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Abstract

Test-time adaptation (TTA) aims to adapt a pre-trained
model to the target domain in a batch-by-batch manner dur-
ing inference. While label distributions often exhibit im-
balances in real-world scenarios, most previous TTA ap-
proaches typically assume that both source and target do-
main datasets have balanced label distribution. Due to the
fact that certain classes appear more frequently in certain
domains (e.g., buildings in cities, trees in forests), it is natu-
ral that the label distribution shifts as the domain changes.
However, we discover that the majority of existing TTA
methods fail to address the coexistence of covariate and la-
bel shifts. To tackle this challenge, we propose a novel label
shift adapter that can be incorporated into existing TTA ap-
proaches to deal with label shifts during the TTA process
effectively. Specifically, we estimate the label distribution
of the target domain to feed it into the label shift adapter.
Subsequently, the label shift adapter produces optimal pa-
rameters for target label distribution. By predicting only
the parameters for a part of the pre-trained source model,
our approach is computationally efficient and can be eas-
ily applied, regardless of the model architectures. Through
extensive experiments, we demonstrate that integrating our
strategy with TTA approaches leads to substantial perfor-
mance improvements under the joint presence of label and
covariate shifts.

1. Introduction
Despite the recent remarkable improvement of deep neu-

ral networks in various applications, the models still suffer
from distribution shifts between source distribution and tar-
get distribution. One type of distribution shift, known as
covariate shift, occurs when the target distribution pt(x)
differs from the source distribution ps(x). In autonomous
driving, for instance, models may degrade significantly dur-
ing testing due to ambient factors such as weather and lo-
cation. To design the models robust to covariate shifts, un-
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Figure 1. We consider the test-time adaptation scenario, when co-
variate and label shifts occur simultaneously. After deploying
the pre-trained model, the model is adapted to the target domain.
However, existing methods often suffer from the coexistence of
covariate and label shifts. Employing our method enables online
adaptation under shifted target label distributions.

supervised domain adaptation literature [9, 10, 23, 19] has
explored the transfer of knowledge learned from labeled
source data to unlabeled target data.

To be more practical in real-world scenarios, test-time
adaptation (TTA) algorithms [46] have emerged to enhance
practicality in real-world scenarios by adapting deep neu-
ral networks to the target domain during inference. Specif-
ically, TTA approaches optimize the model parameters
batch-by-batch using unlabeled test data, avoiding addi-
tional labeling costs. Previous TTA studies have mitigated
the performance degradation caused by covariate shift by
enhancing normalization statistics [41, 11, 24], optimizing
model parameters with entropy minimization [46, 35], or
utilizing pseudo labels [20].

Although the natural data encountered in practice often
exhibits long-tailed label distribution, most previous TTA
methods assume that the model is trained on class-balanced
data. This assumption overlooks another type of distribu-
tion shift, known as label shift, in which label distribu-
tion varies between source ps(y) and target pt(y). Label
shift has been studied extensively in the long-tailed recog-
nition literature [18, 6, 8, 15]. Considering only one type
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Figure 2. Plots of accuracy with different degrees of label shift in
CIFAR-10-C [14]. Although we train source model using balanced
softmax [39], most TTA baselines show lower performance than
source model, when label shift is severe. On the other hand, our
method is more robust to label shifts than other TTA methods.

of distribution shifts in real-world scenarios is infeasible, as
both covariate and label shifts frequently occur simultane-
ously [29, 22]. For example, different object classes such
as buildings and trees are more prevalent in certain environ-
ments, such as cities or forests.

We found that the majority of existing TTA approaches
fail to adapt the pre-trained model when it is trained on
a long-tailed dataset. This is because most TTA methods
that employ entropy minimization [46, 35, 11, 7, 24] are
flawed due to the model bias towards the dominant classes
in source data. In other words, since the predictions on
test samples are often biased toward the majority classes of
training data, utilizing entropy minimization would lead the
model to increase its confidence in predicting the dominant
classes. While some recent TTA studies have addressed
similar challenging issues, such as temporally correlated
test data [11] and class-imbalanced test samples [53], they
do not cover the situation where the source domain data has
a long-tailed label distribution, which can lead to bias in
the source model. Furthermore, we observed that training
the source model on a long-tailed dataset with long-tailed
recognition techniques, such as balanced softmax [39], is
insufficient to stabilize TTA algorithms, as shown in Fig. 2.

To tackle such a non-trivial issue, we propose a novel la-
bel shift adapter, which is designed to adapt the pre-trained
model according to the label distribution during inference.
Before deploying the model to the server, we train the label
shift adapter with a pre-trained source model, which takes
the label distribution as input. The label shift adapter is op-
timized to produce the optimal parameters according to the
label distribution. To make our method applicable to any
model architecture, we design the label shift adapter to pre-
dict only the parameters associated with a part of the source
model. After model deployment, we estimate the label dis-
tribution of target domain data for injecting the appropriate

input into the label shift adapter during inference. More-
over, our proposed method can be easily integrated with
TTA methods such as TENT [46] and IABN [11] to adapt
the model to the target domain. Combining TTA approaches
with the proposed label shift adapter enables robust model
adaptation to the target domain, even in the presence of co-
variate and label shifts simultaneously. Through extensive
experiments, we demonstrate that our method outperforms
the existing TTA methods when both source and target do-
main datasets have class-imbalanced label distributions.

