
Probabilistic Precision and Recall
Towards Reliable Evaluation of Generative Models

Dogyun Park
Department of Computer Science, Korea University

Seoul, South Korea
gg933@korea.ac.kr

Suhyun Kim*

Korea Institute of Science and Technology
Seoul, South Korea

dr.suhyun.kim@gmail.com

Abstract

Assessing the fidelity and diversity of the generative model
is a difficult but important issue for technological advance-
ment. So, recent papers have introduced k-Nearest Neighbor
(kNN) based precision-recall metrics to break down the sta-
tistical distance into fidelity and diversity. While they provide
an intuitive method, we thoroughly analyze these metrics and
identify oversimplified assumptions and undesirable prop-
erties of kNN that result in unreliable evaluation, such as
susceptibility to outliers and insensitivity to distributional
changes. Thus, we propose novel metrics, P-precision and P-
recall (PP&PR), based on a probabilistic approach that ad-
dress the problems. Through extensive investigations on toy
experiments and state-of-the-art generative models, we show
that our PP&PR provide more reliable estimates for compar-
ing fidelity and diversity than the existing metrics. The codes
are available at https://github.com/kdst-team/
Probablistic_precision_recall.

1. Introduction
Modern state-of-the-art generative models such as Vari-

ational Autoencoders (VAEs) [18, 24], Generative Adver-
sarial Networks (GANs) [8, 15, 13, 14], and Score-based
Diffusion Models (SDMs) [12, 17, 29, 6, 32, 25, 30] have
shown outstanding achievements that surpass human evalua-
tive capabilities. Consequently, reliable evaluation metrics
for comparing the performance of generative models are
critical for further technological advancement. The widely
used Fréchet Inception Distance (FID) evaluation metric
[11] has been praised for its robustness and consistency with
human perceptual evaluation. However, FID only provides
a single score and does not diagnose whether the model
lacks fidelity or diversity, two essential aspects for improving
generative models. Recent papers [26, 28, 20, 22, 1] have
introduced various two-value metrics to measure fidelity
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and diversity, respectively. Especially, k-nearest neighbor
(kNN) based metrics such as Improved Precision and Recall
(IP&IR) [20] and Density and Coverage (D&C) [22] have
been used to assess fidelity and diversity on various gener-
ative models [6, 35, 2, 24, 13, 4, 23]. The pipeline of these
metrics [20, 22] starts with estimating distribution support
of real and fake distribution by constructing sample-specific
hyperspheres around each sample using kNN. Then, they
measure the expectation of the likelihood of fake (real) sam-
ples with respect to the estimated real (fake) distribution
support to represent fidelity (diversity).

Unfortunately, both IP&IR and D&C metrics present
certain challenges that compromise their practical reliabil-
ity. Specifically, IP&IR operate under the assumption of
constant-density within the distribution support and over-
look the overestimation linked to kNN, leading to an inflated
distribution support with constant density. This scenario be-
comes especially problematic when the distribution houses
outliers, resulting in metric overestimation (See Fig. 1a).
Density metric [22] attempts to address these limitations by
accumulating density over overlapped kNN hyperspheres.
Yet, our findings suggest that it still remains unreliable to
outliers. Furthermore, it tends to exhibit high variance, due
to its extremely wide bound, which further limits the reliabil-
ity of evaluations. On the other hand, Coverage metric [22]
presents an alternative method that measures robust diversity
even with the presence of outliers in the fake distribution.
However, we show that it suffers from a conceptual limita-
tion that makes it insensitive to changes in fake distribution.
An in-depth discussion of these constraints is provided in
Sec. 2. In the end, these issues underscores the need for care-
ful revision of kNN-based metrics to provide more reliable
evaluations.

