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Abstract

Existing text-to-image generation approaches have set
high standards for photorealism and text-image corre-
spondence, largely benefiting from web-scale text-image
datasets, which can include up to 5 billion pairs. How-
ever, text-to-image generation models trained on domain-
specific datasets, such as urban scenes, medical images,
and faces, still suffer from low text-image correspon-
dence due to the lack of text-image pairs. Additionally,
collecting billions of text-image pairs for a specific do-
main can be time-consuming and costly. Thus, ensur-
ing high text-image correspondence without relying on
web-scale text-image datasets remains a challenging task.
In this paper, we present a novel approach for enhanc-
ing text-image correspondence by leveraging available se-
mantic layouts. Specifically, we propose a Gaussian-
categorical diffusion process that simultaneously gener-
ates both images and corresponding layout pairs. Our
experiments reveal that we can guide text-to-image gen-
eration models to be aware of the semantics of different
image regions, by training the model to generate seman-
tic labels for each pixel. We demonstrate that our ap-
proach achieves higher text-image correspondence com-
pared to existing text-to-image generation approaches in
the Multi-Modal CelebA-HQ and the Cityscapes dataset,
where text-image pairs are scarce. Codes are available at
https://pmh9960.github.io/research/GCDP.

1. Introduction
Text-to-image generation aims to materialize text de-

scriptions into images, where the main challenge comes

from ensuring high image quality and correspondence be-

tween input text and output images. While texts convey

intuitive semantic depictions of images, they often lack de-

tailed spatial descriptions. For example, text descriptions

such as “A woman is wearing earrings.” do not describe

where the earrings are located within the image. Thus, when

a small number of text-image pairs are given, it is challeng-

1 * indicates equal contribution.

Figure 1. Recall of facial attributes specified in the text descrip-

tions. Text-to-image generation approaches trained on a subset of

the Multi-Modal CelebA-HQ [17,22] often fail to reflect text con-

ditions. Facial attributes are classified with a pretrained attribute

classifier [30].

ing for a generative model to learn what part of the image

corresponds to which words in the text.

Overcome this hurdle, recent text-to-image generation

approaches [28, 29, 31, 32] leverage web-scale text-image

datasets [29,33] containing up to 5 billion text-image pairs.

With access to such data, generative models can fully learn

the correspondence between input texts and output images

and synthesize photorealistic images while properly reflect-

ing text descriptions.

However, the cost of such large-scale training remains a

major obstacle, often requiring weeks of training even with

hundreds of GPUs, which limits participation in the subject

to only a few researchers. Moreover, when generating im-

ages in a specific domain, such as faces or urban scenes, col-

lecting billions of text-image pairs can be challenging due

to the difficulties in collecting images. Even with a general-

purpose pretrained model, finetuning on datasets with large

domain gaps (e.g., urban scenes or medical images) leads to

poor image quality and low text-image correspondence. Re-

cent text-to-image models trained on specific domains often

fail to reflect text conditions in the absence of web-scale

text-image pairs. To examine the issue in data-scarce sce-

narios, we evaluate text-to-image generation models trained

on a subset of the Multi-Modal CelebA-HQ [17,22] dataset.

As shown in Figure 1, existing models struggle to gener-

ate certain attributes specified in the given text conditions.

Thus, ensuring high text-image correspondence remains a
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challenge for domain-specific generation.

In this paper, we present a novel approach to achieve

high text-image correspondence for domain-specific text-

to-image generation by leveraging semantic layouts. Rather

than solely generating images based on text descriptions,

we propose to concurrently generate both images and their

corresponding semantic layouts. To this end, we design a

Gaussian-categorical diffusion process that models the joint

distribution of image-layout pairs. To the best of our knowl-

edge, this is the first approach to combine Gaussian and cat-

egorical diffusion processes into a unified diffusion process.

By generating semantic labels for each pixel in the image,

our generative model can learn the semantics of different

parts of the image, allowing it to effectively learn which

text descriptions correspond to which locations in the im-

age, even with limited text-image pairs.

We experiment our approach on subsets of the Multi-

Modal CelebA-HQ [19, 22] to simulate cases where text-

image pairs are limited and semantic layouts are available.

We also add text descriptions to the Cityscapes dataset [6]

to evaluate text-to-image generation in complex scenes with

multiple objects, where learning text-image correspondence

can be challenging. Our experiments and analyses reveal

that modeling the joint image-layout distribution can effec-

tively facilitate text-to-image generation models to achieve

high text-image correspondence when web-scale text-image

pairs are unavailable. We also demonstrate potential appli-

cations of the Gaussian-categorical diffusion models in se-

mantic image synthesis and semantic segmentation, through

cross-modal outpainting.

Our contributions are threefold:

• We define a Gaussian-categorical diffusion process for

modeling joint image-layout distributions, which is

the first approach to unify two diffusion processes for

image-layout generation.