In summary, the main contributions are as follows:

• We introduce a novel label shift adapter that produces
the optimal parameters according to the label distribu-
tion. By utilizing the label shift adapter, we can de-
velop a robust TTA algorithm that can handle both co-
variate and label shifts simultaneously.

• Our approach is easily applicable to any model regard-
less of the model architecture and pre-training process.
It can be simply integrated with other TTA algorithms.

• Through extensive experiments on six benchmarks,
we demonstrate that our method enhances the perfor-
mance significantly when source and target domain
datasets have class-imbalanced label distributions.

2. Related Work
Source-Free Domain Adaptation. Unsupervised domain
adaptation (UDA) methods have been widely applied in
cross-domain applications such as classification [9, 10], ob-
ject detection [51], and semantic segmentation [55]. How-
ever, UDA approaches require access to both source and tar-
get domains simultaneously. This restriction makes these
approaches frequently impractical due to computational
costs and data privacy concerns. On the other hand, source-
free domain adaptation (DA) [23, 19] overcomes this limi-
tation by adapting a pre-trained model to the target domain
using only unlabeled target data. However, existing source-
free DA methods barely consider label shifts, which limits
their applicability in real-world scenarios.
Domain Adaptation for Label Shift. Several methods [3,
28, 43, 17, 29, 22] have been developed to investigate a
more realistic scenario of domain adaptation in which co-
variate and label shifts co-occur. To alleviate label shift,
previous studies employ the re-weighting method [3, 28]
by estimating target domain label distribution. Recent ap-
proaches employ an alternative training scheme [29] and a
secondary pseudo label [22] to alleviate label shifts in un-
supervised domain adaptation. However, it is challenging
to adapt the model to the target domain in real time using
these methods. Therefore, we focus on addressing such co-
existence of covariate and label shifts in the TTA setting.
Test-Time Adaptation. Fully test-time adaptation [46]
aims to improve model performance on target domain data

16422



through adaptation with unlabeled test samples during in-
ference. Previous work [41] improves the robustness under
covariate shift by using the statistics of test batch in nor-
malization layer. TENT [46] further optimizes affine pa-
rameters of batch normalization layers using entropy mini-
mization. Before the pre-trained model deployment to the
server, several approaches train additional modules to ap-
propriately interpolate training and test statistics [56, 24] or
regularize the model parameters [7] for TTA. Recent sev-
eral studies [4, 11, 53] address the model to be more robust
under non-i.i.d or class-imbalanced test samples. However,
they assume that the source domain datasets are balanced,
where the pre-trained model is not biased towards the dom-
inant classes due to the class-imbalanced label distribution.
Different from the existing studies, our research tackles the
cases in which both source and target domain datasets are
class-imbalanced, which is more challenging and practical.
Long-Tailed Recognition. It is natural that datasets have
long-tailed distributions in the real world. Previous stud-
ies addressed this issue by altering loss functions [25, 8,
6, 40, 21], adjusting logits [33, 39], and employing mul-
tiple experts that are specialized in different label distri-
butions [49, 54, 52]. Recently, several studies such as
LADE [15], SADE [52], and BalPoE [1] have introduced
test-agnostic long-tailed recognition, where the training la-
bel distribution is long-tailed while the test label distribu-
tion is agnostic. However, LADE needs the true test label
distribution to adjust the logits, and SADE and BalPoE re-
quire multiple expert architectures. Due to these aspects,
they are difficult to apply the TTA algorithms. Inspired by
such studies, we design a novel label shift adapter, which
has the capability to handle unknown test label distribution
using training long-tailed distribution. In contrast to previ-
ous methods, our method is applicable to any model regard-
less of its architecture and can be employed without true
test label distribution. In this paper, we focus on handling
the label shifts in TTA setting.
Predicting Weights. A hypernetwork [12] is a deep neu-
ral network to produce the weights of another neural net-
work. Hypernetworks have been developed for federated
learning [42], multi-task learning [34, 26, 31], and contin-
uous learning [45, 5]. Moreover, adapter layers between
existing layers of the model have been proposed for fine-
tuning [27, 16]. The key functional difference is that our
method produces the parameters to handle the label shifts.

3. Method

3.1. Problem Formulation

In the TTA task, labeled samples from the source domain
Ds = {(x, y) ∼ ps(x, y)} and unlabeled samples from the
target domain Dt = {x ∼ pt(x)}. TTA aims to predict
the labels of target domain samples by updating the source

model to the target model during inference. Specifically,
under the TTA scheme, the model receives a mini-batch xt

of test samples in the t-th inference step.
Generally, previous TTA literature assumes only covari-

ate shift, where ps(x) ̸= pt(y). In other words, the existing
TTA methods only consider class-balanced datasets in train-
ing and testing. Different from previous works, we assume
the joint presence of covariate and label shifts [17, 43, 22]:
ps(x) ̸= pt(x) and ps(y) ̸= pt(y), which is more practi-
cal and natural in real-world scenarios. In particular, when
ps(y) has long-tailed label distribution, TTA methods are
flawed, despite leveraging long-tailed recognition methods.
It is due to the fact that most TTA methods are not able to
reduce the model’s bias toward the majority classes. Our
goal is to design a novel method for TTA that can perform
stably regardless of ps(y) and pt(y), while the model can
be adapted during inference.

