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Abstract

Detecting out-of-distribution (OOD) samples are cru-
cial for machine learning models deployed in open-world
environments. Classifier-based scores are a standard ap-
proach for OOD detection due to their fine-grained detec-
tion capability. However, these scores often suffer from
overconfidence issues, misclassifying OOD samples distant
from the in-distribution region. To address this challenge,
we propose a method called Nearest Neighbor Guidance
(NNGuide) that guides the classifier-based score to respect
the boundary geometry of the data manifold. NNGuide re-
duces the overconfidence of OOD samples while preserv-
ing the fine-grained capability of the classifier-based score.
We conduct extensive experiments on ImageNet OOD de-
tection benchmarks under diverse settings, including a sce-
nario where the ID data undergoes natural distribution
shift. Our results demonstrate that NNGuide provides a
significant performance improvement on the base detection
scores, achieving state-of-the-art results on both AUROC,
FPR95, and AUPR metrics.

1. Introduction

The open-world environment poses a challenge for clas-
sification models as they may encounter input samples with
unknown class labels, i.e., out-of-distribution (OOD) in-
stances [44, 26, 42, 2, 4, 16]. The detection of such anoma-
lous examples is crucial for preventing classifier malfunc-
tions and potential harm. As a result, in safety-critical ap-
plications like self-driving [29, 5, 40, 19] and biosynthe-
sis [46, 37], the OOD detection task plays a critical role in
ensuring the dependable deployment of machine learning
models. Therefore, a significant body of research has been
dedicated to OOD detection [45].

The standard approach for OOD detection is to derive
a score function from the trained network, such that the
in-distribution (ID) samples exhibit relatively higher scores
than OOD. One major paradigm in designing the detection
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Figure 1. (a) Out-of-distribution (OOD) instances can occur
in any white region, including the small area between the in-
distribution (ID) classes. For instance, given ’cat’ and ’dog’ as
ID classes, images of ’fox’ will be OOD instances near the ID
data. (b) The classifier-based detector (i.e. confidence) assigns low
scores on the small in-between area but suffers overconfidence is-
sues. (c) Based on the distance information, KNN bounds the de-
tection score on far-OOD regions. However, KNN lacks the fine-
grained detection capability, and thus fails to detect the near-OOD.
(d) NNGuide addresses both of these issues, reducing overconfi-
dence in the far-OOD regions while achieving fine-grained detec-
tion.

score is to derive the score function based on the classi-
fier’s output signals, known as ’confidence’. Examples of
classifier-based scores include maximum softmax probabil-
ity [15] and energy function [24]. A major advantage of the
classifier-based detection scores is their ability to fully uti-
lize the class-dependent information of ID data and provide
fine-grained detection capability. However, the classifier-
based scores may suffer from overconfidence in far OOD
samples, limiting their effectiveness [10, 13].

In contrast, distance-based approaches (e.g. nearest
neighbors [35] and Mahalanobis distance [22, 31]) detect
OOD instances based on their distance to the ID data in the
feature space. These approaches can certify low scores for
far OOD regions but may not fully utilize class-dependent
information, resulting in limited fine-grained detection ca-
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pability.
Our work introduces Nearest Neighbor Guidance

(NNGuide), a novel approach to improving classifier-based
OOD detection scores and mitigating the issue of overconfi-
dence. NNGuide achieves this by guiding the classifier con-
fidence of a test input based on its similarity to its nearest
neighbors in the ID bank set. As a result, NNGuide reduces
the detection score in far-OOD regions while maintaining
fine-grained detection capabilities.

In the toy experiment shown in Fig. 1, the classifier-
based score demonstrates its ability to assign low detec-
tion scores to samples located in the small intermediate re-
gion between the two ID classes, which is where near-OOD
instances may occur. However, the score exhibits exces-
sively high values in the outer region of the ID data. On the
other hand, the distance-based score provided by KNN is
effective at assigning low detection scores to far-OOD sam-
ples, but it fails to credit low scores on the small interme-
diate region, indicating a lack of fine-graininess. Our pro-
posed detection score, NNGuide, mitigates the drawbacks
of both methods; NNGuide assigns bounded low values for
far-OOD samples while retaining fine-grained detection ca-
pability.