• Our experiments reveal that generating image-layout

pairs can be a practical alternative to increase text-

image correspondence in circumstances where collect-

ing web-scale text-image pairs is infeasible.

• We present cross-modal outpainting, which demon-

strates that Gaussian-categorical diffusion models are

also capable of modeling conditional distributions for

semantic image synthesis and semantic segmentation.

2. Related work
Text-to-image generation. Text-to-image generation [39,

40, 42, 43] have consistently advanced over the years ben-

efiting from large pretrained text encoders [27, 29] and

generative models [8, 12, 29]. Recent approaches [25, 28,

31, 32] tackle zero-shot text-to-image generation by train-

ing diffusion-based generative models on web-scale text-

image datasets, such as the LAION-5B [33] or the DALL-

E dataset [29], which scale from 250M to 5B text-image

“He is wearing earrings. He has 
high cheekbones, and goatee. 

He is smiling.”

“An image of an urban street view with Poles, Sidewalks, 
People, Bicycles, Traffic signs, Cars, Buildings, Vegetations, 

Walls, Riders, Roads, Skies, Traffic lights and Terrains.”

Figure 2. Samples of image, text, and layout triplets from the MM

CelebA-HQ [17, 19, 22] and the Cityscapes dataset [6].

pairs. While zero-shot text-to-image generation can synthe-

size realistic images given general text descriptions, these

approaches heavily rely on the large number of text-image

pairs used for training to achieve high text-image correspon-

dence. Thus, when these models are trained on specific

datasets (e.g., MM CelebA-HQ [17, 19, 22, 38]) to gener-

ate images within a certain domain, they often fail to satisfy

the given text conditions as seen in Figure 1. Collecting

enough text-image pairs for a specific domain to ensure high

text-image correspondence may be overly expensive since

obtaining text descriptions often require human captioning.

In this paper, we present an alternative approach for en-

hancing text-image correspondence without additional text-

image pairs by leveraging semantic layouts.

Generating image-layout pairs. Modeling the joint

image-layout distribution p(x, y) is an emerging field in

image synthesis, where the goal is to generate both the

image x and the corresponding semantic layout y. For

the purpose of training semantic segmentation models with

strong data augmentation, DatasetGAN [41] and Dataset-

DDPM [3] represent the joint image-layout distribution as

a composition of two models: an image generation model

p(x) and a classifier p (y |x). During inference, the inter-

nal representations of p(x) (i.e., feature maps) are used as

inputs of p (y |x), which then classifies each pixel to obtain

an image-layout pair.

On the other hand, SB-GAN [2] and Semantic

Palette [18] discover that joint modeling of the image-layout

distribution can be advantageous for generating complex

scenes. Specifically, they decompose the generation pro-

cess into two steps, a layout generation step p(y) followed

by a conditional image generation step p (x | y) given the

generated layout. The authors argue that generating layouts

with appropriate class proportions can effectively facilitate

the scene generation process.

SemanticGAN [20] models p(x, y) with a single

GAN [8] in the pursuit of semantic segmentation with out-

of-domain generalization. The results demonstrate that im-

ages and layouts can exhibit high alignment when generated

through a single model.

In this work, we propose a Gaussian-categorical diffu-

sion process to model p(x, y) with a single diffusion pro-

cess. Our joint image-layout generation model is extended
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Figure 3. Illustration of the Gaussian-categorical diffusion process

on the image-layout distribution of MM CelebA-HQ [19, 22].

to the text-to-image generation task, where we achieve

high text-image correspondence without requiring web-

scale text-image datasets. Specifically, we provide analy-

ses demonstrating that our model is aware of the semantics

of the generated image and properly reflects the text condi-

tions.

Diffusion process in arbitrary domains. Diffusion mod-

els [7, 12, 24, 35] synthesize data x0 in an iterative manner

by repeatedly denoising pure noise xT . In image genera-

tion, the forward noising process q (xt |xt−1) and the re-

verse denoising process pθ (xt−1 |xt) are defined using a

predefined noise schedule βt,

q (xt |xt−1) := N (xt;
√

1− βtxt−1, βtI), (1)

pθ (xt−1 |xt) := N (xt−1;μθ(xt), σ
2
t I), (2)

where t ∈ [1, 2, ..., T ].
Since the true reverse process q (xt−1 |xt) is intractable,

the reverse process is approximated by minimizing the KL

divergence with the posterior q (xt−1 |xt,x0) with

Lt = DKL(q (xt−1 |xt,x0) ‖ pθ (xt−1 |xt)). (3)

To extend diffusion processes to categorical data [1, 15]

such as text or semantic labels, a categorical noise is de-

fined for the forward process, and the denoising diffusion

process is constructed in a similar manner. For instance,

Hoogeboom et al. [15] defines a categorical noise as

q (xt |xt−1) := C(xt; (1− βt)xt−1 + βt/K), (4)

pθ (xt−1 |xt) := C(xt−1;Θθ(xt)), (5)

where C denotes a categorical distribution, K is the number

of categories, and Θ is the probability mass function (PMF)

of the categorical distribution.