3.2. Label Shift Adapter

In this paper, we propose a novel label shift adapter for
TTA to handle label distribution shifts in TTA. Entropy min-
imization [46, 35, 7, 11, 24] is widely used for TTA to op-
timize the model with unlabeled test samples during infer-
ence. Intuitively, entropy minimization makes individual
predictions confident. During test time, entropy minimiza-
tion loss is utilized as follows:

Lent = −
∑

x∼pt(x)

f(x) log f(x), (1)

where f denotes a model f : x → y. However, if the
pre-trained source model f(x) is biased toward the majority
classes due to the long-tailed label distribution of Ds, the
predictions on test samples also would be biased towards
the majority classes in Ds regardless of label distribution of
Dt. In other words, it is not appropriate to minimize under
the shifted label distribution because the model prediction
estimates ps(y|x), which is strongly coupled with ps(y) and
may differ from pt(y), as explained by the Bayes’ rule [15]:

ps(y|x) =
ps(y)ps(x|y)

ps(x)
=

ps(y)ps(x|y)∑
c ps(c)ps(x|c)

, (2)

where c denotes the class index.
To address diverse pt(y) trained with a long-tailed distri-

bution ps(y), recent long-tailed recognition methods [52, 1]
have proposed the training strategy utilizing the multiple di-
verse experts, which are specialized in handling different la-
bel distributions, such as long-tailed and uniform label dis-
tributions. However, these approaches are not directly ap-
plicable to TTA setting, as they are designed for multiple-
expert model architectures. Inspired by this strategy, we
aim to develop the model f that is suitable for TTA by dy-
namically adapting the model f to diverse target label dis-
tributions pt(y). Therefore, we introduce a novel label shift
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Figure 3. Overview of the proposed method. (a) We take a frozen pre-trained source model trained with Ds. (b) Before model deployment,
we train a label shift adapter with a frozen source pre-trained model. (c) After model deployment, we adapt the model to the target domain
by integrating the label shift adapter into other TTA algorithms.

adapter that can produce the optimal parameters according
to label distribution during inference while it is applicable
to any model regardless of model architecture.

Fig. 3 shows the overview of the proposed method. Our
method consists of three stages. First, our method takes the
pre-trained source model in an off-the-shelf manner. Before
model deployment, we train the label shift adapter with the
frozen pre-trained model, which produces optimal param-
eters depending on the label distribution. Then, our label
shift adapter can be integrated into other TTA algorithms,
such as TENT [46], after model deployment. In specific,
we optimize the affine parameters in the normalization lay-
ers of a feature extractor while adapting the model to the
target label distribution pt(y) by estimating the label distri-
bution of Dt during inference.
Label Shift Adapter. Before training a label shift adapter,
we pre-train a model f : x → y using a source domain
data Ds, where the model consists of a feature extractor Fθ

and a classifier weights W ∈ Rd×C , b ∈ R1×C . C and d
denote the number of classes and channel of the output h ∈
R1×d of the feature extractor, respectively. As several TTA
methods [7, 56, 24] include an additional stage for training
extra components, the label shift adapter is trained with the
frozen pre-trained model before model deployment.

The label shift adapter Gϕ receives the label distribution
π ∈ RC as conditional input. For applicability and effi-
ciency, we design the label shift adapter to generate the pa-
rameters for a part of the model. With π, the label shift
adapter Gϕ predicts affine parameters γh ∈ R1×d, βh ∈
R1×d and the weight difference ∆W ∈ Rd×C ,∆b ∈ R1×C

for the classifier weights W, b. The affine parameters γh and
βh are applied to the hidden feature map h, which is the out-
put of the feature extractor: h = Fθ(x). Then, we compute
the output ŷ using W + ∆W and b + ∆b. Formally, ŷ is
computed in the classifier layer as follows:

ŷ = (γhh+ βh) · (W +∆W ) + (b+∆b). (3)

Objective Function. The label shift adapter aims to cre-

Figure 4. Visualization for understanding τ in a generalized logit
adjusted loss. By adjusting τ , we can control the bias during train-
ing. As τ increases, the decision boundary

ate the optimal parameters depending on the label distribu-
tion π. During training the label shift adapter, we sample π
based on πs, which is the label distribution of Ds.