We, therefore, propose a novel set of metrics, P-precision
and P-recall (PP&PR), which aim to provide more reliable
estimations for the fidelity and diversity of generative models.
In particular, we derive our metrics based on a probabilistic
approach that relaxes the oversimplified assumptions and
undesirable properties of kNN, addressing the limitations of
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Figure 1: Examples of IP&IR, D&C, and PP&PR (better zoom-in). For simplicity, we use k = 2 for k-Nearest Neighbor in
all metrics. (a), (c): Due to the overestimation of kNN by the outlier and constant-density assumption within hyperspheres,
I-precision, I-recall, and Density denote the same values for different y in an overly large space (See y1, y2, and y3 in (a)),
leading to unreliably-overestimated values. (b), (e): On the other hand, our P-precision and P-recall assign different scores to
different y based on a probabilistic approach and address overestimation of kNN (See Sec. 4 for details). (d): This illustrates a
case when Coverage exhibits its conceptual limitation. Even if the fake samples have lower relative diversity compared to real
samples, they can still be included in multiple hyperspheres of real samples, leading to high Coverage.

existing metrics. Through extensive experiments on both toy
and real-world datasets, we systematically demonstrate the
superiority of our proposed metrics over IP&IR and D&C.
To summarize, our contributions are as follows:

• We propose a set of two-value metrics, P-precision
and P-recall, that provide reliable fidelity and diversity
measures for generative models.

• We thoroughly analyze the limitations of existing met-
rics (IP&IR and D&C), such as vulnerability to outliers
and insensitivity to diversity, and introduce a novel
method based on the probabilistic approach that reme-
dies the limitations.

• Through a series of experiments on toy and real-world
datasets with state-of-the-art generative models, we
empirically verify the limitations of current metrics and
demonstrate the efficacy of our proposed metrics.

2. Preliminary

2.1. Feature embedding for evaluation

Statistical comparison of high dimensional data in the raw
input space X is difficult. Therefore, the usual evaluation
starts with converting real data X ∼ P and fake data Y ∼ Q
into embeddings using a CNN feature Φ (Φ(X) and Φ(Y ))
[11, 20, 27, 22]. This embedded feature space is believed
to have more “meaningful” information to compare two
samples [7, 33]. For simplicity, we use X and Y in place of
Φ(X) and Φ(Y ) for the remainder of the paper.

2.2. kNN-based fidelity and diversity measures

Now, we briefly introduce current kNN-based fidelity and
diversity measures and discuss their limitations in Sec. 3.

Improved Precision and Recall (IP&IR). To represent
fidelity, Precision is defined as the expected likelihood of
a fake sample belonging to the support of the real distribu-
tion, which refers to the set of possible real samples whose
probability density function is non-zero. Likewise, Recall is
defined as the expected likelihood of a real sample belonging
to the support of fake distribution to measure diversity.

Precision := EY∼Q [Y ∈ supp(P )]

Recall := EX∼P [X ∈ supp(Q)] ,
(1)

where supp(·) indicates the ground truth support of distri-
bution. Then, IP&IR [20] approximates them using the
empirical observations

(
{xi}Ni=1 and {yj}Mj=1

)
as

Precision ≈ I-Precision

:=
1

M

M∑
j=1

BSRP (yj)

Recall ≈ I-Recall

:=
1

N

N∑
i=1

BSRQ(xi).

(2)

The scoring rule of IP&IR, which we name as Binary Scoring
Rule (BSR) for comparison with other scoring rules, is

BSRP (yj) =

{
1, if yj ∈ ∪N

i=1B (xi,NNDk(xi))

0, otherwise
(3)
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where B(x, r) is the hypersphere in RD around x with ra-
dius r, and NNDk(xi) denotes the Euclidean distance from
xi to the kth nearest neighbor among {xi}Ni=1 excluding
itself. In other words, BSRP (yj) assigns a binary score of
1 or 0 to yj based on whether it falls inside the union of
hyperspheres. It is worth noting that BSR employs a deter-
ministic approach that determines the support as the union
of kNN hyperspheres without accounting for any uncertainty
regarding the true support. This restricts the scoring rule to
binary assignments, leading to a constant density within the
approximated distribution support.

I-recall is defined using BSRQ(xi), which is defined sym-
metrically with BSRP (yj). It builds hyperspheres around
fake samples and tests real samples.

