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Abstract

Recently, GAN has successfully contributed to mak-
ing single-image super-resolution (SISR) methods produce
more realistic images. However, natural images have com-
plex distribution in the real world, and a single classi-
fier in the discriminator may not have enough capacity
to classify real and fake samples, making the preceding
SR network generate unpleasing noise and artifacts. To
solve the problem, we propose a novel content-aware lo-
cal GAN framework, CAL-GAN, which processes a large
and complicated distribution of real-world images by di-
viding them into smaller subsets based on similar contents.
Our mixture of classifiers (MoC) design allocates differ-
ent super-resolved patches to corresponding expert clas-
sifiers. Additionally, we introduce novel routing and or-
thogonality loss terms so that different classifiers can han-
dle various contents and learn separable features. By
feeding similar distributions into the corresponding spe-
cialized classifiers, CAL-GAN enhances the representa-
tion power of existing super-resolution models, achiev-
ing state-of-the-art perceptual performance on standard
benchmarks and real-world images without modifying the
generator-side architecture. The codes are available at
https://github.com/jkpark0825/CAL GAN.

1. Introduction
As one of the long-standing challenges in computer vi-

sion, single image super-resolution (SISR, or SR in short)
aims to reconstruct a super-resolved image ISR from its low-
resolution (LR) counterpart ILR. While the inverse problem
has multiple possible solutions for a given input due to the
ill-posedness, the practical goal of SISR is to generate a per-
ceptually favorable result from the LR input. To this end,
earlier approaches [8, 24, 30] have constructed various net-
work architectures specialized for SR and optimized pixel-
wise L2 or L1 loss terms. Later, perceptual objective func-
tions [22] and adversarial training frameworks [13, 26, 50]
are introduced to generate more realistic textures and im-
prove the realism of SR results.
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Figure 1: Overall framework of our CAL-GAN. Unlike the ap-
proaches mentioned in (a) and (b), our CAL-GAN in (c) groups
local contents with similar properties and feeds them to their cor-
responding specialized discriminators.

Previous perceptual SR methods jointly optimize the
SR network and discriminator through adversarial training,
while the discriminator is responsible for distinguishing real
and generated, i.e., fake, SR samples. However, as shown in
Figure 1a, the majority of methods [26, 50, 32, 57, 29, 48]
adopt a global discriminator that is not specialized to con-
sider the importance of local distribution in SR tasks. To
improve local details, recent approaches [48, 51, 6] have in-
corporated local discriminators, which aim to differentiate
between each local texture in HR and SR. However, such
discriminators are regarded as content-blind, indicating that
they cannot learn the various properties of the local con-
tent. Specifically, they naı̈vely try to learn the whole dis-
tributions from each local content using a single discrimi-
nator, as shown in Figure 1b. Thus, they struggle to learn
the complex distribution of natural images, resulting in sub-
optimal solutions. As adversarial training benefits from
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finding equilibrium between the generator and discrimina-
tor, such a sub-optimality may negatively affect the gener-
ator side. Also, in previous approaches, real and fake sam-
ples are grouped without considering the diverse properties
of different images. For example, separating real and fake
tree images would be a nice training example for perceptual
SR models, whereas classifying fake tree and real sky may
not provide informative gradients. Likewise, as shown in
Figure 1b, existing methods enforce the distribution of flow-
ers, cups, and hair images to be learned with a single classi-
fier. Therefore, existing perceptual SR methods [50, 45, 38]
usually generate unpleasant artifacts in super-resolved im-
ages.

One possible option to alleviate such limitations is to
introduce semantic labels [49, 39, 52] to the discriminator
side, assuming that patches in the same class have common
characteristics. Nevertheless, even though samples from the
same category may share specific properties, their low-level
statistics can vary. For example, wheels, windows, and bon-
nets are all labeled as a ‘car,’ but their contents differ sig-
nificantly. Another practical issue is that determining the
plausible number of semantic classes is infeasible. Natural
images contain numerous types of objects, and sometimes
it is not trivial to define an exact label, e.g., background, for
all possible patches for learning.