To optimize the label shift adapter, we employ a gener-
alized logit adjusted loss [33, 1], which incorporates a con-
trolled bias during training:

Lgla = −
∑

(xi,yi)∼Ds

yi log σ(ŷi + τ log πs), (4)

where σ denotes a softmax function. ŷi indicates the output
logits before computing the softmax function. τ ∈ R1 is a
scalar value for controlling the bias towards different parts
of the label distribution. We sample π at each iteration dur-
ing the label shift adapter training. Specifically, the label
distribution π is sampled from three types of label distribu-
tion {πs, u, π̄s}, where π̄s indicate inverse label distribution
that is obtained by inverting the order of training label dis-
tribution πs. u denotes uniform label distribution. We select
the appropriate τ for sampled label distribution π, where we
set the hyperparameter τ matching each π ⊂ {πs, u, π̄s}.
For example, if πs is sampled for π, τ is set to 0, resulting in

16424



the use of a cross-entropy loss. On the other hand, τ is set to
1 and 2 for u and π̄s, respectively, which correspond to the
balanced softmax [39] and inverse softmax [52] that simu-
late uniform and inverse label distributions. Intuitively, as τ
increases, the decision boundary moves away from minority
classes and towards the majority classes [33, 1], as shown in
Fig. 4. Technically, it is possible to sample π in continuous
label space instead of discrete label distributions. However,
we found that sampling three distinctive label distributions
is empirically sufficient to train the label shift adapter.
Test-Time Adaptation. After model deployment, we adapt
the pre-trained model f using test samples xt at t-th infer-
ence step. In specific, our method updates affine parameters
γ, β in normalization layers of feature extractor Fθ. With
t-th test samples xt, the model minimizes the prediction en-
tropy, following the previous work [46].

However, minimizing the entropy of the predictions ŷt
is insufficient to adapt the model when label shift occurs.
Therefore, the label shift adapter creates a part of parame-
ters (i.e., γh, βh,∆W , and ∆b) of f depending on estimated
label distribution Ŷ . To estimate the label distribution Ŷ of
Dt, we employ an exponential moving average. To be spe-
cific, the estimated target label distribution Ŷt at t-th step is
updated recursively:

Ŷt =

{
u, if t = 0

αȳt + (1− α)Ŷt−1, if t > 0
, (5)

where α ∈ [0, 1] denotes the momentum hyper-parameter,
ȳt = 1

nt

∑nt

i=1 ŷ
i
t is the average model prediction on test

samples xt at the t-th step. We initialize Ŷ as u ∈ RC ,
which is a uniform distribution vector: u[c] = 1

C , c =
1, 2, · · · , C. Based on estimated target label distribution
Ŷt−1, the label shift adapter produces the optimal param-
eters. With Ŷt−1, we can adapt the model to the target do-
main using the refined entropy minimization as follows:

Lent = −
∑

x∼pt(x)

f(x;Gϕ(Ŷ)) log f(x;Gϕ(Ŷ)), (6)

where the estimated label distribution Ŷ is fed into the label
shift adapter Gϕ to handle label distribution shift, and the
generated parameters from Gϕ adjusts the model f as shown
in Eq. 3. Intuitively, while our strategy adapts the model
to the target label distribution, entropy minimization boosts
the confidence of correct classes.
Techniques for Label Shift Adapter. In long-tailed recog-
nition literature [18, 2], it is known that the classifier layer
plays an essential role in resolving the label shifts. Based
on this intuition, we have designed the label shift adapter
to produce the parameters only for the parts associated with
the classifier layer. Specifically, ∆W and ∆b is the weight
difference of W and b, and γh and βh shift the feature vec-
tor h properly. By predicting only a small portion of the

model instead of predicting the entire model weights, our
label shift adapter offers various benefits. Our label shift
adapter is readily applicable to any pre-trained models, re-
gardless of the model architecture. Moreover, this strategy
is computationally efficient, as the label shift adapter re-
quires negligible extra computational costs.

We discovered that it is more effective to utilize a map-
ping vector m ∈ RC to make the label distribution π a
scalar, instead of directly using label distribution π as the
input of the label shift adapter. In specific, m⊺π ∈ R1 is
fed into label shift adapter, instead of π. Here, the mapping
vector is the class-wise coefficients that increase in propor-
tion to the order of class frequency in the training set. Em-
pirically, this strategy makes the label shift adapter training
more stable. Instead of using a complex label space as a
condition, this technique feeds the degree of imbalance to
label shift adapter, which can easily interpret the condition.
Rationale behind Label Shift Adapter. Label shift adapter
plays a crucial role in handling label shifts by adjusting the
parameters based on the estimated label distribution at test
time. Since the label distribution in the target domain is un-
known, it is possible to train the label shift adapter by sim-
ulating various label distributions using the source domain
dataset. By virtue of this process, the label shift adapter can
learn to produce appropriate parameters based on the label
distribution. Since the label distribution in the target domain
is unknown, it is possible to train the adapter by simulating
various label distributions using the source domain dataset.
Moreover, this approach also allows for the effective han-
dling of biases caused by the label distribution of the source
domain dataset. This is why transferring the model from the
source domain to the target domain proves to be an effective
approach.

