g. annotation requirements) without deteriorating the per-
formance on existing classes of objects. The process of ef-
ficiently acquiring new knowledge while preserving what is
already captured by the model is what continual learning
methods target.

Continual learning can be mainly divided into task in-
cremental learning and class incremental learning. Task
incremental learning (TIL) sequentially learns independent
sets of heterogeneous tasks and is out of this paper’s scope.
Class incremental learning (CIL), in contrast, assumes that
all classes (already learnt and future ones) form part of a sin-
gle classification task. In class-incremental learning, data
arrive in a sequence of sessions with new classes appearing
as the sessions progress. Critically, the data in each ses-
sion cannot be stored in its entirety and cannot be revisited.
The goal is to train a single classification model under these
constraints.

In both task incremental and class incremental learning,
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the data distribution will change as the sessions progress.
However, these changes tend to be smaller in real-world
class incremental learning settings than in the task incre-
mental setting. For, example consider a human support
robot learning about new objects in a home in an incremen-
tal manner (CIL) vs. the same robot learning to adapt to
different homes (TIL).

Practically, CIL has two major uses. First, in situations
where large amounts of data arrive in each session and so
retraining the model is computationally prohibitive. Sec-
ond, in situations where data are not allowed to be revisited
due to privacy reasons such as under General Data Protec-
tion Regulation (GDPR). The latter situation is relevant for
applications such as personalization where small numbers
of data points are available i.e. few-shot continual learning.
So-called replay-free methods are necessary for such set-
tings, as samples of previous sessions are not allowed to
be memorized, but CIL is known to be challenging in such
settings.

Current SOTA methods for class incremental learning
start from a pre-trained backbone [13, 19, 35, 34] and then
adapt the features at each session of continual learning. The
use of a pre-trained backbone has been shown to lead to
strong performance especially in the few-shot CIL setting
due to the lack of data [21]. However, it is unclear to what
extent continuous adaption of the features in each session
is helpful. In general, in CIL there is a trade-off between
adaptation (which helps adapt to the new statistics of the
target domain) and catastrophic forgetting (whereby earlier
classes are forgotten as the representation changes). When
memorization of previous samples is restricted, the bene-
fits from adapting the feature extractor body to learn better
features might well be out-weighted by the increase in for-
getting of old classes. Moreover, body adaptation in earlier
sessions is arguably more critical (e.g. adapting the back-
bone to the new domain in the first session), whilst it is less
essential in later sessions where the changes in the ideal rep-
resentation between sessions are smaller.

This work explores under what conditions continuous
adaptation of the body is beneficial, both in principle and
in current practice. In order to do this, we develop a new
replay-free method, inspired by the first encoding method
of [2], called First Session Adaptation (FSA). FSA adapts
the body of a pre-trained neural network on only the first
session of continual learning. We investigate adapting all
body parameters and the use of Feature-wise Layer Modula-
tion (FiLM) adapters [23] which learn only a small number
of parameters. The head, in contrast, is adapted at each ses-
sion using an approach that is similar to Linear Discriminate
Analysis (LDA), which suffers from no forgetting, and im-
proves over the Nearest Class Mean classifier (NCM) [18]
approach. The efficacy of this general approach, includ-
ing comparisons to a standard linear head, is first motivated

through experiments in the offline setting (Sec. 4.2). We
then carry out experiments under three CIL settings. First,
we consider the high-shot setting (high-shot CIL). The other
two settings consider few-shot continual learning. Specifi-
cally, one setting follows previous approaches that employ
an initial session with a large number of data points and few-
shot sessions thereafter (few-shot+ CIL) while the other ex-
clusively includes sessions with only a small amount of data
(few-shot CIL).

The contributions of the paper are as follows: (1) We
develop a replay-free CIL baseline, namely FSA, that is ex-
tremely simple to implement and performs well in many dif-
ferent scenarios. (2) We empirically motivate FSA through
a set of offline experiments that evaluate different forms
of neural network head and body adaptation; (3) We then
compare FSA to a set of strong continual learning baseline
methods in a fair way using the same pre-trained backbone
for all methods. (4) We show that the FSA-FiLM baseline
performs well in the high-shot CIL setting, outperforming
the SOTA whilst avoiding data memorization. (5) In the
few-shot learning settings, FSA outperforms existing con-
tinual learning methods on eight benchmarks, often by a
substantial margin, and is statistically tied with the best per-
forming method on the one remaining dataset. (6) Finally,
we propose a measure that can be applied to a set of un-
labelled inputs which is predictive of the benefits of body
adaptation.