Density and Coverage (D&C). D&C use different ap-
proaches to define fidelity and diversity in comparison
to IP&IR. Specifically, Density [22] tackles the issue of
constant-density over distribution support in IP&IR by quan-
tifying the degree of overlap between kNN hyperspheres. To
this end, Density defines a scoring rule that estimates the
density function within distribution support by the superpo-
sition of hyperspheres, as opposed to the union in IP&IR.
We denote this scoring rule as Density Scoring Rule (DSR).

DSRP (yj) =
1

k

N∑
i=1

1yj∈B(xi,NNDk(xi)) (4)

where k is for the k-nearest neighbors. DSR employs a kind
of Parzen window density estimation [10] with a uniform
kernel whose width is adjusted automatically, except that the
integral of the kernel does not sum up to 1. Now, Density is
defined as the expectation of DSR over observed samples as

Density :=
1

M

M∑
j=1

DSRP (yj) (5)

For diversity, the authors employ another scoring rule,
Coverage Scoring Rule (CSR), which is not symmetric to
DSR. It builds kNN hyperspheres around the real samples
and counts the real samples whose hyperspheres are oc-
cupied by the fake samples. Coverage has demonstrated
effectiveness in handling outliers in fake distribution, as
the hyperspheres of real samples are not influenced by fake
outliers.

CSRQ(xi) = 1∃j s.t. yj∈B(xi,NNDk(xi))

Coverage :=
1

N

N∑
i=1

CSRQ(xi)
(6)

3. Limitations with scoring rules of IP&IR and
D&C

Binary scoring rule. BSR can only assign constant den-
sity within an approximated distribution support, which can

hinder reliable estimates when comparing distributions with
complex density functions. Moreover, the use of kNN in
BSR makes it more susceptible to outliers as it unreliably in-
flates the size of the hypersphere due to the presence of such
outliers. This results in overestimated value as illustrated in
Fig. 1a and 1c. Both I-precision and I-recall face similar
issues since they symmetrically use BSR.

Density scoring rule. We contend that DSR remains vul-
nerable to outliers as it accumulates density over the oversti-
mated constant-density hyperspheres. For instance, if there
are s outliers, all hyperspheres of outliers can overlap due
to the overestimated size of hyperspheres. This causes the
overlapped density to accumulate to s/k (note that DSR
scales the overlapped density by a factor of 1/k in Eq. 4),
resulting in a rapid increase with just a few outliers. We
demonstrate this quantitatively with the experiment in Sec. 5.
Additionally, reducing the density by a factor of 1/k makes
the metric highly dependent on the choice of k, which is not
desirable as we demonstrate in Fig. 3.

Lastly, DSR is bounded within [0, N/k] (e.g., N/k =
50000/5 = 10000), which can result in samples with abnor-
mally high values of DSR, compromising stable evaluations
with high standard deviations as demonstrated in Fig. 2c.

Coverage scoring rule. While CSR can effectively handle
outliers in fake distribution, it exhibits a conceptual lim-
itation: a lack of sensitivity to the comparative diversity
between fake and real distributions. This arises because CSR
doesn’t factor in distances between fake samples. Instead,
its focus is solely on the count of real sample hyperspheres
occupied by fake samples. This leads to a scenario where
if real samples are more dispersed compared to fake ones,
meaning the fake samples exhibit less relative diversity, the
fake samples could still be included in multiple real hy-
perspheres. This, in turn, can produce a falsely elevated
Coverage metric (a conceptual illustration is provided in
Fig.1d). Conversely, Coverage can be low if fake samples
are more widely distributed compared to real samples. We
elucidate this phenomenon quantitatively in Fig. 5b.

4. Method
To address the aforementioned limitations, we propose a

novel scoring rule based on a probabilistic approach. Our
motivation arises from the recognition that accurately esti-
mating the ground truth support is infeasible with empirical
observations alone. As a result, it becomes difficult to deter-
mine whether a sample belongs to the ground truth support
with certainty (0 or 1). Therefore, we adopt a probabilistic
perspective and define the probability of a sample belonging
to the support, taking into account the uncertainty surround-
ing the ground truth support. Then, our scoring rule can
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assign lower values to samples that are less likely to belong
to the support such as outliers, effectively addressing out-
lier concerns. We also define the scoring rules for fidelity
and diversity symmetrically, similar to IP&IR, to avoid the
conceptual limitation of CSR. Although we mainly focus
on describing the details of fidelity in the paper, diversity is
defined symmetrically.