To overcome the aforementioned challenges, we pro-
pose Content-Aware Local GAN, CAL-GAN, a novel ad-
versarial training framework for handling complicated nat-
ural image distributions by their contents. Instead of using
a single classifier to learn the complex manifold of natu-
ral images, we divide it into smaller subsets according to
image contents. As shown in Figure 1c, our mixture of
classifiers (MoC) effectively handles much smaller mani-
folds than previous approaches where features in each group
share common properties. Furthermore, we propose an ef-
ficient routing module and learning strategy to implicitly
determine an appropriate subset of each feature rather than
assigning them manually. Combined with orthogonal regu-
larization [21, 54, 55] and LDA-based [36, 10] techniques,
we can significantly improve the separability of the learned
features for accurate distribution learning.

Our CAL-GAN is applicable to existing SR frame-
works without modifications. Thus, we demonstrate that
CAL-GAN improves the performance of state-of-the-art SR
methods [30, 50, 28] to reconstruct more photo-realistic re-
sults on diverse benchmarks. Extensive ablation studies also
validate that the design principle of CAL-GAN helps SR
models to generate perceptually fine details and textures.
Our several-fold contributions can be organized as follows:

• We present a powerful adversarial training framework
that utilizes multiple expertized classifiers. A proper
patch-wise routing policy can be learned during train-
ing with the proposed balancing loss.

• We adopt orthogonality constrain and distribution-
based inter/intra-class loss terms to minimize correla-
tion between different discriminators to implement an
expert system.

• Our CAL-GAN achieves superior SR performance on
various benchmarks and real-world images, achieving
high perceptual metrics and visual quality.

2. Related Works
Deep learning-based SISR. Starting from SRCNN [8],
early methods [24, 30] have implemented very deep archi-
tectures with residual structures to increase the number of
learnable parameters. After then, numerous novel building
blocks and architectures have been proposed [62, 61, 11,
43] to enhance the performance of the SISR. Specifically,
RCAN [61] adopts residual channel attention network, and
RDN [62] leverages global feature fusion to fully utilize hi-
erarchical features. Stepping forward, SCN [11] proposes
scale-wise convolution to aggregate multi-scale features lo-
cally and gradually. Motivated by recent implicit neural rep-
resentation techniques [42], SR models handle irregular and
asymmetric scaling factors [5] as well as arbitrary transfor-
mations [43]. Furthermore, motivated by recent success in
attention mechanisms, [28, 56] adopts Transformer to en-
hance super-resolution performance. On the other hand,
SRDD [33] explicitly learns a deep dictionary of high-
resolution to make the network robust for out-of-domain
test images. Nevertheless, the aforementioned methods do
not consider the perceptual quality of the super-resolved im-
ages, but focus on achieving high PSNR and SSIM only.
Photo-Realistic Super-Resolution. Instead of minimizing
pixel-wise reconstruction error, recent studies try to model
the perceptual convenience by adversarial training [13].
Since SRGAN [26] first employ GAN framework with
VGG-based perceptual loss function, [50, 45, 38, 53, 4,
32, 60, 29] suggested adversarial learning strategy by mod-
ifying GAN framework. ESRGAN [50] introduced a rel-
ativistic discriminator, while SRResCycGAN++ [45] uti-
lized cycle consistency [64] to match the domain consis-
tency between low-resolution and high-resolution images.
DGP [38] adopted a progressive approach to the layers of
the generator and discriminators, and DASR [53] utilized
wavelet transform to feed high-frequency components into
the GAN network. Stepping forward, SPSR [32] proposed
gradient loss to guide the model with structural information,
and LDL [29] explicitly discriminated visual artifacts from
realistic details to regularize the GAN training framework.
In addition, SFT-GAN [49] and SROBB [39] used explicit
semantic priors based on segmentation.

On the other hand, a few methods [35, 58] utilize dif-
ferent approaches for photo-realistic super-resolution. Fo-
cusing on that outputs of the SR network should be down-

10586



Generator

Conv+BN+ReLU

Orthogonal Conv

ReLU

Conv

Gumbel Softmax

Element-wise Mult.

