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Abstract

3D pose estimation is an invaluable task in computer
vision with various practical applications. Especially, 3D
pose estimation for multi-person from a monocular video
(3DMPPE) is particularly challenging and is still largely
uncharted, far from applying to in-the-wild scenarios yet.
We pose three unresolved issues with the existing meth-
ods: lack of robustness on unseen views during training,
vulnerability to occlusion, and severe jittering in the out-
put. As a remedy, we propose POTR-3D, the first realiza-
tion of a sequence-to-sequence 2D-to-3D lifting model for
3DMPPE, powered by a novel geometry-aware data aug-
mentation strategy, capable of generating unbounded data
with a variety of views while caring about the ground plane
and occlusions. Through extensive experiments, we verify
that the proposed model and data augmentation robustly
generalizes to diverse unseen views, robustly recovers the
poses against heavy occlusions, and reliably generates
more natural and smoother outputs. The effectiveness of our
approach is verified not only by achieving the state-of-the-
art performance on public benchmarks, but also by qualita-
tive results on more challenging in-the-wild videos. Demo
videos are available at https://www.youtube.com/@potr3d.

1. Introduction
3D pose estimation aims to reproduce the 3D coordinates

of a person appearing in an untrimmed 2D video. It has

been extensively studied in literature with many real-world

applications, e.g., sports [3], healthcare [38], games [17],

movies [1], and video compression [36]. Instead of fully

rendering 3D voxels, we narrow down the scope of our dis-

cussion to reconstructing a handful number of body key-

points (e.g., neck, knees, or ankles), which concisely repre-

sent dynamics of human motions in the real world.

Depending on the number of subjects, 3D pose esti-

mation is categorized into 3D Single-Person Pose Esti-

mation (3DSPPE) and 3D Multi-Person Pose Estimation
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(3DMPPE). In this paper, we mainly tackle 3DMPPE, re-

producing the 3D coordinates of body keypoints for every-

one appearing in a video. Unlike 3DSPPE that has been

extensively studied and already being used for many appli-

cations, 3DMPPE is still largely uncharted whose models

are hardly applicable to in-the-wild scenarios yet. For this

reason, we pose 3 unresolved issues with previous models.

First, existing models are not robustly applicable to un-

seen views (e.g. unusual camera angle or distance). Trained

on a limited amount of data, most existing models per-

form well only on test examples captured under similar

views, significantly underperforming when applied to un-

seen views. Unfortunately, however, most 3D datasets pro-

vide a limited number of views (e.g., 4 for Human 3.6M [12]

or 14 for MPI-INF-3DHP [24]), recorded under limited

conditions like the subjects’ clothing or lighting due to

the high cost of motion capturing (MoCap) equipment [8].

This practical restriction hinders learning a universally ap-

plicable model, failing to robustly generalize to in-the-wild

videos.

Second, occlusion is another long-standing challenge

that most existing models still suffer from. Due to the in-

visible occluded keypoints, there is unavoidable ambiguity

since there are multiple plausible answers for them. Occlu-

sion becomes a lot more severe when a person totally blocks

another from the camera, making the model output incon-

sistent estimation throughout the frames.

Third, the existing methods often produce a sequence

of 3D poses with severe jittering. This is an undesirable

byproduct of the models, not present in the training data.

In this paper, we propose a 3DMPPE model, called

POTR-3D, that works robustly and smoothly on in-the-wild

videos with severe occlusion cases. Our model is pow-

ered by a novel data augmentation strategy, which gener-

ates training examples by combining and adjusting existing

single-person data, to avoid actual data collection that re-

quires high cost. For this augmentation, we decouple the

core motion from pixel-level details, as creating a realistic

3D video at the voxel level is not a trivial task. Thereby,

we adopt the 2D-to-3D lifting approach, which first de-
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tects the 2D body keypoints using an off-the-shelf model

and trains a model to lift them into the 3D space. Benefit-

ing from a more robust and generalizable 2D pose estima-

tor, 2D-to-3D lifting approaches have been successfully ap-

plied to 3DSPPE [29, 41]. Observing that we only need the

body keypoints, not the pixel-level details, of the subjects

for training, we can easily generate an unlimited number of

2D-3D pairs using given camera parameters under various

conditions, e.g., containing arbitrary number of subjects un-

der various views. Translating and rotating the subjects as

well as the ground plane itself, our augmentation strategy

makes our model operate robustly on diverse views.