4.1. P-precision and P-recall (PP&PR)

Given the observations {xi}Ni=1, we assume that there are
myriad possible supports of P , denoted as SP . The collec-
tion of these supports is represented by SP . Subsequently,
we introduce Probabilistic-Precision that characterizes pre-
cision as the probability of yj being an element of support
randomly chosen from SP . This is articulated as

P-precision := EY∼Q,SP∈SP [Y ∈ SP ]

= EY∼Q [ESP∈SP [Y ∈ SP ]]

= EY∼Q [Pr(Y ∈ SP )]

(7)

Then, we approximate it with given observations {yj}Mj=1 as

P-precision ≈ 1

M

M∑
j=1

Pr(yj ∈ SP ). (8)

In a similar manner, Probabilistic-recall is approximated as

P-recall ≈ 1

N

N∑
i=1

Pr(xi ∈ SQ). (9)

4.2. Probabilistic scoring rule

To estimate Pr(yj ∈ SP ), we first divide SP into subsets
around each observation as

SP :=
N⋃
i=1

sP (xi), (10)

where sP (xi), denoted as the subsupport around xi, repre-
sents a subset of SP that comprises elements for which the
nearest reference among {xi}Ni=1 is xi. Then, we can further
elucidate Pr(yj ∈ SP ) as

Pr(yj ∈ SP ) = 1− Pr(yj /∈ SP )

= 1− Pr
(
yj /∈ ∪N

i=1sP (xi)
)

= 1− Pr
(
yj ∈ ∩N

i=1s
c
P (xi)

)
= 1−

N∏
i=1

Pr (yj ∈ scP (xi))

= 1−
N∏
i=1

(1− Pr(yj ∈ sP (xi)))

(11)

using Eq. 10 and complement rule, where scP (·) denotes the
complement set of sP (·). The equality in the fourth line of
Eq. 11 comes from assuming the independence of events
{yj ∈ scP (xi)|i = 1, 2, · · · , N}.

Now, we define our new scoring rule termed Probabilistic
Scoring Rules (PSR) from the last equation in Eq. 11:

PSRP (yj) := 1−
N∏
i=1

(1− Pr(yj ∈ sP (xi)))

= Pr(yj ∈ SP )

(12)

In contrast with deterministic methods such as BSR, which
make certain assumptions about the definitive shape of sub-
support, PSR estimates the probability of yj to belong to the
uncertain support by combining the probability to belong
to the subsupport around each observation. Utilizing this
probabilistic approach allows us to depart from defining the
specific subsupport—a task that, in practice, can be ambigu-
ous. Rather, we infer the likelihood of a sample being part
of the subsupport based on an intuitive premise: samples in
closer proximity to xi are more likely to be an element of
the subsupport compared to those further away. Accordingly,
we approximate the probability Pr(yj ∈ sP (xi)) as

Pr(yj ∈ sP (xi)) ≈

{
1− d

R , if d ≤ R

0, otherwise
(13)

where d is l2 distance between xi and yj . From Eq. 13,
the probability is one when d = 0, given that we know for
certain that xi belongs to the subsupport. The probability
monotonically decreases with an increase in d until it hits
the threshold distance R, where the probability converges
to zero. By Eq. 12 and Eq. 13, our proposed PSR can as-
sign varying values to samples based on their likelihood of
belonging to the support. Moreover, it is bounded within
[0,1] (see supplement for the proof) unlike DSR which has
an extremely wide bound. Note that while other distance
metrics d or monotonically decreasing functions could serve
this purpose, we opted to use l2 distance and a linear func-
tion since it was sufficiently sensitive based on our empirical
results. We leave it for future work.