We conduct an extensive evaluation of NNGuide in
the large-scale ImageNet-1k benchmark [18] across a va-
riety of deep classification networks, achieving state-of-
the-art results. Furthermore, we investigate the robustness
of NNGuide by testing it on the ImageNet-1k-V2 dataset
[36, 28], where the ID data undergoes natural distribu-
tional shifts. The presence of distribution shifts can lead
to misidentifying ID samples as OOD and hence represents
a challenging, realistic scenario. The final part of our ex-
periments involves an extensive ablation analysis, where we
investigate the key contributing factors to the effectiveness
of NNGuide, as well as its compatibility with a broad range
of classifier-based scores.

Contributions The contributions of our work are summa-
rized as follows:

• We propose a novel method called Nearest Neighbor
Guidance (NNGuide) that guides the classifier-based
detection score to reduce overconfidence in far-OOD
regions while retaining its fine-grained detection capa-
bility.

• We attain state-of-the-art results on the ImageNet-1k
OOD detection benchmarks and demonstrate the ro-
bustness of NNGuide by considering a challenging and
realistic scenario where the ID ImageNet data under-
goes a natural distributional shift.

• We provide an extensive and detailed ablation study,
demonstrating the generality of NNGuide to a broad
range of classifier-based scores.

We note that NNGuide is a post-hoc training-free inference
method, and it is applicable to any standard deep classifica-
tion networks.

2. Related Works
The OOD detection research primarily falls into two cat-

egories: network truncation [23, 33] and the design of a
scalar score function to separate OOD instances from ID
samples [15, 24].

Network truncation [23, 33] aims to increase the gap be-
tween ID and OOD samples by rectifying the propagated
signals or weights of the network. For example, ODIN [23]
perturbs the input signal using a gradient vector to increase
the detection score, while ReAct [33] clips the hidden layer
activation signals using a threshold. The clipped signals in
ReAct are severely perturbed for OOD instances while be-
ing fairly retained for ID samples. Other methods, such as
DICE, RankFeat, and BATS, follow the same principle as
ReAct but rectify other types of signals. DICE [34] spar-
sifies the classification layer by removing fewer contribut-
ing weights therein. RankFeat [32] subtracts the rank-1 ap-
proximation of the feature map from the initial feature map.
BATS [48] cut-outs signals that deviate from the batch norm
statistics. The network truncation, however, cannot be used
independently and need to be combined with a score func-
tion to detect OOD instances.

Another approach involves developing scalar score func-
tions. These detection scores can be broadly categorized
into two types: classifier-based and distance-based. The
classifier-based scores, often referred to confidence, lever-
age the classification layer of a neural network to derive the
score. For example, [15] evaluated the effectiveness of the
maximum output of softmax classifier probability (MSP).
[24] proposed the energy function that can be viewed as
a class conditional probability without bias. The maxi-
mum of logit [39, 14] captures both the class likelihood
and the feature magnitude [8], and is shown to outperform
the MSP counterpart. To utilize the class-dependent infor-
mation extensively, [14] utilized the Kullback–Leibler (KL)
divergence between the prediction and uniform distribution.
GradNorm [17] on the other hand uses the norm of the gra-
dient to minimize the KL score.

The other type of score-based approach is distance-based
detectors. They identify an input sample as OOD based
on its distance to the ID dataset in the feature space. One
example is the Mahalanobis detector [22], which measures
the minimum distance to the class-wise means based on the
shared data feature covariance. A unified approach SSD
[31] operates on the same principle as Mahalanobis but in-
stead assumes that the ID samples follow a single Gaussian
distribution with a single mean. In contrast, KNN [35] is
non-parametric and therefore provides a more accurate rep-
resentation of the distance to the boundary of the data man-
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Algorithm 1 NNGuide Pseudocode, PyTorch-like

def nnguide(z, s, Z, S, k):
# z: 1-by-d array of a test sample feature
# s: a scalar base confidence of the test sample
# Z: n-by-d array of d-dimensional features of n

samples from the bank set
# S: n-by-1 array of base confidences of n

samples from the bank set
# k: the number of nearest neighbors
Z = normalize(Z, dim=1)
z = normalize(z, dim=1)

g_topk, _ = matmul(z, (S*Z)).topk(k, dim=1)
g = g_topk.mean(dim=1) # the guidance term

return s*g # the guided score for the test sample

ifold. CIDER [25] shows that KNN particularly well fits to
the networks with strong discriminative nature.

Classifier-based detectors exhibit low confidence scores
on the class decision boundaries, and hence they are able to
detect near-OOD instances around these boundaries. How-
ever, the classifier confidence is cursed to be overly confi-
dent in the far-OOD region [13]. Distance-based detectors
on the other hand can certify low scores on the far-OOD re-
gions. Nevertheless, they may struggle to assign low scores
to samples located in the intermediate regions around ID
classes, failing to detect near-OOD instances. This limita-
tion can be particularly problematic for parametric methods
like Mahalanobis and SSD when the modeled distribution
does not align well with the true data manifold.