2. Related Work
Class Incremental Learning is more challenging than

task-incremental continual learning as a shared output layer
is used for the classes of different learning sessions. We
refer to [7] for a survey on both class and task incremen-
tal learning. While softmax cross entropy loss is consid-
ered a standard in classification models, it is shown to be
a source of class interference in continual learning [38, 4].
Thus, recent works either focus on fixing the softmax clas-
sifier [4, 1, 44] or deploy nearest class mean classifiers
(NCM) as an alternative [25, 5, 11]. In this work, we de-
ploy an LDA classifier that uses the mean embedding of
each class and an incrementally updated covariance matrix
shared across all classes. We show that this approach is
comparable to a softmax classifier in the offline setting and
that it outperforms NCM.

Due to the challenging nature of class incremental learn-
ing, some methods employ a buffer of stored samples from
previous sessions [24, 39]. [24] suggests a simple baseline,
GDumb, that performs offline training on both buffer data
and new session data at each incremental step. GDumb
shows strong performance compared to sophisticated con-
tinual learning solutions. Here we show that our simple yet
effective solution often outperforms variants of GDumb that
have a large memory without leveraging any buffer of stored
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samples.
In addition to the issues arising from the shared classi-

fication layer, learning a feature extractor that can provide
representative features of all classes is a key element in con-
tinual learning. Some class incremental learning methods
leverage large initial training session or start from a pre-
trained network, e.g., [35, 9, 36] and show improved over-
all continual learning performance without questioning the
role of such pre-training steps and whether the learned rep-
resentations have in fact improved. Recently, [19] studies
continual learning with strong pre-trained models and pro-
poses deploying exemplar-based replay in the latent space
using a small multilayer network on top of the fixed pre-
trained model. The authors show that such latent replay
improves performance, especially for tasks that are differ-
ent from the distribution used to train the initial model. In
this work, we show that adaptation of pre-trained models is
essential for strong continual learning performance. How-
ever, different from all existing continual learning works,
we show that adapting the representation only in the first
session is sufficient to obtain representative features for the
classes being learned and that this forms a strong baseline
for future continual learning methods.

In addition to the incremental classification in the full
data regime, we focus on the few-shot scenario where only
a few labeled examples per class are provided at each train-
ing session. [9] utilize a meta-trained network for few-shot
classification and explore multiple design choices including
a no-adaptation baseline and a method to optimize orthog-
onal prototypes with the last classification layer only. The
method heavily relies on a pre-training and meta-training
step on a large subset of classes from the original dataset.
In this work, we show that the meta-training step is not es-
sential and that a simple LDA head is sufficient without the
reliance on a big initial training stage. In [11] the authors
propose a new distillation loss functioning at the feature
map level where importance values are estimated per fea-
ture map along with replay and consider an NCM classifier
at test time. [45] heavily relies on the training of an initial
session using a specific loss function that takes into account
classes that will be added in future. It further requires the
total number of classes to be known a priori which is un-
realistic for real applications. Our solution adapts FILM
parameters to the first session data and fixes the represen-
tation for the remaining training sessions. We show that
surprisingly few samples in the first session are sufficient
for adaptation and that our solution is more powerful than
current few-shot continual learning solutions.

3. Proposed Algorithm
In this section, first we discuss the main components of

the proposed methods FSA/FSA-FiLM, namely body adap-
tation techniques and classifier heads. Then we formally

introduce the two methods for tackling CIL.

3.1. Problem Formulation

In CIL, we are given a dataset Ds = {xi,s, yi,s}Ns
i=1 for

each session s ∈ {1, . . . , S}, where Xs = {xi,s}Ns
i=1 is a

set of images and Ys = {yi,s}Ns
i=1 is the set of the corre-

sponding labels with yi,s ∈ Ys. Here Ys is the label space
of session s. It is common in CIL that label spaces are mu-
tually exclusive across sessions, i.e. Ys∩Ys′ = ∅, ∀s ̸= s′

and we only have access to Ds in the current session s to
train our model. The proposed FSA method can naturally
handle sessions with overlapping label spaces too, however,
we follow the former paradigm in our experiments. Another
typical assumption in CIL is that the data in all sessions
come from the same dataset. We also adopt this assumption
in this work, although our experiments on DomainNet are a
step toward considering different datasets in each session.

In session s, we will use models defined as

fs(x) = W⊤
s gθs

(x) + bs, (1)

where gθs
(x) ∈ Rd is a feature extractor backbone1 with

session-dependent parameters θs. The linear classifier head
comprises the class weights Ws ∈ Rd×|Y1:s| and biases
bs ∈ R|Y1:s|, and Y1:s = ∪sj=1Yj is the label space of all
distinct classes we have seen up to session s. Ideally, when
a new dataset Ds is available at the s-th session, the model
should be able to update the backbone parameters θ and the
linear classifier head Ws with the minimum computational
overhead and without compromising performance over the
previously seen classes Y1:s.