The key idea for defining a diffusion process in a cer-

tain distribution is to define a forward noising process

q (xt |xt−1) and derive a posterior q (xt−1 |xt,x0). In the

following section, we define the forward and reverse pro-

cesses of the Gaussian-categorical distribution, which can

model the joint distribution of image-layout pairs.

Categorical 
Gaussian 

Categ
Gaussian

Figure 4. Visualization of a Gaussian-categorical distribution with

a single variable (N = 1, M = 1, K = 4, and S = 4).

3. Method
3.1. Gaussian-categorical distribution

In this section, we define the joint distribution of the

Gaussian variable X and categorical variable Y . We pa-

rameterize the Gaussian-categorical distribution as follows,

(X,Y ) ∼ NC (x,y;μ,Σ,Θ) , (6)

X = [X1, X2, ..., XN ] ∈ R
N ,

Y = [Y1, Y2, ..., YM ] ∈ {1, 2, ...,K}M ⊂ R
M ,

μ ∈ R
S×N ,Σ ∈ R

S×N×N ,Θ ∈ R
M×K .

Here, μ,Σ are the mean and variance of the Gaussian dis-

tribution, and Θ is the probability mass function (PMF) of

the categorical distribution. Also, K is the number of pos-

sible states for Yi and S = KM is the total number of states

of Y . It is worth noting that the dimensions of μ and Σ,

which indicates that there is a Gaussian mean and variance

for all possible categorical states in Y .

The joint distribution of two random variables can be

written as a product of a conditional and marginal dis-

tribution. Therefore, we can also express the Gaussian-

categorical distribution as

NC(x,y;μ,Σ,Θ) = C(y;Θ) · N (x;μy,Σy) (7)

μy ∈ R
N ,Σy ∈ R

N×N .

The probability density function (PDF) can be written as

a weighted Gaussian distribution for each unique y ∈
{1, 2, ...,K}M as

NC(x,y;μ,Σ,Θ) =

(
M∏
i=1

Θi ,yi

)
(2π)

−N
2 |Σy|−

1
2

exp
(
− 1

2
(x− μy)

�Σ−1
y (x− μy)

)
,

(8)

where Θi ,yi
denotes the probability of Yi = yi, and μy,

Σy indicates the mean and variance corresponding to state

y, respectively.
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3.2. Gaussian-categorical diffusion process

Similar to the diffusion process for images, we define our

reverse process of image-layout distributions as a Gaussian-

categorical transition with a Markov property. Specifically,

we define the transition probability pθ (zt−1 | zt) as

pθ (zt−1 | zt) := NC (zt−1;μθ(zt),Σθ(zt),Θθ(zt)) ,
(9)

where z represents the tuple (x,y) for simplicity.

We define the forward process of image-layout pairs z0
under the Markov assumption as

q (zt | zt−1) := NC
(
zt;

[
μt|t−1

]
×S

,
[
Σt|t−1

]
×S

,Θt|t−1

)
,

(10)

μt|t−1 :=
√

1− βN
t xt−1,

Σt|t−1 := βN
t I,

Θt|t−1 := (1− βC
t )yt−1 + βC

t/K,

where βC and βN are predefined noise schedules. We use the

notation [v]×S to indicate row-wise duplication of a vector

v (i.e., [v,v, ...,v]T ).

Intuitively, the forward process is defined as indepen-

dently applying the Gaussian and categorical noises follow-

ing a normal distribution N (0, I) and a categorical distri-

bution with uniform probability C(1/K), according to pre-

defined noise schedules βN , βC . Given a large T and ap-

propriate noise schedules, the forward process leads to an

isotropic Gaussian distribution and a uniform categorical

distribution at the final state zT .

With αt := 1 − βt and ᾱt :=
∏t

s=1 αs, we can derive a

forward process to an arbitrary timestep as

q (zt | z0) = NC
(
zt;

[
μt|0

]
×S

,
[
Σt|0

]
×S

,Θt|0
)
, (11)

μt|0 :=
√

ᾱN
t x0,

Σt|0 := (1− ᾱN
t )I,

Θt|0 := (1− ᾱC
t)y0 + ᾱC

t/K.

Finally, using Bayes theorem, we can derive the poste-

rior q (zt−1 | zt, z0), which is summarized into the follow-

ing form of a Gaussian-categorical distribution

q (zt−1 | zt, z0) = NC
(
zt−1;

[
μ̃t

]
×S

,
[
Σ̃t

]
×S

, Θ̃t

)
,

(12)

μ̃t :=

√
ᾱN
t−1β

N
t

1− ᾱN
t

x0 +

√
αN
t (1− ᾱN

t−1)

1− ᾱN
t

xt,

Σ̃t :=
(
(1− ᾱN

t−1)β
N
t /(1− ᾱN

t )
)
I,

Θ̃t := Z[αC
tyt + (1− αC

t)/K]� [ᾱC
ty0 + (1− ᾱC

t−1)/K],

where Z is a normalizing constant and � is the element-

wise product. Detailed proofs for each step are provided in

the appendix.