3. Preliminaries

The out-of-distribution (OOD) detection is formulated as
follows: Let X denote the input space with the output space
Y = {1, . . . ,K}, where K is the number of classes in the
in-distribution (ID) dataset. Let f : X → R|Y| be a neural
network that outputs classification logits. The objective of
OOD detection is to devise a detection score function S that
determines whether a given test input x ∈ X belongs to ID
or OOD based on the score value S(x):

x ∈

{
ID if S(x) ≥ τ

OOD if S(x) < τ
(1)

The score function S is either derived from the classifier
outputs f(x) or by computing the distances to the hidden
layer features ϕ(x) of the network f .

Terminology For brevity, we call the classifier-based de-
tection score ’confidence’.

4. Method
4.1. Proposed method: NNGuide

Let Sbase : X → [0,∞) be a given base confidence
score function. We guide this base confidence by

SNNGuide(x) = Sbase(x) ·G(x). (2)

The guidance term G(x) is derived from the ID nearest
neighbors. Particularly, let {z1, . . . , zn} be a small bank
set where n is a α% of features randomly sampled from
the train set. zi = ϕ(xi) is the feature computed from a
bank set sample xi by the penultimate layer of the network
f . Let si = Sbase(xi) denote the confidence scores of xi.
Then for a test input x, the guidance term G(x) is given by
the average similarity to the k-nearest neighbors in the bank
set

G(x) =
1

k

k∑
i=1

s(i) sim(z(i), z) (3)

where z = ϕ(x) is the test input feature, and sim is the
cosine similarity. The reordered index (i) is given in the de-
scending order of confidence-scaled nearest neighbor simi-
larities

s(1) sim(z(1), z) ≥ · · · ≥ s(n) sim(z(n), z). (4)

Due to the confidence scale term si = Sbase(xi), the near-
est neighbors are selected in the high-confidence region.
This can enhance the utilization of more salient ID features
while reducing the effect of possible outliers in ID. Overall,
the confidence-scaled search makes the guided score more
robust than the conventional KNN. The Pytorch-like pseudo
algorithm is given in Algorithm 1.

Unless specified otherwise, we use the (negative) energy
function Sbase(x) = −Energy(x) as the default base confi-
dence score due to its generality [24].

Theoretical Understanding Let S = SNNguide, ϕ̂(x) =
ϕ(x)/∥ϕ(x)∥2, ẑ = z/∥z∥2.

Proposition 1. If mini∥ϕ̂(x) − ẑi∥2 ≥ 2, then S(x) ≤ 0.
If ∥ϕ̂(x)− ẑ(k)∥2 < ϵ, then S(x) > M(Sbase(x)− ϵ/2) if
mini≤k s(i) > M , and S(x) ≤ δSbase(x) if maxi≤k s(i) ≤
δ.

The proposition states that if a test sample x is far-
distanced from the ID bank set in the feature space, then the
guided score is certified to be low. On the other hand, if x is
near to the ID, then the guidance up-scales the base confi-
dence in the high-confidence region, while relatively down-
scaling the base confidence around the low-confidence re-
gion (e.g. class decision boundaries). Thus, near the ID
region, the guidance either retains or improves the fine-
grained detection capability.
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Training scheme From scratch Transfer learning
Model ResNet-50 MobileNet ViT-B/16 RegNet-Y/16GF
ID accuracy↑ 78.73 72.15 85.3 86.01
Detection method FPR95↓ AUROC↑ AUPR↑ FPR95↓ AUROC↑ AUPR↑ FPR95↓ AUROC↑ AUPR↑ FPR95↓ AUROC↑ AUPR↑
MSP (ICLR’17[15]) 49.54 87.44 96.71 77.04 79.46 94.65 48.74 87.67 96.94 43.37 88.95 97.30
MaxLogit (ICML’22[14]) 42.12 90.49 97.57 78.06 77.99 94.10 37.62 89.29 97.11 26.00 92.91 98.16
KL (ICML’22[14]) 40.01 90.80 97.63 88.70 68.85 91.56 38.44 89.01 97.03 24.74 93.07 98.18
ViM (CVPR’22[41]) 29.86 93.00 98.13 76.27 73.59 92.53 35.16 91.04 97.73 21.39 94.89 98.74
Mahalanobis (NeurIPS’22[22]) 44.58 90.93 97.76 64.87 80.29 94.56 39.34 91.73 98.08 32.15 93.07 98.36
SSD (ICLR’21[31]) 40.94 91.47 97.82 77.78 69.01 90.18 59.74 80.38 94.74 40.64 90.22 97.57
GradNorm (NeurIPS’22[17]) 28.92 93.00 98.09 89.88 65.28 89.88 38.04 89.28 96.91 82.86 62.98 87.76
KNN (ICML’22[35]) 42.73 90.19 97.44 74.24 75.22 93.14 54.45 87.62 96.93 31.26 91.96 97.91
Energy (NeurIPS[24]) 40.01 90.80 97.63 88.70 68.85 91.56 38.44 89.01 97.03 24.73 93.08 98.18
NNGuide (Ours) 27.81 92.89 98.03 65.92 81.26 94.94 34.20 92.14 98.10 16.53 95.89 98.98