To alleviate the occlusion problem, we take a couple

of remedies. The main reason that existing models suffer

from occlusion is that they process a single frame at a time

(frame2frame). Following a previous work, MixSTE [41],

which effectively process multiple frames at once (seq2seq)

for 3DSPPE, our POTR-3D adopts a similar Transformer-

based 2D-to-3D structure, naturally extending it to multi-

person. Lifting the assumption that there is always a single

person in the video, POTR-3D tracks multiple people at the

same time, equipped with an additional self-attention across

multiple people appearing in the same frame. We infer the

depth and relative poses in a unified paradigm, helpful for

a comprehensive understanding of the scene. To the best of

our knowledge, POTR-3D is the first seq2seq 2D-to-3D lift-

ing method for 3DMPPE. Alongside, we carefully design

the augmentation method to reflect occlusion among peo-

ple with a simple but novel volumetric model. We gener-

ate training examples with heavy occlusion, where expected

outputs of off-the-shelf models are realistically mimicked,

and thus the model is expected to learn from these noisy

examples how to confidently pick useful information out of

confusing situations.

The seq2seq approach also helps the model to reduce jit-

tering, allowing the model to learn temporal dynamics by

observing multiple frames at the same time. In addition,

we propose an additional loss based on MPJVE, which has

been introduced to measure temporal consistency [29], to

further smoothen the prediction across the frames.

In summary, we propose POTR-3D, the first realization

of a seq2seq 2D-to-3D lifting model for 3DMPPE, and de-

vise a simple but effective data augmentation strategy, al-

lowing us to generate an unlimited number of occlusion-

aware augmented data with diverse views. Putting them

together, our overall methodology effectively tackles the

aforementioned three challenges in 3DMPPE and adapts

well to in-the-wild videos. Specifically,

• Our method robustly generalizes to a variety of views

that are unseen during training, overcoming the long-

standing data scarcity challenge.

• Our approach robustly recovers the poses in situations

with heavy occlusion.

• Our method produces a more natural and smoother se-

quence of motion compared to existing methods.

Trained on our augmented data, POTR-3D outperforms ex-

isting methods both quantitatively on several representative

benchmarks and qualitatively on in-the-wild videos.

2. Related Work
3D Human pose estimation has been studied on single-

view (monocular) or on multi-view images. Seeing the

scene only from one direction through a monocular cam-

era, the single-view pose estimation is inherently challeng-

ing to reproduce the original 3D landscape. Multi-view sys-

tems [16, 10, 11, 15, 13, 30, 9, 4, 40] are developed to ease

this problem. In this paper, we focus on the monocular 3D

human pose estimation, as we are particularly interested in

in-the-wild videos captured without special setups.

3D Single-Person Pose Estimation (3DSPPE). There

are two directions tackling this task. The first type directly

constructs 3D pose from a given 2D image or video end-

to-end at pixel-level [28, 33]. Another direction, the 2D-to-

3D lifting, treats only a few human body keypoints instead

of pixel-level details, leveraging off-the-shelf 2D pose esti-

mator trained on larger data. VideoPose3D [29] performs

sequence-based 2D-to-3D lifting for 3DSPPE using dilated

convolution. Some recent works [43, 22, 7] apply Graph

Neural Networks [19] to 2D-to-3D lifting. PoseFormer [45]

utilizes a Transformer for 3DSPPE to capture the spatio-

temporal dependency, referring to a sequence of 2D single-

person pose from multiple frames at once to estimate the

pose of the central frame (seq2frame). It achieves compe-

tent performance, but redundant computation is known as a

drawback since large amount of sequences overlaps to infer

3D poses for all frames. MixSTE [41] further extends it to

reconstruct for all frames at once, better modeling sequence

coherence and enhancing efficiency.

3D Multi-Person Pose Estimation (3DMPPE). Lifting

the assumption that only a single person exists in the en-

tire video, 3DMPPE gets far more challenging. In addition

to the relative 3D position of body keypoints for each in-

dividual, depth of all persons in the scene also should be

predicted in 3DMPPE, as geometric relationship between

them does matter. Also, each individual needs to be identi-

fied across frames.

Similarly to the 3DSPPE, 3D poses may be constructed

end-to-end. Moon et al. [26] directly estimates each indi-

vidual’s depth assuming a typical size of 3D bounding box.

However, this approach fails when the pose of a subject sig-

nificantly varies. BEV [34] explicitly estimates a bird’s-

eye-view to better model the inherent 3D geometry. It also

infers the height of each individual by age estimation.