Discriminator

Discriminator

C

Figure 2: The overall architecture of Content-Aware Local GAN (CAL-GAN). Different from the previous GAN, router network R
allocates features to N -many classes. For convenience, we visualize when N = 3. Then, the corresponding orthogonal convolution Oi

and mixture of classifiers Ci distinguish real and fake to form the adversarial loss Ladv . Note that routing mask R is only obtained from
IHR. © denotes concatenation.

scaled to the correct LR inputs, PULSE [35] maps recov-
ered images to the realistic images and downscale domain
using GAN. And BSRGAN [58] proposes augmentation
techniques by randomly shuffling degradation sequences,
imitating the real ISP process. Despite these advancements,
visual artifacts from adversarial training still remain prob-
lematic in SR tasks.
Mixture of experts. Rather than relying on a single model
to process complicated large-scale data, distributing the
workload to multiple workers can be a more effective strat-
egy. From this motivation, Jacob et al. [19] first adopt a gat-
ing strategy to divide information between different models.
Since each model observes only a part of training data, it
is referred to as an expert, and the entire system becomes
a mixture of experts (MoE). Recent attempts [41, 63, 12]
have demonstrated the superiority of MoE in deep learn-
ing, while there are two main shortcomings when combin-
ing multiple experts: limited computational resources and
stability. Without advanced techniques such as expert ca-
pacity [12] or parallelization [14], the processing time of
conventional systems is proportional to the number of ex-
perts. Also, traditional routing strategy [41] can results in
unstable training of the MoE system when appropriate reg-
ularization is not used. In this paper, we also employ the
concept of MoE in the GAN framework during training. By
using the novel loss functions, features can be regularized
and effectively routed without instability.

3. Method

Our goal is to reconstruct a photo-realistic SR result
ISR ∈ RH×W×3 from a given LR image ILR ∈ Rh×w×3.
Here, (h,w) and (H,W ) = (sh, sw) represent (height,
width) of LR and SR images under a fixed scaling factor
of s, respectively. To this end, we adopt adversarial training
framework [13, 26] and perceptual loss functions [50, 29]
to reconstruct photo-realistic outputs. Our training objec-

tive for the SR model LSR is defined as follows:

LSR = λrLrecon + λpLper + λgLgen, (1)

where Lrecon, Lper, Lgen refer to pixel-wise L1 reconstruc-
tion loss [30], perceptual loss [1], and adversarial loss [23]
from the following discriminator, respectively. Hyperpa-
rameters λr, λp, and λg determine weights of each loss term.
In the adversarial training framework, SR and discriminator
networks are optimized alternately [26, 50].

3.1. Content-aware local discriminator

While previous perceptual SR methods have achieved
significant successes, one concern exists regarding their dis-
criminator architectures. Typically, those discriminators
have a single classifier [50, 26] that has to classify the re-
alism of complex natural images, without considering the
complexity of natural image distributions. Such a formu-
lation may negatively impact the model’s ability to clas-
sify real and fake samples and further decrease the perfor-
mance of the preceding SR network. Therefore, we pro-
pose Content-Aware Local GAN, CAL-GAN, to alleviate
the burden of the classifier and improve the overall SR
framework. Specifically, we divide complex distributions
into several subsets based on image contents and employ
multiple expert classifiers. As illustrated in Figure 2, each
expert is specialized to the corresponding subsets.

3.2. Dynamic routing in discriminator

To formulate our Content-Aware Local discriminator D,
we first apply a sequence of Conv-BN-ReLU to extract fea-
tures FHR,FSR ∈ RH/4×W/4×c from IHR and ISR, respec-
tively. Here, c = 512 denotes the number of channels.
Then, we propose to adopt multiple classifiers in discrim-
inator D, which are specialized in different content distri-
butions as in Figure 2. To allocate different features to N -
many classifiers, we define a router network R. The module
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is responsible for deciding which classifier processes a spa-
tial feature F. For a given feature F, Our router is designed
to produce a point-wise one-hot vector R ∈ RH/4×W/4×N

and N binary masks Ri ∈ RH/4×W/4 by following:

R = gumbel softmax (Conv1×1 (F)) ,

Ri

[
H

4
,
W

4

]
=

{
1, if R

[
H
4 ,

W
4 , i
]
= 1.