Backbone adaptation. Traditionally, the adaptation of
the body at the current session s requires updating the
full set of the network parameters θs (full-body adapta-
tion). Options include using specifically designed loss func-
tions that mitigate catastrophic forgetting or using a mem-
ory buffer that stores a subset of the previously encountered
data. See [16] for a review of continual learning techniques.
Nevertheless, when training data availability is scarce rela-
tive to the size of the model then full-body adaptation ceases
to be suitable, and few-shot learning techniques [33], such
as meta-learning [10] and transfer learning [40] become fa-
vorable.

Recent works in few-shot learning [26] showed that a
pre-trained backbone can be efficiently adapted by keeping
its parameters θs frozen and introducing Feature-wise Lin-
ear Modulation (FiLM) [23] layers with additional param-
eters ξs which scale and shift the activations produced by
a convolutional layer. In [26], these parameters are gener-
ated by a meta-trained network when a downstream task is

1In this paper, we interchangeably use the terms feature extractor, back-
bone, and body.
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given. Alternatively, ξs can be learned (fine-tuned) by the
downstream data as in [27]. In this work, we consider both
meta-learned (Supplement) and fine-tuned (Sec. 4) FiLM
parameters.

Classifier heads. In both offline and CIL settings, (lin-
ear) classifier heads can be divided into two groups;
parametrized and parameter-free. Parametrized heads re-
quire the weights/biases in Eq. (1) to be updated by an it-
erative gradient-based procedure whilst for parameter-free
heads, a closed-form formula is available that directly com-
putes the weights/biases after the update of the backbone.
We consider three different heads (for notational simplicity
we consider the offline setting, and thus suppress session s
dependence), one parametrized, and two parameter-free.

• The linear (learnable) head where W,b are learned.

• The Nearest Class Mean (NCM) classifier where the
weight and bias of the k-th class is given by

wk = µ̂k and bk = ln
|X(k)|
N

− 1

2
µ̂⊤

k µ̂k, (2)

where X(k) = {xi : yi = k} is the set of images
belonging in class k and µ̂k = 1

|X(k)|
∑

x∈X(k) gθ(x)

is the mean vector of the embedded images of class k.

• The Linear Discriminant Analysis (LDA) classifier
with weights/biases defined as

wk = S̃−1µ̂k and bk = ln
|X(k)|
N

− 1

2
µ̂⊤

k S̃
−1µ̂k,

(3)
where S̃ = S + Id is the regularized sample
covariance matrix with sample covariance matrix
S = 1

|X|−1

∑
x∈X(gθ(x) − µ̂)(gθ(x) − µ̂)⊤, µ̂ =

1
|X|

∑
x∈X gθ(x), and identity matrix Id ∈ Rd×d.

Both NCM and LDA classifiers are suitable for CIL since
their closed-form updates in Eq. (2) and Eq. (3) support
exact, computationally inexpensive, continual updates (via
running averages) that incur no forgetting. Updating the
linear head, in contrast, requires more computational effort
and machinery when novel classes appear in a new session.
Notice that setting S̃ = Id in LDA recovers NCM.

The continuous update of the LDA head is not as
straightforward as it is for NCM, since LDA also requires
updating the sample covariance S. We discuss how this can
be attained in the next section where we introduce our pro-
posed method FSA/FSA-FiLM.

3.2. First Session Adaptation

Motivated by the efficient adaptation techniques and
CIL-friendly classifiers discussed in the previous section,

we propose two simple and computationally efficient CIL
methods called First Session Adaptation (FSA) and FSA-
FiLM. FSA is based on a full-body adaptation while FSA-
FiLM uses FiLM layers to adapt the body. Both methods
utilize pre-trained backbones. FSA (-FiLM) (i) adapts the
backbone only at the first session and then the backbone re-
mains frozen for the rest of the sessions, and (ii) makes use
of an LDA classifier which is continuously updated as new
data become available. For adapting the body (either full or
FiLM-based adaptation) at the first session, we use a linear
head and a cross-entropy loss first, and then after the op-
timization is over, the linear head is removed and an LDA
head is deployed instead, based on the optimized parame-
ters θ∗ and Eq. (3). Updating the LDA head when the data
of the next session becomes available, can be done by using
Algorithm 1 recursively until the last session S. Specifi-
cally, by having access to the running terms {A,b, count},
the sample covariance matrix is given by

S =
1

count− 1

(
A− 1

count
bb⊤

)
. (4)

The time complexity of LDA scales asO(d3+ |Ys|d2) and

Algorithm 1 Update of sample covariance running terms
Require: g(·) ≡ a feature extractor backbone
Require: Xs = {xi,s}Ns

i=1: Images of session s
Require: A ∈ Rd×d,b ∈ Rd, count ∈ N∗ if s > 1

1: function INCUPDATE(g(·), Xs, A,b, count)
2: if s = 1 then ▷ Initialize A,b, count
3: A← 0d×d,b← 0d, count← 0
4: end if
5: A← A+

∑
x∈Xs

g(x)g(x)⊤

6: b← b+
∑

x∈Xs
g(x)

7: count← count +Ns

8: return A,b, count
9: end function

its space complexity is O(d2 + |Y1:s|d) at the s-th session.
This computational burden is negligible compared to taking
gradient steps for learning a linear head and as we will see in
Sec. 4.2 using covariance information boosts performance
significantly against the vanilla NCM head.