Table 1. Results on ImageNet-1k. We report the average performance across five different OODs (i.e. iNaturalist, SUN, Places, Textures,
OpenImage-O).

Detection method Backbone Venue FPR95 AUROC AUPR

ODIN* ResNet-50 ICLR’18 56.48 85.41 -
GODIN* ResNet-50 CVPR’20 66.07 82.02 -
DICE* ResNet-50 ECCV’22 34.75 90.77 -
ReAct + DICE* ResNet-50 ECCV’22 27.25 93.40 -
RankFeat* ResNet-101 NeurIPS’22 36.80 92.15 -
BATS* ResNet-50 NeurIPS’22 27.11 94.28 -
ASH* ResNet-50 Arxiv’22 22.73 95.06 -
ReAct (+ Energy)* ResNet-50 NeurIPS’21 31.43 92.95 -
ReAct + MSP ResNet-50 reproduced 55.72 87.27 97.25
ReAct + MaxLogit ResNet-50 reproduced 39.97 91.80 98.29
ReAct + KL ResNet-50 reproduced 32.69 93.07 98.54
ReAct + ViM ResNet-50 reproduced 26.06 94.83 98.85
ReAct + Mahalanobis ResNet-50 reproduced 47.90 88.27 97.26
ReAct + SSD ResNet-50 reproduced 56.17 83.77 95.91
ReAct + GradNorm ResNet-50 reproduced 25.13 94.22 98.72
ReAct + KNN ResNet-50 reproduced 42.42 89.46 97.46
ReAct + Energy ResNet-50 reproduced 32.69 93.07 98.54
ReAct + NNGuide ResNet-50 reproduced 19.72 95.45 98.98

Table 2. The comparison with the state-of-the-art network trun-
cation methods. The average performance across four different
OODs (i.e. iNaturalist, SUN, Places, and Textures) is reported. *
indicates that the results are taken from the references.

5. Experiments

Our experiments on NNGuide are divided into the fol-
lowing parts: (1) We evaluate the performance of NNGuide
on the standard ImageNet-1k OOD detection benchmark.
(2) We examine the robustness of NNGuide against distri-
bution shift. In this setting, the train ID data is ImageNet-1k
while the test ID data is ImageNet-1k-V2 which comprises
natural distribution shift examples. (3) NNGuide is eval-
uated on the small-scale CIFAR-100 [21] benchmark. (4)
We conduct a thorough ablation study on NNGuide to iden-
tify its key components, assess its compatibility with other
classifier-based scores, and determine the optimal condi-
tions for its use. Supplementary Sec. B provides complete
experimental results.

Configuration NNGuide involves two hyperparameters
related to the k-nearest neighbor search, i.e. the number k of
nearest neighbors, and sampling ratio α% to construct the
bank set from the train data. In all evaluations below, we
follow the guideline of [35], and use α=1% and k=10 to

keep the balance between efficiency and performance. Ex-
tensive analysis of the hyperparameters is deferred to the
ablation study in Sec. 5.4.3.

Comments on the computation speed The computa-
tional speed of nearest neighbor search has been exten-
sively analyzed in [35] for OOD detection. [35] reports that
KNN is as fast as or faster than most of the other detec-
tion methods in modern hardware and optimized libraries
(e.g. faiss). NNGuide adds no computation overhead on the
nearest neighbor search algorithm.

Evaluation metrics We evaluate OOD detection methods
by the widely-used metrics: the false positive rate (FPR95)
when the true positive rate of ID samples is at 95%, the area
under the receiver operating characteristic curve (AUROC),
and the area under the precision-recall curve (AUPR). In
all the metrics, we regard the ID samples as positive. In
addition, we report the closed-set classification accuracy of
the model on the ID dataset.