0, otherwise,

(2)

where Gumbel-Softmax [20] is applied across the channel
dimension to enable differentiation of the one-hot vector R.
The 1×1 convolution is optimized during training.

Using the predicted routing mask R, we split the spa-
tial feature FHR to N disjoint domain-specific features
{F1,F2, · · · ,FN} as follows:

Fi = FHR ⊙Ri, (3)

where ⊙ denotes element-wise multiplication. We note that
Ri is broadcasted across channel dimension c when (3) is
calculated.
Balancing the routing. Although feature F is spatially di-
vided into N subsets Fi, dynamic routing without any con-
strain can cause load-imbalance problem [27, 40, 63] which
assigns feature disproportionately. As load-imbalance leads
specific subsets of features to contain a plethora or scarce
information, we introduce balancing loss Lb to alleviate the
issue [40, 27, 12].

Lb =
N

M

∑
i,j

max
k

R′ [i, j, k], (4)

where R′ is obtained by replacing gumbel softmax in
(2) with a standard Softmax function, and M = HW

16 rep-
resents the number of spatial pixels. The balancing loss de-
creases when the maximum value of Softmax distribution
R′ becomes smaller, and probability values are evenly dis-
tributed so that optimizing the loss enforces uniform routing
across N subsets. However, as uniform routing produces
lower maximum values when bigger N is used, we scale
the loss to compensate for situations where the maximum
value is too small.

3.3. Meditating class property

So far, we have uniformly disentangled N -many subsets
Fi from FHR using balancing loss Lb. However, Lb does
not guarantee that features assigned to different classifiers
have unique characteristics. Therefore, we adopt the con-
cept of orthogonality [21] and LDA [36] to meditate feature
properties in within-classes and between-classes.
Orthogonal strategy. Feeding unrelated features into the
independent classifiers can improve classification perfor-
mance in our CAL-GAN. Therefore, to prevent different
subsets Fj and Fk (j ̸= k) from sharing some properties

in common, we introduce the 1× 1 orthogonal convolution
Oi [47, 55, 21] to maximize independency between differ-
ent splits of Fi as follows:

F∗
i = Oi(Fi), (5)

where F∗
i ∈ RH/4×W/4×c is a linear projection of Fi.

Since we expect F∗
i and F∗

j to be independent for i ̸=
j, we propose an orthogonal loss Lo and optimize O ∈
RN×c×c×1×1, which is a stack of weights Oi ∈ Rc×c×1×1,
as follows:

Lo =
∥∥ψ(O)ψ(O)T − IN

∥∥2
F
, (6)

where ψ is a view operator that reshapes O ∈ RN×c×c×1×1

to RN×c2 , and IN is anN×N identity matrix and ∥·∥2F rep-
resents the Frobenius norm. By forcing ψ(O)ψ(O)T to be
an identity matrix, each Oi can deliver unique information.
LDA strategy. We further define distribution-base loss Ldist
to gather similar information in the same index, while split-
ting different information to disjoint classes. The proposed
distribution loss Ldist is calculated as a sum of between-
class loss Lbtw and within-class loss Lwi as follows:

Lbtw =

N∑
i<j

(
F̄∗

i · F̄∗
j∥∥F̄∗

i

∥∥∥∥F̄∗
j

∥∥
)2

,

Lwi =

N∑
i=1

Var (F∗
i ),

Ldist = Lbtw + Lwi,

(7)

where the mean vector F̄∗
i ∈ Rc and variance are calcu-

lated over spatial dimensions. Minimizing Lbtw decreases
the correlation between different classes, while optimizing
Lwi reduces the variance of the points assigned to the same
class. Therefore, the proposed distribution loss Ldist effec-
tively adjusts distances between features as intended.