2D-to-3D lifting is also actively proposed. Ugrinovic et
al. [35] considers the common ground plane, where appear-

ing people are standing on, to help depth disambiguation.
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They firstly estimate 2D pose and SMPL [23] parameters

of each person, and lift them to 3D with the ground plane

constraint and reprojection consistency. VirtualPose [31]

extracts 2D representation from heat maps of keypoints and

lifts them to 3D, trained on a synthetic paired dataset of 2D

representation and 3D pose.

However, all aforementioned methods are frame2frame
approaches, vulnerable to occlusion, which is the main

challenge in 3DMPPE. Multiple frames may be consid-

ered simultaneously to resolve occlusion, but end-to-end

approaches are limited to enlarge the receptive field due to

heavy computation (e.g., 3D convolution). 2D-to-3D lift-

ing approach is potentially suitable, but no previous work

has tried to combine temporal modeling with it, to the

best of our knowledge. Here, Each subject should be re-

identified, as most off-the-shelf 2D pose estimator oper-

ates in frame2frame manner. By using an additional off-

the-shelf 2D pose tracking model with some adaptation

and geometry-aware data augmentation, we tackle the chal-

lenges in 3DMPPE with a seq2seq approach.

Data Augmentation for 3D Pose Estimation. Since 3D

pose annotation is expensive to collect, limited training data

is another critical challenge that overfits a model. For this,

several data augmentation methods have been proposed.

The 2D-to-3D lifting approach allows unbounded data

augmentation of 2D-3D pose pairs by decoupling the 3D

pose estimation problem into 2D pose estimation and 2D-

to-3D lifting. Most 2D-to-3D lifting methods apply hori-

zontal flipping [29, 45, 41, 31]. PoseAug [8] suggests adap-

tive differentiable data augmentation for 3DSPPE which ad-

justs bone angle, bone length, and body orientation.

Data augmentation for 3DMPPE gets more complicated,

since geometric relationship (e.g. distance) among individ-

uals should be additionally considered. VirtualPose [31]

proposes random translation and rotation of each person,

and trains the lifting model solely with the augmented data.

This work shares the motivation with ours, but it does not

care about the augmentation of the ground plane or camera

view, and it does not simulate occlusion cases. Our aug-

mentation method, on the other hand, explicitly considers

the ground plane to make the result feasible and to help

disambiguation of depth [35]. Also, we further propose to

augment the ground plane itself for robustness on various

views. In addition, we specially treat occluded keypoints to

simulate actual occlusion cases.

Depth Estimation on a Monocular Image. It is in

nature an ill-posed problem to estimate the depth from a

monocular input, since the size of an object is coupled with

it. For instance, if an object gets 2× larger and moves away

from the camera by 2× distance, the object will still look

the same in the projected 2D image. Thus, an additional

clue is needed to estimate the distance, e.g., typical size of

well-known objects like a person. Assuming all people in

the scene roughly have a similar height, one can estimate

a plausible depth. Some previous works, e.g., BEV [34],

try to disambiguate heights of people by inferring age. We

admit that such an attempt may somehow beneficial, but

in this paper, we do not explicitly infer the size of people.

The model might implicitly learn how to estimate depth of

a person with a usual height observed in the training data.

This might result in a sub-optimal result in some compli-

cated cases, e.g., a scene with both adults and children. We

leave this disambiguation as an interesting future work to

concentrate more on aforementioned issues.

3. Preliminaries

Problem Formulation. In the 3D Multi-person Pose

Estimation (3DMPPE) problem, the input consists of a

video V = [v1, ...,vT ] of T frames, where each frame is

vt ∈ R
H×W×3 and (up to) N persons may appear in the

video. The task is locating a predefined set of K human

body keypoints (e.g., neck, ankles, or knees; see Fig. 4 for

an example) in the 3D space for all persons appearing in

the video in every frame. The body keypoints in the 2D

image space are denoted by X ∈ R
T×N×K×2, and the out-

put Y ∈ R
T×N×K×3 specifies the 3D coordinates of each

body keypoint for all N people across T frames. We follow

the common assumption that the camera is static.

Notations. For convenience, we define a common no-

tation for 2D and 3D points throughout the paper. Let

us denote a 2D point Xt,i,k ∈ R
2 as (u, v), where u ∈

{0, ..., H−1} and v ∈ {0, ...,W−1} is the vertical and hor-

izontal coordinate in the image, respectively. Similarly, we

denote a 3D point within the camera coordinate Yt,i,k ∈ R
3

as (x, y, z), where x and y are the coordinates through the

two directions parallel to the projected 2D image, and z is

the depth from the camera.