5.1. Evaluation on the ImageNet-1k

Datasets In this evaluation, the train and test ID sets are
all from ImageNet-1k [7]. For extensiveness, the detection
method is evaluated on a diverse set of OOD datasets [18]:
iNaturalist [38], SUN [43], Places [47], Textures [6], and
OpenImage-O [41]. The OOD sets have no overlapping cat-
egories with ImageNet-1k. Though there is no strict crite-
rion to differentiate between near-OOD and far-OOD [10],
[44] categorizes iNaturalist and OpenImage-O as near-OOD
and Textures as far-OOD. The other two OOD sets SUN
and Places have overlapping characteristics. Overall, the
five OOD sets involve diverse class semantics [18]. Hence,
the average performance over these OOD sets indicates the
robustness of the detection method against general OOD.

Backbone models We evaluate our proposed detection
score NNGuide across four different model architectures
ResNet-50 [12], MobileNet [30], ViT [9], and RegNet [27].
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Training scheme From scratch Transfer learning
Model ResNet-50 MobileNet ViT RegNet
ID accuracy↑ 74.43 67.78 81.16 82.79
Detection score FPR95↓ AUROC↑ AUPR↑ FPR95↓ AUROC↑ AUPR↑ FPR95↓ AUROC↑ AUPR↑ FPR95↓ AUROC↑ AUPR↑
MSP 55.54 85.30 84.57 79.40 76.64 77.14 54.61 84.93 84.74 48.99 86.38 85.93
MaxLogit 47.97 88.54 88.01 80.19 75.17 75.06 45.97 86.32 84.75 34.17 89.67 87.97
KL 44.67 88.97 88.24 89.57 66.17 67.92 47.03 85.91 84.41 32.69 89.74 87.87
ViM 33.11 91.88 90.75 76.90 72.32 72.16 39.13 89.39 88.74 28.02 92.80 92.09
Mahalanobis 47.85 89.45 89.65 65.27 79.37 78.87 42.99 90.29 90.76 36.58 91.72 91.87
SSD 43.21 90.36 90.09 77.24 69.32 67.66 58.28 81.21 81.39 44.19 88.73 88.65
GradNorm 32.66 91.87 90.62 89.98 64.50 65.27 47.62 86.07 83.75 84.47 61.02 59.56
KNN 44.57 89.22 88.64 75.49 74.33 75.20 57.98 86.52 86.73 33.74 91.34 90.54
Energy 44.68 88.97 88.24 89.57 66.17 67.92 47.03 85.91 84.41 32.86 89.75 87.89
NNGuide 30.78 91.70 90.08 67.80 79.40 78.93 41.73 90.08 89.95 21.97 94.17 93.44

Table 3. Results on ImageNet-1k-V2. The average performance across five different OODs is reported.

ResNet-50 is a standard architecture for OOD evaluation,
while MobileNet is a network designed particularly for effi-
ciency. ViT partitions an image into multiple visual tokens
and processes them by a deep stack of multi-head attention
blocks, whose usage has shown excellent performance in
language modeling. Unlike ViT, the RegNet architecture
is targeted for both efficiency and performance. RegNet is
constructed by applying a network search principle at the
network-population level rather than a network level, mak-
ing it robust across diverse environments including distribu-
tion shifts and domain generalization [3, 1].

All four models are trained on the training fold of
ImageNet-1k, and the classification layers are strictly pro-
hibited to see any instance from OOD datasets. The first
two, ResNet-50 and MobileNet, are trained from scratch
on the train set. The latter two, ViT and RegNet, on the
other hand, are initialized from the pretrained weights on
ImageNet-21k, and then the full weights are fine-tuned on
ImageNet-1k. The particular versions we use are ViT-B/16
and RegNet-Y/16GF. The transfer learning scheme for ViT
and RegNet is a more practical approach due to their higher
ID (closed-set) accuracy and overall better detection perfor-
mance.

5.1.1 Comparison on detection scores

We compare NNGuide with the state-of-the-art post-hoc
detection score methods. The baselines include MSP,
MaxLogit, ViM, Mahalanobis, SSD, GradNorm, KNN, and
Energy detection scores, as described in Sec. 2. Tab. 1 in-
dicates that our proposed NNGuide is more effective than
or on par with other detection scores across model archi-
tectures, training schemes, and evaluation metrics. Upon
the RegNet model, particularly, we achieve a new state-
of-the-art performance, by significantly outperforming all
other methods. This shows that with a well-trained model,
NNGuide can achieve robust OOD detection on the large-
scale benchmark.