3.4. Training domain-aware discriminator

Mixture of classifiers. Rather than using a single classi-
fier, the proposed content-aware discriminator architecture
leverages N parallel classifiers Ci as shown in Figure 2.
Therefore, the discriminator output D is defined as a sum-
mation of the N spatially disjoint outputs, since different
discriminators process different pixels in the original fea-
ture F. We calculate D as follows:

D =

N∑
i=1

Ci (F∗
i ). (8)

By utilizing the spatially-disjoint property, the output D
can be calculated more efficiently. Still, the overhead from
our implementation is minor since the discriminator is used
only for training, not inference.
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Baseline EDSR SwinIR RRDB
Metric Dataset +GAN +CAL-GAN +GAN +CAL-GAN ESRGAN USRGAN SPSR LDL +CAL-GAN

LPIPS↓

Set5 0.155 0.088 0.068 0.058 0.076 0.080 0.065 0.067 0.061
BSD100 0.297 0.136 0.163 0.147 0.162 0.174 0.161 0.153 0.151
Urban100 0.205 0.154 0.107 0.098 0.123 0.133 0.118 0.110 0.108
General100 0.158 0.104 0.076 0.074 0.088 0.094 0.087 0.079 0.077
DIV2K (val) 0.220 0.074 0.093 0.087 0.115 0.133 0.101 0.101 0.091

FID↓

Set5 42.364 27.196 25.570 26.205 27.215 37.006 30.904 25.288 24.490
BSD100 76.872 54.379 43.373 40.170 50.691 48.347 47.304 40.806 43.217
Urban100 29.149 22.930 19.219 17.447 20.345 21.555 18.672 17.758 17.550
General100 50.187 37.035 26.545 26.504 29.843 32.959 30.159 27.506 29.417
DIV2K (val) 19.464 15.863 13.270 12.097 13.557 14.031 13.754 12.145 11.772

BRISQUE↓

Set5 29.383 16.711 16.944 14.066 16.164 16.667 9.457 17.704 14.125
BSD100 26.502 11.917 13.632 11.406 11.993 12.372 9.475 13.202 9.948
Urban100 21.771 12.629 18.701 17.608 22.392 15.684 15.584 17.467 15.624
General100 17.957 17.905 16.778 15.221 16.764 17.625 12.836 18.084 15.091
DIV2K (val) 27.589 11.555 11.852 11.406 14.140 14.516 11.220 12.680 13.576

DISTS↓

Set5 0.138 0.113 0.093 0.085 0.095 0.105 0.092 0.092 0.091
BSD100 0.184 0.151 0.137 0.128 0.124 0.137 0.126 0.127 0.118
Urban100 0.160 0.127 0.089 0.083 0.088 0.098 0.085 0.079 0.082
General100 0.130 0.105 0.080 0.081 0.085 0.093 0.088 0.083 0.083
DIV2K (val) 0.112 0.078 0.051 0.048 0.059 0.065 0.055 0.053 0.049

Table 1: ×4 SR performance comparison about different perceptual metrics on various datasets. Best and second-best numbers are
denoted with bold and underline, respectively. Models with +GAN are trained using naı̈ve adversarial loss [13], while +CAL-GAN denotes
networks optimized with the proposed distribution-aware discriminator architecture.

Objective function for discriminator. To train our dis-
criminator, we combine a standard cross-entropy loss Ldis
and all of the novel objective functions listed above to con-
struct the total objective LD by following:

Ldis = − logDreal − log (1−Dfake),

LD = λbLb + λoLo + λdLdist + λdisLdis,
(9)

where λb, λo, λd, λdis are hyperparameters of the corre-
sponding loss functions. Dreal and Dfake are discriminator
outputs given HR and SR images as input, respectively. We
note that the proposed term LD can be generally applicable
to diverse discriminator architectures.