4. Experiments
In this section, we present a series of experiments to in-

vestigate the performance of FSA (-FiLM) under different
CIL settings. First, we detail the datasets used for the ex-
periments and discuss our implementation. Second, we per-
form a large empirical comparison between LDA, linear,
and NCM classifiers, in combination with different body
adaptation techniques, in the offline setting. For the CIL
settings, the results are compared to the vanilla method, No
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Adaptation (NA), where a pretrained backbone is combined
with an LDA head and remains frozen across sessions. We
also consider how these findings are affected by the num-
ber of shots available. Third, we compare FSA (-FiLM)
with state-of-the-art continual learning methods and con-
duct ablation studies. Finally, we investigate the effect of
adapting the backbone when the CIL dataset is “similar” to
ImageNet-1k and discuss a similarity metric that indicates
whether body adaptation is required.

4.1. Datasets and Implementation details

Datasets. We employ a diverse collection of 26 image-
classification datasets across the offline and CIL experi-
ments. For the offline experiments of Sec. 4.2, we use the 19
datasets of VTAB [42], a low-shot transfer learning bench-
mark, plus three additional datasets, FGVC-Aircraft [17],
Stanford Cars [12], and Letters [6]. We refer to this group
of datasets as VTAB+. For the CIL-based experiments, we
choose 5 VTAB+ datasets from different domains, having
an adequate number of classes to create realistic CIL scenar-
ios. The datasets are CIFAR100, SVHN, dSprites-location,
FGVC-Aircraft, Cars, and Letters while also including 4 ex-
tra datasets: CUB200 [32], CORE50 [15], iNaturalist [30],
and DomainNet [22]. Exact details for each dataset are pro-
vided in the Supplement.

Training details. All models are implemented with Py-
Torch [20]. We use a pre-trained EfficientNet-B0 [28] on
Imagenet-1k as the main backbone for all methods. For the
few-shot+ CIL experiment in Sec. 4.3, we also consider two
ResNet architectures, ResNet-18 and ResNet-20 [8] to en-
able direct comparison to the original settings used in [45].
All the deployed backbones (except ResNet-20, due to the
unavailability of pre-trained weights on ImageNet-1k), are
pre-trained on ImageNet-1k for all methods. We keep the
optimization settings the same across all baselines for fair-
ness. Optimization details are given in the Supplement.

Evaluation protocol. We report the Top-1 accuracy after
the last continual learning session evaluated on a test set in-
cluding instances from all the previously seen classes. In the
Supplement, we provide the accuracy after each session. To
quantify the forgetting behavior, we use a scaled modifica-
tion of the performance dropping rate [29], namely percent
performance dropping rate (PPDR), defined as PPDR =
100 × A1−AS

A1
%, where A1 denotes test accuracy after the

first session, and AS the test accuracy after the last session.

4.2. Head Comparisons

To motivate the choice of the LDA head for FSA (-
FiLM), we compare its average accuracy across all VTAB+
datasets with that of the linear and NCM classifiers under
the offline setting where all the classes are available and

no incremental learning is required. For the body, we use
no adaptation (NA) as a baseline (i.e. using the unadapted
original backbone), FiLM-based adaptation, and full-body
adaptation while ranging the number of shots from 5 to 10,
then 50, and finally using all available training data. As
Fig. 1 illustrates, LDA consistently outperforms both NCM
and linear heads when the number of shots is equal to 5 and
10, regardless of adaptation technique. Notice also that as
the number of learnable parameters increases, the choice of
the head plays a less significant role in the predictive power
of the method. Overall, LDA performs similarly to the lin-
ear head in the high-shot settings and performs the best of
all heads in the low-shot settings. Finally, the full covari-
ance information of LDA provides a consistent advantage
over its isotropic covariance counterpart, i.e. the NCM clas-
sifier. This is in agreement with the results presented in [27]
for the LDA and NCM classifier. In addition to the results
presented here, we have also tested meta-learning based
body adaptation methods [3, 26, 2] which support contin-
ual learning out of the box. We find these perform poorly
compared to the fine-tuning based methods. See next sec-
tion for more results.

4.3. Class-Incremental Learning Comparisons

We consider three different CIL scenarios: (i) high-
shot CIL, (ii) few-shot+ CIL, and (iii) few-shot CIL. We
compare our FSA/FSA-FiLM methods with recent state-of-
the-art FSCIL methods, including Decoupled-Cosine [31],
CEC [43], FACT [45], and ALICE. Additionally, for the
high-shot CIL setting, we consider a strong replay-based
baseline for CIL, GDumb [24] and a competitive replay-
free method, E-EWC+SDC [41]. Finally, we introduce an
additional baseline adapter inspired by [37], called FSA-LL
(Last Layer). In FSA-LL only the parameters of the back-
bone’s last block are fine-tuned which can be compared to
the FSA-FiLM adaption method.