It is also important to select R in Eq. 13 since it con-
trols the robustness of the scoring rule. Instead of sample-
specific R(xi) based on kNN as used in IP&IR and D&C,
we propose to use identical R for all samples xi. We set
R as a multiple of the average of kNN distances among
{xi}Ni=1, since it can be used as an effective normalization
factor in high-dimensional space. This is similar to using a
fixed-variance Gaussian kernel for Kernel Density Estima-
tion and offers several advantages over sample-specific kNN:
1) it suppresses the overestimation of kNN by the outlier as
shown in Fig. 1b, and 2) makes metric more robust to the
choice of k as shown in Fig. 3.
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Figure 2: (a) Behavior of fidelity metrics between two Gaussian distributions X ∼ N(0, I) and Y ∼ N(u1, I) as u moves
between [-3,3] with outlier xo ∼ N(−2, I) added to X . (b) Behavior of diversity metrics between two Gaussian distributions
X ∼ N(u1, I) and Y ∼ N(0, I) as u moves between [-3,3] with outlier yo ∼ N(2, I) added to Y . (c) Estimated bias from
the presumed true value between two identical Gaussian distributions for different numbers of datasets N . The line shows the
means and the shaded area denotes standard deviations across 50 runs.

Finally, putting it all together, we propose P-precision as

P-precision =
1

M

M∑
j=1

PSRP (yj) (14)

where

PSRP (yj) = 1−
N∏
i=1

(1− Pr(yj ∈ sP (xi))) ,

Pr(yj ∈ sP (xi)) =

{
1− ||xi−yj ||2

R , if ||xi − yj ||2 ≤ R

0, otherwise

and

R =
a

N

N∑
i=1

NNDk(xi).

a is a hyperparameter that controls the magnitude of R, and
k is for the k-nearest neighbors. In a similar manner, we
propose P-recall as

P-recall =
1

N

N∑
i=1

PSRQ(xi) (15)

where

PSRQ(xi) = 1−
M∏
j=1

(1− Pr(xi ∈ sQ(yj))) ,

Pr(xi ∈ sQ(yj)) =

{
1− ||xi−yj ||2

R , if ||xi − yj ||2 ≤ R

0, otherwise

and

R =
a

M

M∑
j=1

NNDk(yj).

I-Precision
P-precision

Density

𝑘 = 2
𝑘 = 3
𝑘 = 5

𝑢

Figure 3: Ablation over k. We measure each metric for
different k between X ∼ N(0, I) and Y ∼ N(u, I) as u ∈
[-3.0,3.0] with outlier xo ∼ N(−2, I) added to X .

5. Experiments
In this section, we systematically demonstrate the limita-

tions of current metrics and the improvements of our metrics
through toy experiments. We then show the experiments
with state-of-the-art generative models, highlighting that our
metrics are more reliable for evaluating generative models
than IP&IR and D&C. We use the settings described below
for the remainder of the experiments unless stated other-
wise. We set k = 4 and a = 1.2 for our metrics in all
experiments. For IP&IR and D&C, we follow the recom-
mended value of k = 3 and k = 5, respectively. In the
toy experiments, we generate Gaussian distributions in R64

and set M = N = 10000. For the experiments evaluat-
ing generative models, we use features extracted from the
ImageNet [19] pre-trained Inception model [31] after the
second fully connected layer. We compute metrics between
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the bottom two rows are images with the lowest L, indicating low PSR and high DSR.
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Figure 5: Behavior of metrics between X ∼ N(0, I) and
Y ∼ N(0, vI) as v changes between [0.2, 1.5]. Because
Density goes over 1 (up to nearly 1000), the y-axis for Den-
sity is on the right side of the plot for better visualization.

all available real samples (up to 50K) and 50K generated
images following [6].

5.1. Toy experiments

5.1.1 Robustness to outliers

Gaussian distribution We first investigate how the metrics
behave to outliers through a simple toy experiment with
Gaussian distributions, following [22]. We set real X ∼
N(0, I) and fake Y ∼ N(u1, I) where 1 is a vector of ones
and I is the identity matrix, and measure the metrics between
X and Y as u varies in [-3, 3]. To introduce an outlier, we
add a sample xo ∼ N(-2, I) to the set of real samples. A
reliable metric should consistently decrease as u moves away
from 0, regardless of the outlier. Fig. 2a shows the result
for fidelity: I-precision gives overestimated values when

u ≤ 0 due to the enlarged constant-density hypersphere
by the outlier. Although Density alleviates the problem by
reducing the density inside the hypersphere by 1/k, it does
not reflect the change for a wide range of u (See when u ≤
-1). On the other hand, P-precision denotes reliable estimates
even when the fake distribution comes closer to the outlier
(PP = 0.006 when u = -2), and also shows a robust decrease
as u moves away from 0. We observe a similar result on the
diversity measures except for Coverage (See Fig. 2b).