4. Experiments

4.1. Experiment Setup

We evaluate the effectiveness of our proposed method
on six datasets widely used in domain adaptation literature.
In contrast to the traditional TTA setting, we utilize imbal-
anced versions of the datasets for training and evaluation.
CIFAR-10&100 and ImageNet [6, 14]. For the training
set of the source domain, we utilize CIFAR-10-LT, CIFAR-
100-LT [6], and ImageNet-LT [30], which are the long-
tailed version of CIFAR-10, CIFAR-100 and ImageNet, fol-
lowing the protocol in long-tailed recognition work. Note
that the imbalance ratio ρ is defined as ρ = maxi ni

mini ni
, where

ni denotes the number of class i samples in the dataset. In
our experiments, the imbalance ratio of CIFAR-10-LT and
CIFAR-100-LT is set to 100. ImageNet-LT is obtained by
sampling from ImageNet using a Pareto distribution with
α = 6 [30], following the previous work. The categories
in the training set of ImageNet-LT contain between 5 and
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Method
CIFAR-10-C CIFAR-100-C

Forward-LT Uni. Backward-LT Avg. Forward-LT Uni. Backward-LT Avg.
50 25 10 1 10 25 50 50 25 10 1 10 25 50

Source 56.78 55.27 52.82 44.74 37.28 34.78 33.88 45.08 33.53 31.95 29.36 22.14 14.98 12.37 11.12 22.21

BN Stats 78.60 76.21 71.77 53.19 35.00 28.62 25.18 52.65 49.03 46.61 42.92 31.30 20.07 16.09 13.86 31.41
ONDA 77.93 75.94 72.34 55.28 37.71 31.76 28.64 54.23 48.30 46.52 42.82 31.77 20.58 16.55 14.41 31.57
PseudoLabel 79.39 76.40 71.37 47.90 30.68 24.95 22.61 50.47 50.80 48.24 43.56 25.51 17.03 14.28 11.99 30.20
LAME 58.27 55.88 52.27 41.60 34.14 32.15 31.54 43.69 32.63 30.99 28.12 20.81 13.94 11.58 10.29 21.19
CoTTA 80.45 77.86 73.12 53.75 33.89 27.80 24.01 52.98 48.32 45.71 42.30 30.42 21.65 18.14 16.33 31.84
NOTE 76.27 74.79 72.18 61.98 53.13 50.94 49.45 62.68 44.52 43.15 40.52 34.25 23.92 20.60 19.11 32.30

TENT 80.36 76.99 71.28 43.65 28.64 23.01 20.32 49.18 51.74 49.24 44.05 21.30 15.86 13.40 11.25 29.55
+Ours 80.39 78.03 73.35 53.91 37.85 32.83 30.32 55.24 52.43 50.17 46.07 33.27 21.23 17.12 15.13 33.63

+0.03 +1.04 +2.06 +10.25 +9.21 +9.82 +10.00 +6.06 +0.69 +0.93 +2.02 +11.98 +5.37 +3.72 +3.87 +4.08

IABN 76.23 74.84 72.22 62.22 53.29 50.88 49.69 62.77 44.79 43.24 40.63 34.01 23.95 20.67 19.16 32.35
+Ours 80.58 78.62 75.26 63.34 68.54 70.07 71.64 72.58 52.06 49.71 46.03 36.84 29.29 26.33 25.50 37.97

+4.35 +3.78 +3.04 +1.12 +15.24 +19.20 +21.95 +9.81 +7.26 +6.47 +5.40 +2.83 +5.34 +5.67 +6.33 +5.62

Table 1. Comparison of accuracy on CIFAR-10-C and CIFAR-100-C. The source model is trained with CIFAR-10-LT and CIFAR-
100-LT. We report the average accuracy of 15 corruption types on various test label distributions. Uni. indicates the uniform distribution.
Numbers under Forward-LT and Backward-LT denote the imbalance ratio. We integrate our method into TENT [46] and IABN [11].

Method Forward-LT Uni. Backward-LT Avg.
50 25 10 1 10 25 50

Source 26.15 25.64 24.67 21.46 18.28 17.07 16.56 21.40

BN Stats 39.47 38.89 37.71 33.63 29.48 28.07 27.20 33.49
ONDA 39.45 38.83 37.71 33.56 29.33 28.01 26.96 33.41
PseudoLabel 41.46 40.78 39.31 33.49 29.79 28.36 27.67 34.41
LAME 26.08 25.57 24.58 21.37 18.20 17.01 16.48 21.33
CoTTA 40.22 39.81 39.10 35.40 30.21 28.72 27.65 34.44
NOTE 42.43 41.65 40.36 35.17 30.99 29.14 28.17 35.41

TENT 39.40 38.73 37.27 29.05 29.31 28.26 27.28 32.76
+Ours 44.52 43.03 40.86 34.18 31.32 31.21 31.28 36.63

+5.12 +4.30 +3.59 +5.14 +2.01 +2.94 +3.99 +3.87

IABN 42.44 41.69 40.39 35.20 31.02 29.20 28.22 35.45
+Ours 46.88 45.16 42.68 35.72 33.18 32.91 33.17 38.53

+4.44 +3.47 +2.29 +0.52 +2.16 +3.71 +4.95 +3.08
Table 2. Comparison of accuracy on ImageNet-C. We report the average accuracy of 15 corruption types on various test label distribu-
tions. Uni. indicates the uniform distribution. Numbers under Forward-LT and Backward-LT denote the imbalance ratio.