High-shot CIL. In this setting, we consider all the avail-
able training data for each class while keeping the number
of novel classes in each session low. We use CIFAR100,
CORE50, SVHN, dSprites-loc, FGVC-Aircraft, Cars, and
Letters for our experiments. For CIFAR100, CORE50, and
FGVC-Aircraft, the first session consists of 10 classes, 4 for
dSprites-loc, 16 for Cars, and 12 for letters. The rest of the
sessions include 10 classes for CIFAR100, FGVC-Aircraft,
20 for Cars, 5 for CORE50 and Letters, 2 for SVHN and
dSprites-loc. Therefore, the total number of incremental
sessions for CIFAR100, FGVC-Aircraft, and Cars is 10
while for CORE50 we have 9 sessions. A pre-trained on
Imagenet-1k EfficientNet-B0 is deployed as a backbone for
all methods. FSA-FiLM outperforms all the competitors
by a significant margin on all datasets except dSprites-loc.
We attribute the performance gap on dSprites-loc due to the
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Figure 1. Average accuracy across all VTAB+ datasets using no-adaptation (NA), FiLM adaptation (A-FiLM), and full body adaptation
(A-FB) for different classifier heads (NCM, LDA, Linear) and number of shots (5, 10, 50, All Data). The results correspond to the offline
setting where all classes are available without any incremental learning.

Method CIFAR100 CORE50 SVHN dSprites-loc FGVC-Aircraft Cars Letters Avg Diff

NA 68.2 (26.8) 82.6 (14.2) 39.9 (51.1) 20.6 (54.0) 41.3 (1.7) 43.3 (40.3) 68.4 (24.1) 0.0
E-EWC+SDC [41] 32.4 (66.7) 21.7 (78.1) 39.5 (60.1) 18.6 (81.4) 25.6 (55.8) 30.0 (62.6) 33.6 (66.3) -23.3
FACT [45] 10.2 (89.4) 22.0 (77.7) 33.8 (65.9) 6.4 (93.6) 4.7 (90.3) 0.6 (99.3) 20.9 (79.1) -38.0
ALICE [21] 52.4 (45.8) 72.8 (25.8) 46.1 (53.6) 68.3 (31.7) 39.8 (35.0) 36.4 (56.0) 75.7 (24.2) +3.9
FSA 62.8 (34.5) 82.8 (15.5) 71.3 (26.6) 91.5 (8.5) 50.8 (6.3) 50.3 (36.6) 78.4 (21.4) +17.7
FSA-LL 60.5 (37.2) 79.0 (19.2) 64.6 (33.1) 91.3 (8.5) 45.4 (21.7) 45.7 (43.8) 77.2 (22.7) +14.2
FSA-FiLM 73.8 (23.4) 85.4 (13.3) 75.9 (23.4) 76.9 (22.8) 55.9 (-5.7) 55.9 (30.2) 79.7 (20.0) +19.9

GDumb [24] 54.5 (42.2) 82.4 (15.0) 78.2 (19.6) 79.5 (12.9) 25.3 (56.9) 14.2 (82.6) 70.1 (27.0) +5.7

Offline-FiLM 78.2 88.4 93.1 98.5 67.5 67.3 85.2 +30.6

Table 1. Last session’s test accuracy (%) (↑) and the PPDR (%) (↓) in parentheses, for the high-shot CIL setting (Sec. 4.3). The last column
reports the average accuracy difference (↑) across all datasets between a baseline and NA. A pre-trained EfficientNet-B0 on Imagenet-1k is
used as a backbone for all methods. For reference, we include the replay-based baseline GDumb where 1k images are used for the memory
buffer.

large number of data points (25k) and the portion of the
classes (25%) in the first session. It is also apparent the
efficiency of fine-tuning FiLM parameters over fine-tuning
the parameters of the model’s last layer; note the number
of FiLM parameters is only 20.5k while the last layer of an
EfficientNet-B0 comprises 2.9M parameters. Furthermore,
fine-tuning the FiLM parameters offer almost 20% accuracy
increase on average compared to using a pretrained model
without doing any further adaptation. Interestingly, the
replay-free FSA-FILM is able to outperform significantly
the replay-based method GDumb with a 1k memory buffer
on most of the datasets; accuracy and time comparisons be-
tween FSA-FiLM and GDumb with varying buffer sizes can
be found in Figure 1 of the Supplement. Regarding FACT’s
perfromance, although it starts from a pre-trained backbone,
it was developed under the assumption that the first session
contains lots of data and a high fraction of the classes that
will be encountered (> 50%) which is not true for the set-
ting treated in Table 1. FACT overfits in this setting and
this results in poor performance. It turns out that FACT’s
assumptions about the first session are a strong requirement

which is not necessary for obtaining good performance as
our FSA baseline shows.