Note that parameters μ and Σ of the posterior are ex-

pressed in terms of μ̃t ∈ R
N and Σ̃t ∈ R

N×N , which

have a reduced dimensions than the original parameters in

Equation (6). This is due to the definition in Equation (10),

where the Gaussian noise is applied independently of the

categorical variable.

We can write the variational lower bound (VLB) as

LVLB := L0 + L1 + L2 + ...+ LT , (13)

L0 := − log pθ (z0 | z1) , (14)

Lt−1 := DKL(q (zt−1 | zt, z0) ‖ pθ (zt−1 | zt)), (15)

LT := DKL(q (zT | z0) ‖ pθ(zT )). (16)

Since the posterior q (zt−1 | zt, z0) is parameterized by μ̃t

and Σ̃t, we can also re-parameterize pθ as

pθ (zt−1 | zt) := NC(zt−1; [μ̃θ(zt)]×S , [Σ̃θ(zt)]×S ,Θθ),
(17)

μ̃θ(zt) ∈ R
N , Σ̃θ(zt) ∈ R

N×N ,Θθ ∈ R
M×K , (18)

Thus, we can predict a reduced number of parameters to

minimize the KL divergence term in Equation (15),

DKL(q (zt−1 | zt, z0) ‖ pθ (zt−1 | zt)) (19)

= Eq

[ 1

2σ2
t

‖μ̃t − μ̃θ(zt)‖2
]
+DKL(Θ̃t ‖ Θθ(zt)) + C,

where C is a constant irrelevant to learnable parameters
θ. L0 is directly minimized through a closed-form solution

and LT does not involve any learnable parameters.

3.3. Architectural design

In order to treat image-layout pairs as a single data sam-

ple, we embed the semantic layouts (i.e., one-hot vectors)

into 3-channel vectors via learnable parameters and con-

catenate them with images along the channel dimension

(z ∈ R
N×N×6). We adopt the U-Net [24] and the Efficient

U-Net [32] following existing diffusion models and modify

the input/output channels for image-layout input/outputs.

For text conditioning, we utilize the T5-L [27] text encoder

and condition the U-Net model similarly to Imagen [32].

We follow the cascaded diffusion [13] framework to gen-

erate high-resolution image-layout pairs, which involves

a sequence of an image generation model followed by a

super-resolution model. We find that resizing layouts to

a small resolution (e.g., 64 × 64) often damages the in-

tegrity of semantic labels due to nearest-neighbor sampling

on extreme scales. Thus, we generate 128 × 128 resolu-

tion images and then upsample to 256×256 resolution with

a Gaussian-categorical super-resolution model. The super-

resolution model upsamples both images and layouts fol-

lowing the Gaussian-categorical diffusion. We adopt the

classifier-free guidance on both the generation model and

the super-resolution model.
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“This man has bags under eyes, receding 
hairline, and big nose.”

“The woman is wearing lipstick. She has 
blond hair, pointy nose, and oval face.”

“The woman has rosy cheeks. She is 
smiling. She wears earrings, and lipstick.”

“An image of an urban street view with People, 
Skies, Roads, Buildings, Vegetations, Cars, Poles, 

Sidewalks, Traffic lights, and Traffic signs.”

Generated
Image-Layout

Input Text

Generated
Image-Layout

Input Text
“An image of an urban street view with Cars, 

Sidewalks, Bicycles, Skies, Roads, Traffic signs, 
Vegetations, Buildings, Poles and Riders.”

“An image of an urban street view with Walls, Poles, 
Sidewalks, Terrains, Vegetations, Traffic signs, Cars, 
Skies, Roads, Buildings, Fences, and Traffic lights.”

Figure 5. Examples of text-guided generation of image-layout pairs from the Gaussian-categorical diffusion trained on MM CelebA-HQ-

100 [17, 22] and Cityscapes [6]. The text descriptions on the bottom are given as conditions to generate the image-label pairs.

4. Experiments

4.1. Text-image datasets

Multi-Modal CelebA-HQ. MM CelebA-HQ [17, 22, 38] is

a collection of different annotations for the 30,000 images

in the CelebA-HQ dataset [17, 22], including text descrip-

tions, face attribute labels, and part-level segmentation la-

bels. Part-level segmentation labels consist of 19 different

classes (K=19) including all facial components and acces-

sories. To train the Gaussian-categorical diffusion model,

we use both the segmentation labels and the text descrip-

tions provided in the dataset. We also construct subsets of

the data, MM CelebA-HQ-25 and MM CelebA-HQ-50, by

randomly selecting 25% and 50% of the images, respec-

tively, to simulate data-scarce scenarios. We train and eval-

uate our models on 256× 256 resolution images.