1280 samples, with an imbalanced ratio set to 256. For eval-
uation, we utilize three corrupted test sets: CIFAR-10-C,
CIFAR-100-C, and ImageNet-C [14], which consist of 15
corruption types at five severity levels. The severity level is
set to 5 and 3 for CIFAR-C and ImageNet-C, respectively.

Following the test-agnostic long-tailed recognition set-
ting [15, 52], the models are evaluated on multiple subsets
of test datasets that follow different label distributions. We
construct three types of test label distributions as follows:
(i) Forward distribution: as the imbalance ratio increases, it
becomes similar to the training label distribution. (ii) Uni-
form distribution: a class-balanced test dataset. (iii) Back-
ward distribution: the order of classes is reversed, causing
it to deviate more from the training distribution, as the im-
balance ratio increases. Note that the degree of label shifts
increases from Forward to Backward.

VisDA-C [38]. VisDA-C is a challenging large-scale bench-

mark whose training data is synthesized through 3D model
rendering, and its test data is sampled from the real world.
The dataset contains 12 categories. We utilize an imbal-
anced dataset VisDA-C (RSUT), where source and target
domains are subject to two reverse Pareto distributions, fol-
lowing the previous work [43]. Here, RSUT denotes the
combination of Reversely-unbalanced Source (RS) and Un-
balanced Target (UT) distribution. The label distributions
of RSUT are described in the supplementary.

OfficeHome [44]. This dataset comprises four domains,
each consisting of 65 categories. We also employ Office-
Home (RSUT) [43], which is created by the same protocol
as VisDA-C (RSUT). Since the artistic domain in Office-
Home is too small to sample an imbalanced subset, we only
utilize the remaining three distinct domains (e.g., Clip Art,
Product, and Real-World), as prior work [22].

DomainNet [37]. We employ a subset of DomainNet [43],
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Method VISDA-C

Source 51.45

BN Stats 49.33
ONDA 50.68
PseudoLabel 49.50
LAME 50.72
CoTTA 49.88
NOTE 49.37

TENT 48.68
+Ours 72.97

+24.29
Table 3. Comparison of accuracy on
VisDA-C (RSUT).

Method C→P C→R P→C P→R R→C R→P Avg.

Source 45.39 44.53 32.94 64.33 40.22 68.92 49.39

BN Stats 44.30 48.27 35.63 62.17 40.73 62.20 48.88
ONDA 44.84 47.57 35.20 62.09 40.61 63.83 49.02
PseudoLabel 47.98 49.34 37.71 62.42 39.38 63.21 50.01
LAME 41.68 42.27 32.40 63.57 37.92 66.94 47.46
CoTTA 44.46 48.19 35.63 62.34 40.73 62.20 48.92
NOTE 43.02 42.38 38.64 61.69 41.40 64.33 48.58

TENT 49.60 49.51 38.96 63.08 41.25 64.52 51.15
+Ours 49.60 53.13 37.81 66.45 41.35 68.35 52.78

0.00 +3.62 -1.15 +3.37 +0.10 +3.83 +1.63
Table 4. Comparison of accuracy on three domains of Officehome (RSUT): C: Clipart, P:
Product, R: Realworld.

Method C→P C→R C→S P→C P→R P→S R→C R→P R→S S→C S→P S→R Avg.

Source 52.73 74.87 52.15 58.42 81.22 61.82 66.03 69.58 55.31 63.92 59.68 75.43 64.26

BN Stats 56.81 77.05 54.10 63.63 81.12 60.22 67.38 70.00 56.84 71.75 68.72 80.18 67.32
ONDA 56.82 78.32 54.81 63.99 81.79 61.86 67.14 70.09 58.11 71.60 69.34 80.77 67.89
PseudoLabel 61.81 77.43 56.25 62.56 81.64 62.04 71.06 73.89 58.49 71.81 70.38 80.12 68.96
LAME 49.20 72.45 48.69 57.81 80.09 60.85 65.25 68.19 53.97 61.00 55.66 73.25 62.20
CoTTA 56.88 77.33 54.18 63.69 81.31 60.26 67.44 70.07 57.14 71.69 68.85 80.56 67.45
NOTE 55.38 74.15 57.98 65.59 81.66 64.65 71.29 73.32 63.28 72.28 68.31 80.25 69.01

TENT 63.26 77.10 59.76 66.69 80.02 64.32 71.88 74.34 62.25 73.13 72.64 78.73 70.34
+Ours 63.26 81.11 60.39 67.38 82.99 67.23 71.88 74.83 64.40 71.88 71.56 82.67 71.63

0.00 +4.01 +0.63 +0.69 +2.97 +2.91 0.00 +0.49 +2.15 -1.25 -1.08 +3.94 +1.29
Table 5. Comparison of accuracy on four domains of DomainNet: C: Clipart, P: Painting, R: Real, S: Sketch.