In addition, we perform an ablation over k to investigate
whether the improvement of our metric over the outlier is
due to a properly chosen k. The same experiment described
above is repeated with different k and the metric values are
reported in Fig. 3. Our P-precision shows strong consistency
over k, due to the employment of identical R for all real sam-
ples. However, I-precision continues to suffer from outliers,
regardless of the value of k. Moreover, Density exhibits high
variation over different values of k as it reduces the density
by 1/k, demonstrating that Density needs properly chosen k
to achieve adequate robustness to outliers.

These results suggest that our metrics are more reliable
to estimate fidelity and diversity between distributions, even
in the presence of outliers.

5.1.2 Stability of metrics

We also test the stability of metrics by measuring the empiri-
cal bias of the metric from the presumed true value, which
we approximate by averaging across 50 runs with 50K sam-
ples, between two identical Gaussian distributions. Fig. 2c
shows the bias from the true value with respect to the number
of datasets used for estimation, along with the average and

20104



standard deviation across 50 runs. Our PP&PR show a small
bias and standard deviation, even for small N , while IP&IR
show a large bias. In addition, despite the theoretical value
when two distributions are identical [22], Density does not
behave nicely: at N ≤ 10000, Density shows quite a large
bias and standard deviation due to the extremely wide bound.
This demonstrates that our PP&PR provides more reliable
estimates than other metrics even for small datasets.

5.1.3 Reflecting fidelity and diversity

The main motive of the two-value metric is to capture both
fidelity and diversity between two distributions. To assess
whether these metrics are capable of reflecting fidelity and
diversity, we design a scenario where the two values are at
odds. Specifically, we generate samples from X ∼ N(0, I)
and Y ∼ N(0, vI), and vary the value of v from 0.2 to 1.5.
As v increases, we expect fidelity to decrease and diversity
to increase. As shown in Fig. 5, while Density behaves as
expected, Coverage does not; it remains constant at 1 as v
increases from 0.2 to 1, despite the increasing relative diver-
sity of fake distribution. We argue that this counter-intuitive
behavior is due to the conceptual limitation of Coverage as
discussed in Sec. 3. When v increases beyond 1, Coverage
becomes 0, as fake samples are no longer included in the hy-
perspheres of real samples. In contrast, PP&PR and IP&IR
nicely reflect the expected behavior.

5.2. Evaluating generative models

5.2.1 Comparing scoring rules

Here, we compare the scoring rules of fidelity metrics
to demonstrate how nicely the estimated density reflects
the quality of the fake sample. We compare PSR with
DSR, as BSR only denotes a binary score. For effec-
tive comparison, we focus on cases where two scoring
rules have conflicting results. Specifically, we compute
L = {PSRP (yj)− DSRP (yj) | ∀j} using generative mod-
els Q(Y ) (StyleGAN [15] and BigGAN [3]) trained on real-
world datasets P (X) (CIFAR-10 [19] and FFHQ [15]). A
high value of L indicates a high PSR but low DSR, while
a low value of L indicates the opposite. For a fair compar-
ison, we normalize DSR by its maximum value so that it
ranges between 0 and 1. We show images of the highest L
and lowest L in Fig. 4 (without cherry-picking). In general,
images with a high value of L show more realistic and clear
objects, while images with a low L are often distorted with
artifacts (See supplement for more examples). Based on
the assumption that realistic images should correspond to
the high density of real distribution, our results in Fig. 4
qualitatively demonstrate the superiority of PSR over DSR
in reflecting the semantic quality of generated images. We
also conduct a user study selecting preferences between the
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Figure 6: Behavior of metrics with respect to the number of
outliers when evaluating the generative model Y on a real-
world dataset X . (a) Fidelity metrics. (b) Diversity metrics.

highest L and the lowest L and it also shows a similar result
to our observation (See supplement).