Cityscapes. Cityscapes [6] is an urban scene dataset with

3475 image-layout pairs of complex scenes containing mul-

tiple objects, including 20 different semantic classes (K =
20). To add text descriptions to each image, we list the class

names in the following format:

“An image of an urban scene with {classes}.”

where classes are the unique class names in the correspond-

ing semantic layout. The Cityscapes dataset presents a chal-

lenging domain for generating realistic images due to the

limited number of available images and the diverse object

locations in urban scenes. Since Cityscapes images have a

unique aspect ratio of 2:1, we generate 512×256 resolution

images. We include example text-image pairs in Figure 2.

4.2. Implementation details

For synthesizing image-layout pairs, N and M are

equally set to the number of pixels in the image. Although

the Gaussian-categorical diffusion process allows different

noise schedules βN and βC for images and layouts, we set

both schedules to the cosine schedule [24]. We provide ex-

periments on the effect of different noise schedules for βC

in the supplementary section. We set T = 1000 and sam-

ple with 100 timesteps using the accelerated sampling tech-

nique [35].

4.3. Evaluating text-to-image generation
Text-to-image generation models are evaluated from two

perspectives, image fidelity and text-image correspondence.

We use the Fréchet Inception Distance (FID) [10] to mea-

sure the image fidelity. After the release of CLIP [26], the

CLIP score [9] is often used to evaluate text-image cor-

respondence for text-to-image generation. However, the

CLIP score is known to have poor generalization abili-

ties [26] when evaluating scenes with large domain gaps

(i.e., Cityscapes) and also lacks interpretability in terms of

understanding what element in the image causes a low or

high CLIP score. In order to compensate for this drawback,

we propose Semantic Recall to precisely measure the text-

image correspondence for Cityscapes generation.

Semantic Recall. The Semantic Recall is analogous to the

Semantic Object Accuracy (SOA) [11], which evaluates the

generation of specific objects in text-to-image generation by

utilizing pretrained object detectors. In our work, we use a

pretrained semantic segmentation model [37] to detect the

7595



(a) FID-Semantic Recall

(b) Class-wise Semantic Recall

(c) Class Proportion in Cityscapes

Figure 6. (a) FID-Semantic Recall trade-off in the Cityscapes dataset. (b) Semantic Recall for minor classes. Semantic Recall is measured

using the HRNet-w48 [37] model. (c) Proportion of each semantic class in the entire Cityscapes dataset. Class proportion is compared in

log-scale for visibility.

presence of classes described in text conditions. We deter-

mine that a class is detected in a generated image if it ap-

pears in the segmentation layout. The ground-truth classes

for each image are identified by searching for class names in

text descriptions. For example, an image generated with the

text description “An urban scene with cars, roads, and traf-
fic signs.”, would be evaluated with the existence of cars,

roads, and traffic signs. Therefore, we compute the Seman-

tic Recall as the average ratio of correctly detected classes

in the generated image to the total number of classes in the

ground-truth layouts,

1

| G |
∑

xi,yi∈G

| Classes in F (xi) ∩ Classes in yi |
| Classes in yi | ,

where G is the set of generated image-layout pairs (xi, yi)
and | · | indicates the cardinality of a given set. F (·) is the

pretrained semantic segmentation model [37].

Baselines. We compare our approach with state-of-the-

art performing diffusion-based models, Imagen [32] and

the latent diffusion model (LDM) [31]. We also train a

high-performing GAN-based approach Lafite [42] trained

on MM CelebA-HQ and Cityscapes. For training LDM, we

utilize the pretrained autoencoder from the Stable Diffusion

project. Diffusion-based approaches utilize the classifier-

free guidance [14] to control the performance trade-off be-

tween text-image correspondence and image fidelity. Thus,

for these approaches, we sweep the guidance scale until the

text-image correspondence measures saturate and report all

FID-Semantic Recall or FID-CLIP score pairs.

Evaluation on Cityscapes. For the Cityscapes dataset [6],

we report the FID and Semantic Recall performance trade-

off and also provide detailed recall scores for each class

in Figure 6. Given the small number of text-image

pairs (3475 pairs), existing text-to-image models face

challenges in learning the text-image correspondence and

achieving high text-image correspondence. However, the

Gaussian-categorical diffusion effectively generates com-

plex Cityscapes scenes while maintaining high Semantic

Recall even with limited data. Additionally, the model

achieves high recall rates for minor classes, such as the bi-
cycle or the motorcycle class, which only constitute a small

portion of the dataset. This indicates that generating seman-

tic labels for each pixel facilitates the model to establish

high text-image correspondence, especially for underrepre-

sented classes.