comprising 40 categories from four domains: Real, Clipart,
Painting, and Sketch. As the label shift between these do-
mains is inherent, we did not need to modify the label distri-
bution of the dataset. The visualization of label distribution
in DomainNet are illustrated in the supplementary.
Baseline Methods. Note that we utilize the pre-trained
model trained using balanced softmax [39], which is a
widely used long-tailed recognition approach. Source indi-
cates the pre-trained model with the source data using bal-
anced softmax. We compare our method with the follow-
ing TTA baselines: BN stats [41], ONDA [32], PseudoLa-
bel [20], LAME [4], CoTTA [47], TENT [46], IABN [11],
and NOTE [11]. Note that IABN is a normalization layer
introduced in the NOTE paper. Since NOTE has been pro-
posed for temporally correlated test samples, IABN layer
has the capability to handle the class-imbalance in a batch.
Implementation Details. We utilize ResNet-18 [13]
as the backbone for CIFAR-10 and CIFAR-100, and
ResNeXt [50] for ImageNet. We also employ ResNet-50 for
OfficeHome and DomainNet, and ResNet-101 for VisDA-
C, which are pre-trained on ImageNet. For fair compar-
isons, the same architecture and optimizer are utilized for
all TTA baselines. In all experiments, the source domain
model is trained using Balanced softmax [39], a representa-
tive long-tailed recognition method. During inference, the
batch size is set to 64 in all experiments. Further details

Dataset Prior Forward-LT Uni. Backward-LT Avg.
50 25 10 1 10 25 50

CIFAR-10-C ✗ 80.58 78.62 75.26 63.34 68.54 70.07 71.64 72.58
✓ 81.58 79.05 75.17 69.55 68.65 70.51 72.86 73.91

CIFAR-100-C ✗ 52.06 49.71 46.03 36.84 29.29 26.33 25.50 37.97
✓ 53.59 50.95 46.96 37.17 29.79 27.46 27.03 38.99

ImageNet-C ✗ 46.88 45.16 42.68 35.72 33.18 32.91 33.17 38.53
✓ 47.71 45.69 42.98 36.02 32.95 32.65 33.23 38.75

Table 6. Comparison between estimated label distribution and
target prior on CIFAR-10-C, CIFAR-100-C, and ImageNet-C.
Prior indicates that the true target label distribution is utilized as
prior knowledge for label shift adapter, instead of estimated label
distribution. We conduct the experiments using IABN+Ours [11].

regarding the hyperparameters for each baseline and our
method are described in the supplementary.

4.2. Results on Corruption Data

Table 1 reports the average accuracy on 15 corruption
types in CIFAR-10-C and CIFAR-100-C. The results on
each target domain are presented in the supplementary. The
results demonstrate that the performance of previous TTA
methods is significantly inferior in the backward long-tailed
distributions compared to the forward settings. This issue
arises because TTA models learn based on model predic-
tions, which are biased toward the majority classes.

In contrast, it is noteworthy that our strategy consider-
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Dataset Method Forward-LT Uni. Backward-LT Avg.
50 25 10 1 10 25 50

CIFAR-10-C
Logit Adjust 78.89 77.20 73.58 58.86 46.12 41.95 39.72 59.47
IM Loss 76.54 75.39 72.34 56.43 49.79 47.58 46.62 60.67
Ours+IABN 80.58 78.62 75.26 63.34 68.54 70.07 71.64 72.58

CIFAR-100-C
Logit Adjust 43.23 41.16 37.55 30.94 25.44 23.67 23.38 32.19
IM Loss 44.10 42.64 40.00 33.36 23.61 20.54 19.11 31.91
Ours+IABN 52.06 49.71 46.03 36.84 29.29 26.33 25.50 37.97

Table 7. Comparison with logit adjustment [33, 15] and information maximization (IM) loss [23].

Method MACs Params

ResNet-18 557.93M 11.22M
+ Ours 558.04M 11.34M

Table 8. Computational costs. We
measure MACs and the number of
parameters (Params.).

ably improves the accuracy when label shift is severe. As
our method produces the optimal parameters depending on
the target label distribution, the models can be adapted to
the target domain stably, even in the presence of severe la-
bel shifts. Furthermore, when integrated with IABN [11], a
normalization layer for addressing the class imbalance in a
batch, our method yields the best performance. Neverthe-
less, it should be noted that relying solely on IABN may not
be sufficient in managing severe label shifts.

As shown in Table 2, our method consistently outper-
forms the existing TTA approaches on ImageNet-C, a more
challenging dataset. Integrating our proposed method con-
sistently improves the performance in all test sets. Further-
more, our method also improves the accuracy on the uni-
form dataset: TENT (+5.14%) and IABN (+0.52%). The
promising results demonstrate the practicality and effective-
ness of our method under covariate and label shifts.

4.3. Results on DA Benchmarks

We evaluate the effectiveness of our method in compar-
ison with TTA methods on three domain adaptation bench-
marks: VisDA-C (RSUT), OfficeHome (RSUT), and Do-
mainNet. In VisDA-C (RSUT) and OfficeHome (RSUT),
we utilize the test datasets, including the reversed Pareto
label distribution. Surprisingly, the existing TTA methods
perform worse than the source pre-trained model for eval-
uation data of VisDA-C, as shown in Table 3. This result
indicates that the baselines do not work when the label shift
is severe. In contrast, TENT combined with our method im-
proves the performance significantly for VisDA-C test data.