Few-shot+ CIL. This setting is the one that has most
commonly been used for few-shot CIL (FSCIL) and it in-
volves an initial session that contains a large number of
classes (around 50-60% of the total number of classes in
the dataset) and all the available training images of these
classes. The remaining sessions comprise a small number
of classes and shots (typically 5/10-way 5-shot). Here we
follow the exact FSCIL settings as described in [45, 21]
for CIFAR100 and CUB200. We use ResNet-18/20 and
EfficientNet-B0 as backbones. Table 2 summarizes the per-
formance comparison between baselines. FSA performs on
par with FACT on CIFAR100 when we use the original
backbone used in [45], and it outperforms FACT by almost
10% and ALICE by 3.4% when EfficientNet-B0 is utilized
while FSA-FiLM exhibits the lowest PPDR score. Notice
also that FSA is only marginally worse than its offline coun-
terpart, meaning there is little room for continuous body
adaptation to improve things further. For CUB200, FSA
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with an EfficientNet-B0 performs on par with ALICE. Inter-
estingly, we observe that NA performs well on this dataset.
This indicates that CUB200 is not far from ImageNet-1k.
The current results of FSA set new SOTA performance on
CIFAR100 for the FSCIL setting.

Datasets

Method Backbone CIFAR100 CUB200

CEC [43]
RN-20

49.1 (32.7)* -
FACT [45] 52.1 (30.2)* -
FSA 52.0 (30.8) -
NA

RN-18

50.4 (26.8) 50.0 (29.3)
CEC [43] - 52.3 (31.1)*
FACT [45] 49.5 (34.8)* 56.9 (25.0)*
ALICE [21] 54.1 (31.5)† 60.1 (22.4)†

FSA-FiLM 55.2 (24.4) 52.7 (27.6)
FSA 61.4 (25.1) 57.6 (24.3)
NA

EN-B0

55.2 (25.8) 63.2 (19.6)
FACT [45] 56.5 (34.6) 62.9 (23.3)
ALICE [21] 62.7 (28.4) 63.5 (22.2)
FSA-LL 61.4 (25.7) 55.9 (22.3)
FSA-FiLM 61.8 (22.4) 62.9 (20.4)
FSA 66.1 (24.6) 63.4 (20.9)

Offline EN-B0 67.0 65.1

Table 2. Baseline comparison under the few-shot+ CIL setting
(Sec. 4.3). We report the accuracy (%) (↑) of the last session and
the PPDR (%) (↓) in parentheses. Asterisk (*) indicates that the
reported results are from [45] and † indicates results reported in
[21]. We use three different backbones, EfficientNet-B0 (EN-B0)
and ResNet-18/20 (RN-18/20); EN-B0 and RN-18 are pre-trained
on Imagenet-1k.

Few-shot CIL. The final setting, which is firstly intro-
duced in this work, considers an alternative FSCIL setting
in which only a small number of data points are available
in all sessions, including the first. We use 50 shots per ses-
sion while the first session includes 20% of the total num-
ber of classes of the dataset. Each of the remaining sessions
includes around 10% of the total number of classes; more
details are available in the Supplement. We repeat experi-
ments 5 times and we report the mean accuracy and PPDR
in Table 3. FSA-FiLM outperforms all the other baselines
by a large margin in terms of both accuracy and PPDR, in-
dicating that transfer learning is considerably advantageous
for CIL when the data availability is low. Notice that both
ALICE and FACT struggle to achieve good performance
under this setting due to the limited amount of data in the
first session. We find that FGVC-Aircraft exhibits a positive
backward transfer behavior that we attribute to a difficult
initial session followed by sessions that contain classes that
are comparatively easier to distinguish.

Finally, we demonstrate the suitability of the LDA head

in FSA-FiLM compared to a nearest class mean head, de-
noted FSA-FiLM-NCM. In the continual learning setting,
LDA gives far larger improvements over NCM; e.g. 10%
on average as presented in Table 3. This highlights the im-
portance of a strong classification layer. Note that the incre-
mental update of LDA does not require any replay buffer as
opposed to a linear head.