Evaluation on MM CelebA-HQ. We further evaluate our

method on the MM CelebA-HQ-25, 50, and 100, and report

the FID-CLIP scores for each dataset. As shown in Fig-

ure 7, the Gaussian-categorical diffusion consistently out-

performs existing text-to-image approaches at datasets with

varying numbers of text-image pairs, exhibiting low FIDs

and a high CLIP scores. We provide qualitative results of

the Gaussian-categorical diffusion in Figure 5 and also com-

pare the results with existing approaches in the supplemen-

tary material.

4.4. Analyzing the internal representations

In order to visualize the advantages of jointly generat-

ing image-layout pairs, we train a Gaussian diffusion model

which generates images without corresponding semantic

layouts. Then, we collect the internal features from the

two models at different timesteps and cluster the features

in an unsupervised manner with K-means clustering. As

shown in Figure 8, the internal features of the Gaussian-

categorical model form distinct clusters that correspond to

different facial regions. Specifically, the internal features

of the Gaussian-categorical diffusion model form clusters

even in the early stages of generation (t=800), correctly

distinguishing hair, glasses and the background region.
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MM CelebA-HQ-25 MM CelebA-HQ-50 MM CelebA-HQ-100

Figure 7. FID-CLIP score pairs for text-to-image generation models on different subsets of the MM CelebA-HQ dataset. The CLIP scores

are measured with the ViT-L/14-336 model. The guidance scale is swept starting from 1 until saturation.

Image

Gaussian only

Gaussian-categorical

Figure 8. Visualization of clustering results between the internal

features of the Gaussian-categorical diffusion and the Gaussian

diffusion.

The results reveal that the Gaussian-categorical diffusion

model is highly aware of the semantics of the image during

the generation process. This characteristic is advantageous

in scenarios where a generative model needs to learn how to

match specific parts of the image with corresponding input

text descriptions, as the model is capable of understanding

the semantic structure of the image. As such, training a

Gaussian-categorical diffusion is a promising approach for

achieving high correspondence between text descriptions

and image pixels, particularly when there is a scarcity of

text-image pairs available.

4.5. Image-layout fidelity and alignment

In this section, we evaluate whether generated images

and layouts closely model the real distribution, and whether

the generated pairs are semantically aligned. Following Se-

mantic Palette [2, 18] we evaluate the image-layout align-

ment using the mean intersection over union (mIoU) be-

tween the generated layouts and the segmentation labels

predicted by a pretrained HRNet [37]. Additionally, we

use the Fréchet Segmentation Distance (FSD) [4], which re-

places the Inception-V3 [36] features in the FID score [10]

to pixel counts for each class, to evaluate the quality of gen-

Methods FID ↓ mIoU ↑ FSD ↓
GANformer [16] 24.86 - 481.5

DatasetDDPM [3] 55.38 33.88 90.31

Semantic Palette [18] 52.13 53.17 48.29

Ours 20.36 65.80 42.22
Table 1. Image-layout alignment and FID of different Image-

layout generation approaches for scene generation in the

Cityscapes [6] dataset.

erated layouts. Similar to the FID score, a low FSD indi-

cates that the class distributions are close to the real distri-

bution.

We compare our results with existing uncondi-

tional image-layout generation approaches [3, 18] on the

Cityscapes dataset. Additionally, we introduce a simple

baseline (i.e., GANformer [16]) for image-layout genera-

tion, in which we generate images using a well-trained un-

conditional image generation model [16] and segment the

images using a pretrained segmentation model [37]. Note

that we cannot measure the mIoU for this baseline since

the semantic layouts are predicted using the same pretrained

network.

As shown in Table 1, the Gaussian-categorical diffu-

sion process is highly effective in modeling the joint dis-

tribution of images and layouts even for complex urban

scenes. By using a unified diffusion process, we are able

to generate image-layout pairs that exhibit high alignment,

closely resembling the real distribution. The ability of the

Gaussian-categorical diffusion to effectively model the joint

distribution of images and layouts offers promising avenues

for future research in generative modeling. By leveraging

the theoretical foundations established by our method, re-

searchers can explore new approaches for dataset genera-

tion in a range of domains, from images and audios to se-

mantic layouts and texts.
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Synthesized ImagesPrediction Ground Truth

(a) Text-guided Image-to-Layout Generation (b) Text-guided Layout-to-Image Generation

ImageInput Text

“She has pointy 
nose, and arched 
eyebrows. She is 
attractive and is 
wearing lipstick.”

“This person is 
young, and 

attractive and has 
mustache, bags 
under eyes, and 

sideburns.”

“She has wavy hair, 
arched eyebrows 
and wears lipstick. 

She is young.”

“This man has 
straight hair, 

mustache, and 
bushy eyebrows.”

Input Text Semantic Layout

Figure 9. Cross-modal outpainting for (a) text-guided image-to-layout generation and (b) text-guided layout-to-image generation. Segmen-

tation layouts are generated with n = 1 resampling steps and images are generated with n = 5 resampling steps for each timestep.