5.2.2 Robustness to outliers

To investigate the efficacy of our proposed metrics in han-
dling outliers with generative models on real-world datasets,
we conduct experiments on the state-of-the-art diffusion
model (e.g., ADM [6]), which currently has gained atten-
tion for its powerful performance, trained on ImageNet [19]
dataset (1282 resolution). Then, we adopt the outlier se-
lection criterion used in [22] which uses the distance to
the kth nearest neighbor. We apply this criterion to select
inliers and outliers (at a ratio of 0.95:0.05) for both real
and fake samples generated by ADM, resulting in the sets
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Table 1: Quantitative result of various generative models on real-world datasets. The reported values are obtained by measuring
each metric five times and taking the average. Bolded values indicate the top scores evaluated by the corresponding metric.

Model FID↓ PP↑ PR↑ F1↑ IP↑ IR↑ F1↑ D↑ C↑ F1↑
ImageNet 256x256
ADM [6] 4.95 0.538 0.732 0.621 0.681 0.688 0.684 1.52 0.876 1.112
ADM-G [6] 4.58 0.699 0.587 0.638 0.818 0.606 0.696 2.071 0.956 1.307
BigGAN [3] 8.12 0.751 0.465 0.574 0.874 0.403 0.551 2.481 0.945 1.368

AFHQv2 512x512
StyleGAN2 [16] 4.62 0.568 0.689 0.623 0.716 0.494 0.584 1.886 0.790 1.113
StyleGAN3-R [14] 4.40 0.564 0.725 0.634 0.685 0.591 0.635 1.576 0.770 1.034
StyleGAN3-T [14] 4.04 0.567 0.727 0.637 0.699 0.578 0.632 1.624 0.792 1.065

LSUN Bedroom 256x256
DDPM [16] 4.88 0.799 0.749 0.773 0.606 0.444 0.512 1.701 0.977 1.241
ADM [6] 1.91 0.839 0.731 0.781 0.659 0.494 0.565 1.929 0.993 1.311
StyleGAN2 [16] 2.35 0.801 0.753 0.776 0.591 0.501 0.543 1.732 0.986 1.257

X = Xinlier ∪ Xoutlier and Y = Yinlier ∪ Youtlier. We
provide examples of the outliers and inliers in Fig. 6. Note
that the inliers tend to exhibit more recognizable objects with
clear semantic features compared to the outliers.

We first observe how fidelity metrics between Xinlier and
Y respond when a portion of Xinlier is gradually substituted
with the subset of Xoutlier. To visualize this, we plot the
metric increments compared to the case when no outliers are
included in Xinlier, as shown in Fig. 6a. The results show
that I-precision rapidly increases (0.2 increments) when only
5% of inliers are gradually replaced by outliers, confirming
its vulnerability to outliers. Although Density is less affected
by outliers initially, it eventually surpasses the increment of
I-precision as it accumulates the density over hyperspheres,
supporting our claim that Density is still vulnerable to out-
liers. On the other hand, our P-precision shows the least
increment (0.05 increments for 5% outliers), validating its
effectiveness in handling outliers.

Likewise, we also test the robustness of diversity mea-
sures between X and Yinlier by gradually replacing a portion
of Yinlier with the subset of Youtlier. In Fig. 6b, we observe
that I-recall exhibits a similar vulnerability to outliers as
I-precision, while our P-recall is less affected by the pres-
ence of outliers. Besides, Coverage demonstrates strong
robustness to outliers due to its alternative diversity mea-
sure. However, this comes at the cost of losing accuracy, as
demonstrated in the experiments in Fig. 5b and 7b.