4.4. Inhomogeneous Class-Incremental Learning

FSA adapts the body only on the first session of continual
learning and it is therefore likely to be sensitive to the par-
ticular classes which are present in this session. To investi-
gate the degree of performance sensitivity for FSA, we de-
vise a setting similar to the few-shot CIL setting of Sec. 4.3,
where each session includes classes that share some com-
mon attribute. We select CIFAR100 which provides super-
class information, and DomainNet which consists of differ-
ent domains and also has superclass information available.
We create three distinct CIL configurations for each dataset,
each of which has different types of data in the first session.
For CIFAR100, we split the data into 19 sessions. The first
session includes 10 classes from super-classes (i) aquatic
mammals and fish (Aq), (ii) electric devices and furniture
(DevF), or (iii) Vehicles 1 and Vehicles 2 (Veh). Each of
the other 18 sessions include images from the remaining 18
super-classes. Similarly, for DomainNet, we split the data
into 6 sessions using 50 shots with 10 classes in each ses-
sion. The first session includes 10 classes of (i) the “elec-
tricity” superclass of the real domain (El-R), (ii) the “fur-
niture” superclass of the clipart domain (F-Clp), or (iii) the
“transportation” superclass of the sketch domain (Tr-Sk). In
this way, we can vary the content of the first session and an-
alyze the effect this has on performance. Table 4 reveals that
FSA-FiLM’s performance is similar even if the data in the
first session used for the body adaptation appears disparate
from that contained in the remaining sessions. Even for Do-
mainNet where the distribution shift of the data across ses-
sions is considerable, performance is only marginally af-
fected in each of the three settings. This provides evidence
that adapting the body only on the first session achieves
competitive performance regardless of the class order, given
the assumption that the data come from a single dataset (al-
beit a varied one in the case of DomainNet).

4.5. When to adapt the body?

Despite the strong performance of FSA (-FiLM) in the
few-shot settings of Sec. 4.3, there are cases where the
NA method achieves very close accuracy to FSA (e.g. see
CUB200 results in Table 2). This implies that there may be
datasets where adaptation is not required and all we need
is the pre-trained backbone. In order to decide whether
we require body adaptation or not, we compute the min-
imum cosine distance in the embedding space of the pre-
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Method/Dataset CIFAR100 SVHN dSprites-loc FGVC-Aircraft Letters DomainNet iNaturalist Avg Diff

NA 57.4 (28.4) 28.3 (61.5) 11.9 (66.6) 41.0 (-15.5) 57.6 (29.9) 69.0 (17.2) 49.7 (4.3) 0.0
FACT [45] 16.8 (79.7) 24.1 (66.2) 11.7 (64.1) 8.3 (79.9) 49.8 (40.9) 20.6 (75.6) 14.3 (74.0) -24.2
ALICE [21] 58.0 (33.8) 23.0 (65.9) 23.0 (46.0) 42.0 (27.5) 66.5 (31.4) 66.5 (25.1) 47.9 (13.7) +1.7
FSA 60.3 (27.0) 32.9 (53.5) 33.7 (41.3) 50.1 (-16.8) 62.2 (28.5) 70.3 (17.5) 51.5 (1.1) +6.6
FSA-LL 62.0 (25.7) 43.5 (47.0) 18.8 (61.7) 45.8 (-2.1) 69.4 (26.1) 67.6 (16.9) 49.2 (14.1) +5.9
FSA-FiLM-NCM 66.4 (24.8) 38.8 (56.5) 25.1 (59.4) 42.5 (-7.5) 57.1 (34.9) 68.8 (18.5) 51.5 (12.1) +5.0
FSA-FiLM 70.9 (20.5) 51.3 (43.5) 35.7 (43.1) 55.8 (-19.8) 73.4 (22.1) 74.0 (15.6) 58.8 (4.8) +15.0

Offline-FiLM 73.8 77.2 83.7 65.1 79.7 75.1 62.1 +28.0

Table 3. Accuracy (%) (↑) of the last session and PPDR (%) (↓) in parentheses for the few-shot CIL setting of Sec. 4.3. The last column
reports the average accuracy difference (↑) across all datasets between a baseline and NA. A pre-trained EfficientNet-B0 on ImageNet-1k
is used as a backbone for all methods. FSA-FiLM-NCM utilizes an NCM classifier while NA, FSA (-LL, FiLM) and Offline uses an LDA
head.

Dataset NA Aq DevF Veh

CIFAR100 57.4±1.0 66.1±1.6 66.2±1.9 67.9±1.2

NA El-R F-Clp Tr-Sk

DomainNet 69.0±0.4 70.6±0.6 71.7±0.6 72.8±0.5

Table 4. Last session accuracy (%) (↑) of FSA-FiLM for three dif-
ferent session splits on CIFAR100 and DomainNet as described
in Sec. 4.4. For reference, we also include the accuracy of NA.
Results are averaged over 5 runs (mean±std).