5.1.2 State-of-the-art performance with network trun-
cator

The recent works in OOD detection showed that the trun-
cation methods that rectify the hidden/output layer signals
give excellent performance. The insight of these approaches
is that a particular truncation function perturbs only the sig-
nals from the OOD instance while retaining those of ID
samples, hence enhancing the score gap between ID and
OOD. The truncators however cannot be used alone and re-
quire an external OOD detection score (such as MSP, En-
ergy, or KNN).

For a fair comparison with truncation approaches, we
combine our detection score NNGuide with ReAct. Tab. 2
shows that when combined with the simple truncator i.e.
ReAct, our proposed NNGuide performs the best over other
recently proposed network truncators in both the FPR95
and AUROC metrics. Particularly, NNGuide outperforms
BATS, which is limited to the networks with batch normal-
ization. ‘ReAct + NNGuide’ performs significantly better
than a classifier rectifier DICE, even when used in conjunc-
tion with ReAct. In addition, When comparing ReAct com-
bined with various detection scores, NNGuide demonstrates
greater effectiveness and relevance than the other detection
scores.

5.2. Evaluation against natural distribution shift

Datasets and configuration We evaluate the robustness
of NNGuide against the natural distribution shift of the ID
dataset. To this end, we consider the setting where the train
ID data is ImageNet-1k and the test ID dataset is ImageNet-
1k-V2 which consists of natural distribution shift samples.
We note that both train and test ID datasets share the same
semantics classes (i.e., the 1k number of classes in Ima-
geNet). OOD detection in this setup can be challenging
since the detection score may incorrectly identify the test
ID sample as an OOD instance due to the distribution dif-
ference between the test and train ID sets. As to model con-
figurations, we use the same models that are used for the
ImageNet-1k evaluation in Sec. 5.1.
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Figure 2. The performance summary of NNGuide and other de-
tection scores on the ImageNet benchmarks across different mod-
els, test IDs, and OODs.

Results on ImageNet-1k-V2 Tab. 3 indicates that
NNGuide is comparable to the state-of-the-art detection
method ViM and Mahalanobis under MobileNet and the
vision transformer, and significantly outperforms all other
detection scores with ResNet-50 and RegNet. Even across
MobileNet and ViT, however, NNGuide is overall more ro-
bust than Mahalanobis and ViM, indicated by the smaller
fluctuation in the performance metrics.

Both the Mahalanobis and ViM detectors are known to
excel in the ViT-type architecture due to the Gaussian na-
ture of the vision transformer embedding space [11, 20].
We note however that ViT is suboptimal in this task even
with large-scale pretraining and a much larger number of
network parameters and inference time; ResNet-50 trained
from scratch achieves better overall performance metrics
than ViT.

We found that the RegNet architecture built by the
network-population level search principle is shown to be the
best in our comparison across all metrics. Under this back-
bone, our proposed NNGuide outperforms other detection
scores by a large margin in the FPR95 metric.

We present a summary of our performance evaluation in
Fig. 2. The figure demonstrates that NNGuide exhibits less
performance variation and better average performance com-
pared to all other detection scores, including ViM, which is
also based on fusing classifier signals with distance infor-
mation.

5.3. Evaluation on the CIFAR-100 benchmark

We evaluate NNGuide on the small-scale CIFAR-100 by
training ResNet-18 on the train fold from scratch. Each
class of CIFAR-100 contains a small number of low-
resolution images, and hence the trained model can be sub-
optimal for both classification and OOD detection [39].
Tab. 4 shows the average performance of NNGuide against
five different OODs that are commonly used for evaluation

FPR95↓ AUROC↑ AUPR↑
MSP 72.53 82.34 83.05
MaxLogit 67.92 85.14 85.61
KL 66.27 85.47 85.84
ViM 80.07 77.70 78.63
Mahalanobis 77.54 78.88 79.18
SSD 83.21 69.05 65.52
GradNorm 66.90 76.71 72.14
KNN 70.07 84.17 84.23
Energy 66.27 85.47 85.84
NNGuide 64.56 86.39 86.96

Table 4. Results on the CIFAR-100 benchmark with the ResNet-
18 model trained on CIFAR-100 from scratch, achieving 75.66%
ID accuracy. The average performance across five different OODs
is reported.