4.6. Cross-modal outpainting

RePaint [23] enables existing diffusion models to inpaint

a masked image by iteratively denoising the masked region

given the known image (i.e., condition image). Specifically,

for each timestep t, images are inpainted as follows:

xknown
t−1 ∼ N (

√
ᾱtx0, (1− ᾱt)I),

xunknown
t−1 ∼ N (μθ(xt, t),Σθ(xt, t)),

xt−1 = m� xknown
t−1 + (1−m)� xunknown

t−1 ,

where m is the mask for the known image. To ensure

consistency between the inpainted regions and known re-

gions, Repaint iterates the denoising process n times for

each timestep.

The Repaint technique allows us to use the Gaussian-

categorical diffusion model as a text-guided layout-to-

image generation model (i.e., semantic image synthesis) by

considering the layouts as an image-layout pair with the im-

age part masked. Similarly, we can perform text-guided

image-to-layout generation (i.e., semantic segmentation) by

masking the layout in the image-layout pair. As shown in

Figure 9, the Gaussian-categorical diffusion generates real-

istic images or layouts conditioned on text descriptions. The

results demonstrate that a well-trained Gaussian-categorical

diffusion can serve as a generative prior for conditional gen-

eration tasks. We describe the algorithm for cross-modal

outpainting in the supplementary material.

5. Limitation
Although the Gaussian-categorical diffusion offers

means for achieving high text-image correspondence with-

out training on web-scale text-image pairs, training a

Gaussian-categorical diffusion model requires additional

semantic layout annotations of images. However, with the

assistance of recent data annotation tools [5,34], annotating

existing data can be a cost-effective option for text-to-image

generation in scenarios where obtaining web-scale text-

image pairs is costly (e.g., medical images, urban scenes,

and aerial images).

We observe that training the Gaussian-categorical diffu-

sion model on the MS-COCO dataset [21] produces poor

quality images and layouts. We suspect that this is due to the

highly diverse scenes in the COCO dataset, with 171 cate-

gories in the semantic layouts. Analyzing the challenges

of training on the MS-COCO dataset is a potential area for

future research. Nevertheless, we propose an effective ap-

proach for text-to-image generation in data-scarce scenar-

ios, where collecting data is expensive and annotating ex-

isting images is affordable.

6. Conclusion

In this paper, we define the Gaussian-categorical dif-

fusion process to model the joint distribution of image-

layout pairs. Our experiments demonstrate that the pro-

posed model can ensure high text-image correspondence

for text-to-image generation in specific domains, without

relying on web-scale text-image pairs. Our approach out-

performs existing approaches in terms of image quality and

text-image correspondence.

Our visualizations of the internal representations of the

Gaussian-categorical distribution demonstrate that the pro-

posed model is aware of the semantics of the image, bridg-

ing the gap between highly semantic text descriptions and

image pixels. Additionally, the high image-layout align-

ment of generated image-layout pairs and the results of

cross-modal outpainting show that the model precisely cap-

tures the relationship between images and labels.

Overall, the Gaussian-categorical diffusion enables text-

to-image models to achieve high text-image correspondence

by leveraging semantic labels when trained on a specific do-

main with limited text-image pairs. Our proposed model

can also be utilized as a generative prior for conditional gen-

eration tasks, such as text-guided semantic image synthesis

and text-guided semantic segmentation.
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Pérez, and Mathieu Cord. Semantic palette: Guiding scene

generation with class proportions. In CVPR, 2021. 2, 7

[19] Cheng-Han Lee, Ziwei Liu, Lingyun Wu, and Ping Luo.

Maskgan: Towards diverse and interactive facial image ma-

nipulation. In CVPR, 2020. 2, 3

[20] Daiqing Li, Junlin Yang, Karsten Kreis, Antonio Torralba,

and Sanja Fidler. Semantic segmentation with generative

models: Semi-supervised learning and strong out-of-domain

generalization. In Conference on Computer Vision and Pat-
tern Recognition (CVPR), 2021. 2

[21] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,

Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence

Zitnick. Microsoft coco: Common objects in context. In

ECCV. Springer, 2014. 8

[22] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang.