The results on OfficeHome (RSUT) are reported in Ta-
ble 4. We discovered that since the number of test sam-
ples in OfficeHome (RSUT) is limited (e.g., Clipart: 1,017,
Product: 1,985, Real: 1,235), TTA methods generally do
not result in significant performance improvements com-
pared to the source model. Nonetheless, our method ex-
hibits a general improvement on the OfficeHome (RSUT)
datasets, except for P→C.

Table 5 shows the results on the DomainNet dataset,
where the label shifts between different domains already
exist. This result demonstrates that our approach generally
outperforms the baselines. Moreover, we confirmed that our
model performs better when adapting to Real domain that

Figure 5. Visualization of estimated target label distributions and
target priors on CIFAR-10-C and CIFAR-100-C. Applying the la-
bel shift adapter improves the target label distribution estimation.

contains a larger number of test samples compared to other
domains (e.g., Real: 6,943, Clipart: 1,616, Painting: 2,909,
Sketch: 2,399). It is because the target label distribution can
be estimated more precisely with more test samples.

4.4. Analysis on Label Shift Adapter

Estimated Target Label Distribution. The proposed label
shift adapter predicts the weight difference with the esti-
mated target label distribution. Therefore, it is essential to
estimate the target class prior accurately, which is the label
distribution of target domain data. Different from previous
TTA methods, our method adapts the pre-trained model ac-
cording to the label distribution shift. As shown in Fig. 5,
we visualize the estimated target label distribution of the
model with and without our label shift adapter. This result
shows that the model with the label shift adapter is supe-
rior for estimating various label distributions compared to
the model without the label shift adapter. In addition, our
method estimates the target label distribution similar to the
target prior in CIFAR-10-C and CIFAR-100-C datasets.

As shown in Table 6, we compare the performances of
the label shift adapter with estimated target label distribu-
tion and target prior. Obviously, the overall accuracy of
the model increases if the target prior is utilized instead
of the estimated target label distribution. Nevertheless, our
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method shows comparable performances to the model using
target prior as the input of label shift adapter.
Computational Costs. Table 8 shows the computational
costs of our method. We measure the computational cost of
ResNet-18, which is utilized for CIFAR-100-C. Since we
design the architecture of the label shift adapter efficiently,
our method requires a negligible amount of additional com-
putational costs (MACs: +0.11M, Params: +0.12M). We
describe the details of the label shift adapter architecture in
the supplementary. Moreover, we report ablation study on
the architecture of label shift adapter in the supplementary.
Effectiveness of Label Shift Adapter. We validate the
effectiveness of our method over existing approaches for
handling label shifts. Specifically, we apply the follow-
ing non-trivial baselines with entropy minimization loss and
IABN [11]: (i) Post-hoc logit adjustment [33, 15] modi-
fies the logits using the estimated target label distribution.
(ii) Information maximization loss [23] makes the outputs
globally diverse by maximizing mean entropy, which can
reduce the bias toward certain classes. Table 7 shows that
these baselines are not sufficient to handle the label distribu-
tion shifts, particularly on inversely long-tailed distribution
(e.g., Backward). In contrast, our approach leads to promis-
ing performance gains on various label distributions.

5. Discussions
Normalization Layers for Label Shifts. This paper intro-
duces the label shift adapter for addressing the label shift
problems in the test-time adaptation scenario, which can
be applied to any model regardless of its architecture. In
addition to our method, we found that managing the bias
in batch statistics is also crucial for reducing performance
degradation caused by label shifts. This observation is ev-
idenced by the effectiveness of normalization layers, such
as instance-aware batch normalization (IABN) layers, in
dealing with the class imbalance in a batch. However,
IABN layers are highly sensitive to hyperparameter selec-
tions such as the soft-shrinkage width α. Consequently, im-
proving the robustness of normalization layers to label shifts
is a promising future research direction.
Training Additional Component. One limitation of our
work is that our method requires an additional stage for
training the label shift adapter. In several recent test-time
adaptation methods [7, 56, 24], an additional training pro-
cess is often carried out before server deployment to train
the additional components. Despite the drawback of requir-
ing an additional training stage, we believe that these test-
time adaptation models, including our method, are practi-
cally useful because they are more robust during inference.
Furthermore, there are techniques [18, 6, 49, 48, 2] in the
long-tailed recognition field that involves dividing the train-
ing process into two stages. Our approach can serve as
an inspiration for methods that can be applied for handling

test-agnostic label distributions in long-tailed recognition,
regardless of the model architecture.

6. Conclusion
This paper addresses the label shift problem in TTA,

where both source and target domain datasets are class im-
balanced. Existing TTA methods employing entropy mini-
mization are often flawed due to the model bias toward the
majority classes in source data. To address such a non-
trivial issue, we propose a novel label shift adapter, which
produces the optimal parameters according to the label dis-
tribution. Our label shift adapter is applicable to existing
TTA methods regardless of the model architectures. Fur-
thermore, we estimate the label distribution of target do-
main data to feed into the label shift adapter. Through ex-
tensive experiments, we demonstrate that our method out-
performs the state-of-the-art TTA baselines. We believe that
our work inspires future researchers to improve TTA meth-
ods under the joint presence of covariate and label shifts.
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