5.2.3 Reflecting fidelity and diversity

We now verify whether the metrics accurately reflect the
change in fidelity and diversity of fake samples generated

from generative models. In order to do that, we employ clas-
sifier guidance [6] during the image sampling from ADM.
This technique uses gradients of a pre-trained classifier to
perform conditional sampling from pre-trained unconditional
diffusion models. By adjusting the scale of gradients from
the classifier, we can explicitly control the balance between
fidelity and diversity of generated images. For instance, a
larger gradient scale results in the diffusion model sampling
more from the modes of the pre-trained classifier, yielding
higher fidelity but lower diversity. For more details, please
refer to [6]. Therefore, we sample images from ADM, the
same model as in Sec. 5.2.2, using gradient scales ranging
from 0.5 to 10.0, and measure metrics (IP&IR, D&C and
PP&PR) between real and generated samples for each scale.
Fig. 7 shows the results; our PP&PR and IP&IR effectively
capture the trade-off between fidelity and diversity whereas
D&C does not exhibit a clear relationship with the gradient
scale. This is due to the conceptual limitation of Coverage
in accurately measuring the diversity in generated samples.

5.2.4 Image generation benchmark

To evaluate the practical usefulness of our proposed met-
rics in assessing the state-of-the-art generative models, we
present the quantitative results on real-world datasets (LSUN
bedroom [34], AFHQ-v2 [5], and ImageNet) for various
types of generative models, along with FID. The results,
presented in Tab. 1, are obtained by measuring each metric
five times and taking their average. For clarity in the pre-
sentation, the variance associated with these measurements
can be found in the supplementary materials. While FID
serves as a holistic reference point for distinguishing superior
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Figure 7: Fidelity versus diversity when increasing the gra-
dient scale from 0.5 to 10.0 for sampling diffusion models
with classifier guidance [6]. A larger gradient scale tends to
result in higher fidelity and lower diversity.
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Figure 8: Ablation study on PSR: (A): probabilistic estima-
tion for subsupport. (B): identical R.

model performance, our metrics delve deeper, elaborating
on aspects of fidelity and diversity. For instance, our metrics
explain that the improvement of ADM over StyleGAN [15]
on LSUN bedroom in terms of FID is due to an increase in fi-
delity at the cost of diversity. An analysis between ADM and
ADM-G further reveals that the classifier guidance in ADM-
G augments fidelity, yet curtails diversity. This demonstrates
the usefulness of our metrics in elaborating on the effect of
the specific component in models.

Moreover, to observe whether the metrics harmonize with
the widely adopted FID metric, we analyze the consistency
between FID and two-value metrics. This is achieved by
computing the F1-score [9], which is a harmonic mean of
fidelity and diversity. The results demonstrate that F1-scores
of our metric mirror the trends set by FID (as underscored
by the bold scores for each dataset in Tab. 1).

6. Ablation study

Here, we conduct an ablation study on our proposed scor-
ing rule, PSR, to demonstrate the effectiveness of our ap-
proach: (A) probabilistic estimation for subsupport (Eq. 13)
and (B) identical R. We repeat the outlier toy experiment

with Gaussian distributions in Sec. 5.1.1 with different con-
figurations and the result for fidelity metric is shown in
Fig. 8. In both cases where the feature (A) and (B) are in-
dividually removed, the metric becomes more susceptible
to outlier than the case where both are used ((A)+(B)) but
less affected than the case where both are all removed (see
when u ∈[-3,-1]). This demonstrates that our probabilistic
approach for subsupport and addressing overestimation of
sample-specific kNN both contribute to estimating accurate
density and combining them together maximizes it.

7. Conclusions and limitations
In this paper, we introduced a set of two-value metrics,

P-precision and P-recall, based on the probabilistic approach
that addresses the limitations of existing metrics (IP&IR
and D&C). We have conducted a systematic investigation
of the limitations and demonstrated the effectiveness of our
proposed metrics by evaluating toy experiments and state-of-
the-art generative models. Nevertheless, we recognize there
is still room for improvement. While we utilized commonly-
used ImageNet embeddings [11, 20, 22] for feature extrac-
tion, recent studies such as [1, 21], have proposed domain-
agnostic embeddings to enhance the feature quality com-
pared to previous embeddings that rely on dataset-specific
statistics. Thus, future research focusing on the quality of
feature embedding combined with our method may further
enhance the reliability and usefulness of the metric.
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