Deep learning face attributes in the wild. In ICCV, December

2015. 1, 2, 3, 5

[23] Andreas Lugmayr, Martin Danelljan, Andres Romero, Fisher

Yu, Radu Timofte, and Luc Van Gool. Repaint: Inpainting

using denoising diffusion probabilistic models. In CVPR,

pages 11461–11471, 2022. 8

[24] Alexander Quinn Nichol and Prafulla Dhariwal. Improved

denoising diffusion probabilistic models. In International
Conference on Machine Learning, pages 8162–8171. PMLR,

2021. 3, 4, 5

[25] Alexander Quinn Nichol, Prafulla Dhariwal, Aditya Ramesh,

Pranav Shyam, Pamela Mishkin, Bob Mcgrew, Ilya

Sutskever, and Mark Chen. GLIDE: Towards photorealis-

tic image generation and editing with text-guided diffusion

models. In ICML, 2022. 2

[26] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya

Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,

Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learn-

ing transferable visual models from natural language super-

vision. In ICML, pages 8748–8763. PMLR, 2021. 5

[27] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee,

Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, and

Peter J. Liu. Exploring the limits of transfer learning with a

7599



unified text-to-text transformer. Journal of Machine Learn-
ing Research, 21(140):1–67, 2020. 2, 4

[28] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu,

and Mark Chen. Hierarchical text-conditional image gen-

eration with clip latents. arXiv preprint arXiv:2204.06125,

2022. 1, 2

[29] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray,

Chelsea Voss, Alec Radford, Mark Chen, and Ilya Sutskever.

Zero-shot text-to-image generation. In ICML, pages 8821–

8831. PMLR, 2021. 1, 2

[30] Tal Ridnik, Gilad Sharir, Avi Ben-Cohen, Emanuel Ben-

Baruch, and Asaf Noy. Ml-decoder: Scalable and versatile

classification head. In WACV, pages 32–41, 2023. 1

[31] Robin Rombach, Andreas Blattmann, Dominik Lorenz,

Patrick Esser, and Björn Ommer. High-resolution image syn-

thesis with latent diffusion models. In CVPR, 2022. 1, 2, 6

[32] Chitwan Saharia, William Chan, Saurabh Saxena, Lala

Li, Jay Whang, Emily Denton, Seyed Kamyar Seyed

Ghasemipour, Burcu Karagol Ayan, S Sara Mahdavi,

Rapha Gontijo Lopes, et al. Photorealistic text-to-image

diffusion models with deep language understanding. arXiv
preprint arXiv:2205.11487, 2022. 1, 2, 4, 6

[33] Christoph Schuhmann, Romain Beaumont, Richard Vencu,

Cade Gordon, Ross Wightman, Mehdi Cherti, Theo

Coombes, Aarush Katta, Clayton Mullis, Mitchell Worts-

man, et al. Laion-5b: An open large-scale dataset for

training next generation image-text models. arXiv preprint
arXiv:2210.08402, 2022. 1, 2

[34] Konstantin Sofiiuk, Ilya A Petrov, and Anton Konushin. Re-

viving iterative training with mask guidance for interactive

segmentation. In 2022 IEEE International Conference on
Image Processing (ICIP), pages 3141–3145. IEEE, 2022. 8

[35] Jiaming Song, Chenlin Meng, and Stefano Ermon.

Denoising diffusion implicit models. arXiv preprint
arXiv:2010.02502, 2020. 3, 5

[36] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe,

Jonathon Shlens, and Zbigniew Wojna. Rethinking the in-

ception architecture for computer vision, 2015. 7

[37] Jingdong Wang, Ke Sun, Tianheng Cheng, Borui Jiang,

Chaorui Deng, Yang Zhao, Dong Liu, Yadong Mu, Mingkui

Tan, Xinggang Wang, et al. Deep high-resolution repre-

sentation learning for visual recognition. IEEE TPAMI,
43(10):3349–3364, 2020. 5, 6, 7

[38] Weihao Xia, Yujiu Yang, Jing-Hao Xue, and Baoyuan Wu.

Tedigan: Text-guided diverse face image generation and ma-

nipulation. In CVPR, 2021. 2, 5

[39] Tao Xu, Pengchuan Zhang, Qiuyuan Huang, Han Zhang,

Zhe Gan, Xiaolei Huang, and Xiaodong He. Attngan: Fine-

grained text to image generation with attentional generative

adversarial networks. In CVPR, 2018. 2

[40] Han Zhang, Jing Yu Koh, Jason Baldridge, Honglak Lee, and

Yinfei Yang. Cross-modal contrastive learning for text-to-

image generation. In CVPR, pages 833–842, 2021. 2

[41] Yuxuan Zhang, Huan Ling, Jun Gao, Kangxue Yin, Jean-

Francois Lafleche, Adela Barriuso, Antonio Torralba, and

Sanja Fidler. Datasetgan: Efficient labeled data factory with

minimal human effort. In CVPR, 2021. 2

[42] Yufan Zhou, Ruiyi Zhang, Changyou Chen, Chunyuan Li,

Chris Tensmeyer, Tong Yu, Jiuxiang Gu, Jinhui Xu, and

Tong Sun. Lafite: Towards language-free training for text-to-

image generation. arXiv preprint arXiv:2111.13792, 2021.

2, 6

[43] Minfeng Zhu, Pingbo Pan, Wei Chen, and Yi Yang. Dm-

gan: Dynamic memory generative adversarial networks for

text-to-image synthesis. In CVPR, 2019. 2

7600