4. Experiments
Datasets. To train SR models, we adopt widely-used
DIV2K [44], which contains 800 high-quality images.
The network takes 64 × 64 random crops as inputs with
a batch size of 48. For evaluation, we use standard
Set5 [2], BSD100 [34], and Urban100 [17] benchmarks.
We also compare various methods on General100 [9] and
DIV2K [44] validation datasets for extensive study.
Metrics. Our primary goal is to reconstruct photo-realistic
SR results. Therefore, we adopt four widely-used per-
ceptual metrics to measure image quality rather than con-
ventional PSNR/SSIM. For full-reference evaluation using
ground-truth images, we use LPIPS [59] and DISTS [7].
We also introduce non-reference and distribution metrics,
BRISQUE [37] and FID [16], respectively, to show the ef-

Metric Dataset ESRGAN USRGAN SPSR LDL +CAL-GAN

PSNR↑

Set5 30.438 30.910 30.397 30.985 31.177
BSD100 25.288 25.974 25.495 25.929 25.925
Urban100 24.365 24.891 24.804 25.498 25.290
General100 29.425 30.001 28.561 30.232 30.182
DIV2K (val) 28.175 28.787 28.182 28.951 28.863

SSIM↑

Set5 0.852 0.866 0.844 0.862 0.863
BSD100 0.650 0.676 0.658 0.679 0.676
Urban100 0.734 0.750 0.742 0.767 0.763
General100 0.810 0.824 0.809 0.827 0.825
DIV2K (val) 0.776 0.794 0.772 0.795 0.790

User Study↑ (%) 10.7 10.8 20.0 19.7 39.2

Table 2: Distortion metrics comparison with photo-realistic SR
methods.

fectiveness of the proposed CAL-GAN framework. We note
that models with the best perceptual quality may not show
high PSNR/SSIM under the limited network capacity [3].
Experimental configurations. We first train the PSNR-
based SR model without using the proposed discriminator.
Then, the final SR model is fine-tuned with the discrimina-
tor under (9). Adam [25] optimizer is used to update our SR
and discriminator. For the generator, Lrecon, Lper, and Lgen
are set to 0.01, 1, and 0.005, respectively. And for the dis-
criminator, λb, λo, λd, and λdis are set to 0.05, 10, 10, and
1, respectively. In order to determine the most appropriate
weight for our proposed loss functions, we have performed
a greedy search. Our model is trained for 300,000 iterations,
where the learning rate starts from 10−4 and is halved after
150,000 updates. It takes about 32 hours to train our model
using four RTX 2080 Ti GPUs.
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Figure 3: Visualization of the routing mask R. Our routing mod-
ule assigns one of N classes to each point in HR and SR images.
We show distinctive colors to indicate different one-hot vectors.

4.1. CAL-GAN with state-of-the-art methods

We first show that the proposed CAL-GAN framework is
generally applicable to existing state-of-the-art SR models.
For extensive comparison, we use two CNN-based methods,
EDSR [30] and RRDB [50], and one Transformer-based
SwinIR [28]. We note that the term ‘RRDB’ is used to refer
to a class of models based on Residual-in-Residual Dense
Blocks [50], rather than a specific network architecture.
When integrated with EDSR [30] and SwinIR [28], CAL-
GAN consistently improves the perceptual quality of super-
resolved images compared to the plain GAN counterparts
as shown in Table 1. The proposed approach is effective
regardless of the baseline model and evaluation datasets,
showing that CAL-GAN can be generally applied to both
traditional CNNs and emerging attention-based models.

The ‘RRDB’ section in Table 1 compares performance
among different GAN-based solutions which use similar
backbone. Compared to ESRGAN [50] and USRGAN [57],
which adopt plain adversarial training framework, the pro-
posed method shows significant performance gain on all
datasets and metrics. While SPSR [32] has good non-
reference BRISQUE scores, it is due to the model having
an additional image gradient estimation branch to which
BRISQUE is sensitive. Recent LDL [29] is designed to
discriminate visual artifacts from adversarial training from
real high-frequency details and achieves comparable perfor-
mance to CAL-GAN. Still, due to the ambiguity in artifacts
and details, our method provides much sharper and more ac-
curate reconstructions, as shown in Figure 6. Furthermore,
we also show the qualitative comparisons on RealSR [58]
dataset compared to previous methods [48, 58, 29].