0.00 0.05 0.10 0.15 0.20 0.25 0.30

Min cosine dist

0

10

20

30

40

50

60

70

A
cc

u
ra

cy
d

iff
(%

)

Caltech101

CIFAR100

Flowers102

Pets

Sun397

SVHN

DTD

EuroSAT

Resics45

Patch Camelyon

Retinopathy

CLEVR-count

CLEVR-dist

dSprites-loc

dSprites-ori

SmallNORB-azi

SmallNORB-elev

DMLab

KITTI-dist

FGVC-Aircraft

Cars

Letters

DomainNet

i-Naturalist

Figure 2. Scatter plot of the accuracy differences between FSA-
FiLM and NA against the minimum cosine distance between a
dataset and miniImagenet dataset evaluated using the NA method.
We consider the offline setting with 50 shots. A pre-trained
EfficientNet-B0 on ImageNet-1k is used as a backbone.

trained backbone between the downstream dataset and the
miniImagenet [31] dataset. We use miniImagenet (60k
images) as a proxy of Imagenet-1k (1.3M images) to re-
duce the computational overhead of evaluating pairwise dis-
tances. This allows us to approximately measure the dissim-
ilarity between the downstream dataset and Imagenet-1k.

Fig. 2 shows the accuracy difference between FSA-FiLM
and NA as a function of the cosine distance for the offline
setting with 50 shots whilst Fig. 3 illustrates the same ac-
curacy difference where the datasets are grouped based on
the VTAB+ categorization. For this experiment, we use 24

datasets (VTAB+, DomainNet, and iNaturalist). We ob-
serve that adaptation is more beneficial for datasets in the
structured domain, which contain images that are dissimilar
to those of ImageNet-1k.
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Figure 3. Bar plot of the accuracy differences between FSA-FiLM
and NA for the offline case with 50 shots.

CFR100 SVHN dSp-loc FGVC Letters DNet iNat

EffNet-B0 (FSA-FiLM) 70.9 51.3 35.7 55.8 73.4 74.0 58.8
ConvNext (NA) 87.1 43.6 13.6 50.2 63.1 82.9 72.6

ConvNext-CosD 0.2 0.6 0.6 0.3 0.4 0.3 0.1

Table 5. Accuracy comparison between a pre-trained ConvNext
on ImageNet-22k without body adaptation (NA) and a pre-trained
EfficientNet-B0 on ImageNet-1k which is adapted on the first ses-
sion (FSA-FiLM). We use the few-shot CIL setting (Sec. 4.3) and
we report the accuracy (%) (↑) after the last session. Results are
averaged over 5 runs (mean±std). We also include the minimum
cosine distance using the pre-trained ConvNext as in Figure 2.

To stress the importance of adaptation on datasets
far from ImageNet, we compare FSA-FiLM with an
EfficientNet-B0 backbone to the no-adaptation method with
a ConvNext [14] pre-trained on Imagenet-22k. The total
number of parameters for FSA-FiLM (backbone and FiLM
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parameters) is ∼4M while for ConvNext is 348M. Table 5
shows that a small adapted backbone can significantly sur-
pass the accuracy of a much larger pre-trained backbone for
datasets far from ImageNet. We also compute the cosine
distance measure for ConvNext and find that it is predictive
of the performance of the unadapted ConvNext model and
the benefits of adaptation. We show this in Table 5; note
that for CIFAR100 the ConvNext’s cosine distance values
are small relative to the other datasets (indicating that CI-
FAR100 is close to the pretraining distribution) whereas for
EfficientNet the values in Figure 2 indicate that CIFAR100
is more out-of-distribution.

The main takeaway from these results is that when there
is a large cosine distance (e.g. SVHN, dSprites, FGVC, Let-
ters) FiLM adaptation of a light-weight backbone performs
well – better even than applying LDA head adaptation to
a much larger backbone trained on a much larger dataset.
As the community employs ever-larger models and datasets,
these results indicate that adapters are likely to continue to
bring improvements over simply learning a classifier head
(the NA baseline).

5. Discussion

We have presented FSA (-FiLM), a simple yet effec-
tive replay-free baseline for CIL which adapts a pre-trained
backbone via full body adaptation or FiLM layers only at
the first session of continual learning and then utilizes a
flexible incrementally updated LDA classifier on top of the
body. Extensive experiments in several CIL scenarios have
shown that FSA outperforms previous SOTA baselines in
most cases, thus, questioning the efficacy of current ap-
proaches to continuous body adaption. Furthermore, the ex-
periments have revealed that FiLM layers are helpful when
the amount of data available in the target domain is rela-
tively low and the number of parameters in the neural net-
work and the size of the source domain data set is large. For
very large foundation models trained on very large source
domain data sets, it is likely we are often in this situation
and FiLM-like layers will be more effective than full-body
adaptation, even when the target domain has a fairly large
amount of data.

Limitations and future work. The main limitation of this
work is inextricably linked with the distributional assump-
tions of CIL in general. If the data distribution at each ses-
sion shifts considerably (e.g. the first session includes natu-
ral images while the next session includes images of num-
bers) then first session body adaptation is not suitable. In
future work, we plan to combine FSA (-FiLM) with a mem-
ory method like GDumb to get the best of both worlds and
deal with more challenging CIL scenarios.
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