FPR95↓ AUROC↑ AUPR↑
baselines:
KNN 42.73 90.19 97.44
KNN with average similarity 43.96 90.71 97.64
Energy 40.01 90.80 97.63

naive fusion:
Product fusion 33.53 92.17 97.92
Sum fusion 34.03 92.27 97.96
Max fusion 42.72 90.19 97.44
Min fusion 40.01 90.80 97.63

missing core components
Mahalanobis guidance 37.19 92.00 97.97
Guidance term only 30.31 91.58 97.42
W/O confidence scaling 36.23 91.81 97.87

NNGuide 27.81 92.89 98.03
Table 5. Ablation study on the components of NNGuide. The
average performance across five different OODs is reported.

(i.e. CIFAR-10, SVHN, resized LSUN, resized ImageNet,
and iSUN). NNGuide outperforms other baseline detection
methods. However, unlike the ImageNet benchmarks, the
performance boost by NNGuide is marginal on the CIFAR-
100 evaluation protocol. This is due to the suboptimal
model trained on low-quality ID data. Such a limitation of
NNGuide is more carefully analyzed in the ablation study
(Sec. 5.4.4).

5.4. Ablation

The ablation study is divided into several parts. (1) We
examine the compatibility of NNGuide with other classifier-
based detection scores besides the negative energy function.
(2) We analyze which components of NNGuide contribute
to improving the classifier-based confidence score. (3) We
evaluate the impact of the hyperparameters k and α related
to the nearest neighbor search. (4) We present a limitation
analysis of NNGuide from various aspects, highlighting the
necessary requirements for its optimal usage.
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Figure 3. The compatibility to other classifier-based scores. The average performance across five different OODs is reported.
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Figure 4. The hyperparameter analysis on the number k of nearest neighbors and the sampling ratio α.

5.4.1 Compatibility to other classifier-based confi-
dence scores

We extend the use of NNGuide beyond the energy function
by evaluating its compatibility with other classifier-based
confidence scores, i.e., MSP, MaxLogit, KL, and Grad-
Norm. Fig. 3 demonstrates that NNGuide effectively en-
hances the performance of all considered scores. Notably,
the performance improvement is remarkable, particularly
for the scores that fully utilize class-dependent information
(both target and non-target class outputs) without the soft-
max nonlinearity. However, we note that the final perfor-
mance of NNGuide heavily relies on the base confidence
score. As such, NNGuide may not be effective when the
base score is poor. We further analyze the limitations of
NNGuide in Sec. 5.4.4.

5.4.2 Ablation on the components of NNGuide

NNGuide consists of the base classifier confidence score
Sbase(x) and the nearest-neighbor-based guidance term
G(x). The guidance term can be further broken down to
the confidence scaling in Eq. (4) and the similarity ensem-
ble in Eq. (3).

Tab. 5 shows the overall results of evaluations conducted
to ablate each component of NNGuide. Here, the original
KNN detector as formulated in [35] detects an OOD in-
stance based on only the similarity to the k-th nearest neigh-
bor; i.e. SKNN(x) = sim(z(k), z). To see the effect of sim-
ilarity ensemble, we modify the KNN detector to compute
the average of top-k similarities to nearest ID instances; i.e.
Savg-KNN(x) =

∑k
i=1 sim(z(k), z). As indicated by ‘KNN

with average similarity’, the similarity ensemble alone does
not boost the performance.

We argue that similarity ensemble is effective only when
combined with confidence scaling. To validate this, we
evaluate the performance of the guidance term G(x). The
term can be considered as a weighted KNN, where the

weights are the confidences si. Indicated by ’Guidance term
only’, Tab. 5 shows a notable improvement to the original
KNN. As discussed in Sec. 4, the nearest neighbor search
based on confidence-scaled similarities selects the bank set
instances in the high-confidence region. Hence, this search
algorithm operates with the most salient ID features, ignor-
ing possible outliers.

We further verify the effectiveness of the confidence-
scaled nearest neighbor search by removing the confidence-
scaling component from NNGuide. The result indicated by
’W/O confidence scaling’ shows that confidence scaling is
a significant factor in NNGuide.

We note that the Mahalanobis (density) score can also
be used to bind the overconfidence of the classifier on the
far-OOD region. Hence, we evaluate its impact by substitut-
ing the guiding term with the Mahalanobis distance. Tab. 5
shows that the guidance by Mahalnobis score is not as ef-
fective as NNGuide. The disadvantage of Mahalanobis may
stem from a strong parametric assumption that the ID fea-
tures should be Gaussian.