We further provide traditional distortion-based metrics,
i.e., PSNR and SSIM, and user preference study in Table 2.
For the user study, we randomly selected 12 images from
the evaluation datasets, and 10 participants are instructed to
choose the most visually pleasing SR result from five dif-
ferent models. The results show that approximately 40% of
the participants preferred the images generated by our CAL-
GAN, indicating superior visual quality compared to other

0 1 2 3 4 5 6 7 8 9 10 11

(a) Image A (b) Image B

Figure 4: Distribution of differently routed features. We visual-
ize the t-SNE [46] plots on two individual images. Each data point
refers to a spatial feature from the discriminator, i.e., F∗

i (x, y).
Different colors indicate different classes learned from our class-
aware local discriminator.

methods. While our CAL-GAN may not achieve the best
PSNR and SSIM scores on various benchmarks, the user
preference study confirms that these metrics are not always
strongly correlated with human perception of image quality.

4.2. Visualizing content-aware features

We visually analyze the learned discriminator features to
demonstrate how our routing module works. As shown in
Figure 3, every pixel in the feature map is assigned to a cer-
tain class based on its content. Specifically, patches in the
plain area, e.g., sky, are labeled with red, while regions with
detailed textures are marked with blue and black. The vi-
sualization validates that the proposed routing strategy can
effectively discriminate image semantics without requiring
any ground-truth class labels. Also, the assigned labels are
well-balanced due to our balancing loss. Furthermore, we
adopt the t-SNE [46] plot to show that features with dif-
ferent indices form distinct clusters as shown in Figure 4.
The above analysis justifies that our routing module can as-
sign proper labels to each local feature by image context
and group them into the same category.

4.3. Effect of the proposed loss combination

Table 3 provides a quantitative analysis of our loss func-
tions: balancing loss Lb, orthogonal loss Lo, and distribu-
tion loss Ldist. Our CAL-GAN achieves the best perceptual
scores when using all three terms together. Visualization in
Figure 5 further provides insight regarding the role of each
loss function. When the balancing loss Lb is not used, a
load-imbalance issue occurs, and only a few classifiers are
used during training. Specifically, our routing module can
separate a forward object and background to some extent,
but the class diversity decreases significantly, as shown in
Figure 5b. Without the orthogonal loss Lo, we can observe
patch-like artifacts as shown in Figure 5c. While the dis-
criminator can group neighboring contents that have similar
properties, the lack of orthogonality cannot guarantee that
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Lb Lo Ldist LPIPS↓ DISTS↓ FID↓

✗ ✓ ✓ 0.100 0.053 13.660
✓ ✗ ✓ 0.109 0.057 13.807
✓ ✓ ✗ 0.106 0.052 14.046
✓ ✓ ✓ 0.091 0.049 11.772

Table 3: Comparison of models on DIV2K validation set with
subtracting proposed loss functions. The cross marker (✗) indi-
cates that the corresponding loss is not used for training.

(a) ISR (b) w/o Lb (c) w/o Lo (d) w/o Ldist (e) Ours

Figure 5: Visualization of the routing mask R under different
loss combinations. Same as Figure 3, different colors in the mask
map indicate different one-hot vectors R.

different categories can represent independent information.
Finally, when we do not include the distribution loss Ldist to
our training objective, features in different subsets cannot
be distinguished as they are mixed in the high-dimensional
manifold. Figure 5d illustrates that the estimated mask R
looks like noise rather than representing low-level context.
Our CAL-GAN is trained using all three terms together and
therefore predicts well-balanced class labels which deliver
low-level color and texture information of the given image
as shown in Figure 5e.