Finally, we test with other types of fusion techniques.
We find that a naive combination of the KNN and classifier-
based detection score by basic algebraic operations such
as min, max, sum, and the product is not as effective as
the NNGuide. Although these basic fusion approaches are
aligned with our high-level objective, the confidence-scaled
nearest neighbor search and similarity ensemble parts are
missing therein. Hence, the naive fusion detectors could be
neither fine-grained nor robust, testified by their worse per-
formances.

5.4.3 Analysis of the hyperparameters

We evaluate the impact of hyperparameters α and k in
NNGuide. We consider α ∈ {0.5, 1, 5, 10, 25, 50, 100} and
k ∈ {1, 10, 20, 50, 100, 200, 500, 1000, 3000, 5000} and
for the sampling ratio and a number of neighbors, respec-
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Figure 5. NNGuide could be suboptimal when combined with
distance-based scores.
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Figure 6. The dependency of NNGuide on the classifier confi-
dence and KNN.

tively. Fig. 4 indicates that the performance of NNGuide
is fairly robust across different k as long as k ≥ 10. More-
over, the performance has a consistent trend across different
sampling ratios α. This is in contrast to the vanilla KNN de-
tection score; as reported in [35], the KNN score exhibits a
degree of performance fluctuation under the variation of k
and α. In addition, the performance variance is lower in the
small sampling regime (i.e. small α%), suggesting that the
hyperparameters of NNGuide can be fairly easily tuned.

5.4.4 Limitation analysis of NNGuide

Despite the superiority of NNGuide compared to other de-
tection scores, it is not perfect. We analyze its limitation,
figuring out necessary requirements for NNGuide.

The necessity of classifier for NNGuide With the near-
est neighbor guidance by Eq. (2), the base confidence score
is assumed to be a classifier-based score with fine-grained
detection capability. One possible approach is to extend the
base confidence score to distance-based scores (e.g. Maha-
lanobis, SSD, and ViM), which however may lack a fine-
grained nature. We argue that NNGuide could be subopti-
mal if the base confidence is a distance-based score. Guid-
ing a distance-based score by the nearest neighbor guid-
ance may not significantly boost its detection capability. As

shown in Fig. 5, the improvement by NNGuide is inconsis-
tent and sometimes marginal. The guidance is particularly
insignificant when the base score is ViM, where the overly
low energy in the far-OOD region is already mitigated by
the orthogonal distance to the ID subspace.

In some cases, NNGuide improves Mahalanobis and
SSD. We believe this is due to the following fact: Maha-
lanobis and SSD represent poor distance functions when the
data feature has deviated from Gaussian. On the other hand,
the nearest neighbors represent the data boundary more ac-
curately, providing a better distance function. Thus, the
guidance by nearest neighbors refines the Mahlanobis and
SSD distances.

Dependency on both classifier confidence and KNN
NNGuide is formulated by nearest neighbors and the clas-
sifier outputs. Hence, the performance of NNGuide in-
evitably depends on both KNN and the classifier’s confi-
dence. Fig. 6 indicates a strong linear correlation between
NNGuide and the base classifier’s confidence in terms of
the performance metric. NNGuide exhibits a strong correla-
tion with KNN only when the classifier-based score demon-
strates robust OOD detection capability. Specifically, the
correlation is not observed with suboptimal classifier confi-
dences such as GradNorm and MSP (Fig. 3). Conversely,
NNGuide shows a strong correlation with KNN when
the confidences are based on Energy, KL, and MaxLogit.
This correlation trend suggests that the optimal usage of
NNGuide requires both good classifier confidence and a
strong feature extractor.

The analysis also explains our results on ResNet-18
(CIFAR-100) and RegNet (ImageNet). The suboptimal
ResNet-18 trained on CIFAR-100 from scratch likely pro-
duces poor classification outputs and extracted features.
Thus, NNGuide improves the base score only marginally. In
contrast, the RegNet model trained on large-scale datasets
with the best principles attains a highly discriminative clas-
sifier and representation. Accordingly, in RegNet, the per-
formance boost by NNGuide is significant.

6. Conclusion
We proposed a novel method for OOD detection called

the nearest neighbor guidance (NNGuide) that improves a
classifier’s confidence by guiding it with the nearest neigh-
bors’ information. NNGuide prevents the overconfidence of
the classifier while retaining its fine-grained detection capa-
bility, thereby achieving balanced robustness against both
far- and near-OODs. NNGuide has been examined exten-
sively on the large-scale ImageNet-1k benchmarks, includ-
ing the natural distribution shift and transfer learning sce-
narios. NNGuide has shown to be robust across different
model backbones and OODs, achieving state-of-the-art per-
formance with RegNet.
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