4.4. Analyzing our discriminator design

The discriminator plays a significant role in our CAL-
GAN. Therefore, we perform an extensive ablation about
the relationship between its design and SR performance.
The number of classifiers. First, Table 4 compares dis-
criminators with the different numbers of classifiers N . We
note that N = 1 corresponds to a standard GAN config-
uration, which performs the worst in terms of perceptual
metrics, i.e., LPIPS, DISTS, and FID. Using N = 8 or 12
classifiers yield the best results, while the minimum FID is
achieved when N = 12. Since each classifier will receive
fewer training samples and be too specific with much larger
N , increasing the number of classifiers to over N = 16
does not bring a performance gain compared to N = 12.
Therefore, we use N = 12 classifiers in our framework.
Patch size. According to Isola et al. [18], it is beneficial for
the discriminator to assign a single class to p×p pixels in the
input image. In our design, the patch size p is determined
by the size of discriminator feature F∗. While we use p = 4
throughout the main manuscript, other design choices are
also available. Table 5 shows how the patch size p affects
to the SR performance. Using p = 4 brings the best percep-
tual scores, and densely labeling all the pixels (p = 1) has
the worst performance due to the classification noise. Al-

# of classifiers N 1 4 8 12 16

LPIPS 0.110 0.106 0.091 0.091 0.098
DISTS 0.056 0.052 0.051 0.049 0.050

FID 13.953 13.369 12.965 11.772 12.520

Table 4: Effects of number of classifiers on DIV2K (val).

patch size 1 4 8 16

LPIPS 0.104 0.091 0.098 0.099
DISTS 0.060 0.049 0.055 0.055

FID 14.116 11.772 13.630 13.614

Table 5: Effects of patch size on DIV2K (val).

Dataset Set5 Set14 BSD100 Urban100 General100 DIV2K (val)

Segmentation-based 0.106 0.166 0.233 0.167 0.116 0.137
Content-based (Ours) 0.061 0.131 0.151 0.108 0.077 0.091

Table 6: LPIPS comparison with segmentation-based routing.

though larger patch sizes have advantages in training-time
computational costs, the performance decreases with p = 8
or p = 16. The performance degradation happens because
assigning a single label to a broader content with mixed fre-
quency components is more challenging. Thus, we select
p = 4 in our final design.

4.5. Effect of the learned routing strategy

The proposed content-aware local discriminator learns
to classify patches of different distributions without hand-
crafted class labels. As visualized in Figure 3 and Fig-
ure 5, the learned assignments group similar contents and
colors together. To validate the effectiveness of the pro-
posed approach, we compare the learned labels with predic-
tions from a pre-trained segmentation model. Since DIV2K
dataset does not provide segmentation labels, we apply pre-
trained Mask-RCNN [15] to get pseudo labels for the train-
ing samples. For fair comparison, we introduce COCO [31]
dataset and manually reorganize the existing 80 classes into
12 high-level classes. For example, we group {horse, ze-
bra} and {handbag, suitcase} together, respectively. Table 6
shows that our CAL-GAN achieves perceptually better re-
sults than segmentation-based routing.

While segmentation-based routing can consider high-
level semantics, we have discovered some possible limita-
tions. First, the pre-trained segmentation model does not
perform well on high-quality DIV2K images and provides
incorrect routing due to domain mismatch. We note that it
is not suitable to use COCO images to train the SR model
instead, as they contain lots of noise. Also, semantically
the same pixels may not have the same low-level property.
Specifically, a door and tire belong to the same class, ‘car,’
but their contents and textures vary. On the other hand,
our routing strategy can group pixels with similar low-level
characteristics, e.g., contents and colors, without requiring
ground-truth labels for training.
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Synthetic dataset

(a) Bicubic (b) ESRGAN (c) USRGAN (d) SPSR (e) LDL (f) Ours (g) HR
Real dataset

(a) Bicubic (b) BSRGAN (c) RealESRGAN (d) LDL (e) CAL-GAN (Ours)

Figure 6: Qualitative comparison on ×4 SR with state-of-the-art methods.

5. Conclusion
In this work, we propose a novel GAN framework, CAL-

GAN, which utilizes a mixture of classifiers (MoC) to ad-
dress the challenges of handling complex natural image
distribution in perceptual SR. While previous GAN-based
SR methods learn the distribution of real and fake images
unconditionally, our method enables multiple classifiers to
learn and distinguish specialized distribution based on its
content using innovative loss formulations. Our exten-
sive experiments demonstrate that using multiple classifiers
leads to superior handling of complicated natural image dis-
tribution in SR and can be extended to other image restora-

tion tasks such as deblurring and denoising.
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