Data Preprocessing. We adjust the input in two ways,

following common practice. First, we specially treat a key-

point called a root joint (typically pelvis, the body center;

denoted by Yt,i,1 ∈ R
3) for a person i at frame t. The

ground truth for this point is given by (u, v, z), where (u, v)
is the true 2D coordinate of the root joint and z is its depth.

For root joints, the model estimates (û, v̂, ẑ), the absolute

values for (u, v, z). (Note that û ≈ u and v̂ ≈ v but they

are still estimated to compensate for imperfect 2D pose es-

timation by the off-the-shelf model.) Other regular joints,

Yt,i,k ∈ R
3 for k = 2, ...,K, are represented as the relative

difference from the corresponding root joint, Yt,i,1.

Second, we normalize the ground truth depth of the root

joints by the camera focal length.1 When a 2D pose is

mapped to the 3D space, the depth of each 2D keypoint

towards the direction of projection needs to be estimated.

Since the estimated depth would be proportional to the cam-

1Note that the depts of other joints are not normalized.

14774



Transformer Block

R
eg

re
ss

io
n 

H
ea

d

3D Pose Sequence Y

Lx

LN

Attention

LN

MLP

Positional
Embedding

(SPST,
SJTT)

Unified 2D-to-3D Lifting Module

Transformer
Blocks

SP
ST

IP
ST

SJ
TT

M
PJ

PE
 L

os
s, 

M
PJ

V
E 

Lo
ss

2D
 M

ul
ti-

Pe
rs

on
 P

os
e 

Es
tim

at
or

2D
 P

os
e 

Tr
ac

ke
r

Input Video V 2D Keypoints X

2D
 K

ey
po

in
ts

w
ith

 tr
ac

k 
no

.
2D Pose Extraction and Matching Preprocessing

Absolute

Root-Relative

Arms

Roots
(Pelvis)

Shoulders

Knees

Heads

Hips

⁝

Figure 1. Overview of the POTR-3D. The input video is converted to 2D keypoints, followed by 2D-to-3D lifting, composed of stacked

three types of Transformers (SPST, IPST, SJTT).

era focal length used at training, we normalize the ground

truth depth z by the focal length, following common prac-

tice. That is, we use z̄ = z/f , where f is the camera focal

length. In this way, our model operates independently of the

camera focal length.

4. The POTR-3D Model

The overall model workflow is depicted in Fig. 1. First,

the input frames V are converted to a sequence of 2D key-

points by an off-the-shelf model (Sec. 4.1). Then, they are

lifted into the 3D space (Sec. 4.2).

4.1. 2D Pose Extraction and Matching

Given an input video V ∈ R
T×H×W×3, we first ex-

tract the 2D coordinates X ∈ R
T×N×K×2 of the (up to)

N persons appearing in the video, where T is the number

of frames, and K is the number of body keypoints, deter-

mined by the dataset. Since we treat multiple people in

the video, each individual should be re-identified across all

frames. That is, the second index of X and Y must be con-

sistent for each individual across all frames. Any off-the-

shelf 2D multi-person pose estimator and a tracking model

can be adopted for each, and we use HRNet [32] and Byte-

Track [42], respectively. Note that these steps need to be

done only at testing, since we train our model on augmented

videos, where the 2D coordinates can be computed from the

ground truth 3D poses and camera parameters (see Sec. 5).

4.2. Unified 2D-to-3D Lifting Module

From the input X, this module lifts it to the 3D co-

ordinates, Y ∈ R
T×N×K×3. To effectively comprehend

the spatio-temporal geometric context, we adapt encoder

of [41]. The coordinates of each 2D keypoints Xt,i,k,

at a specific frame t ∈ {1, ..., T} for a specific person

i ∈ {1, ..., N} and body keypoint k ∈ {1, ...,K}, is linearly

Figure 2. Illustration of 2D-to-3D Lifting Transformers.

mapped to a D-dimensional token embedding. Thus, the in-

put is now converted to a sequence of T ×N ×K tokens in

R
D, and let us denote these tokens as Z(0) ∈ R

T×N×K×D.

Here, in contrast to most existing methods [26, 34, 31],

which separately process the root and regular joints, we

treat them with a single unified model. This unified model

is not just simpler, but also enables more comprehensive

estimation of depth and pose by allowing attention across

them.

They are fed into the repeated 3 types of Transform-

ers, where each of them is designed to model a specific

relationship between different body keypoints. This fac-

torization is also beneficial to reduce the quadratic compu-

tation cost of the attention mechanism. In addition to the

two Transformers in [41], SPST for modeling spatial and

SJTT for temporal relationships, we propose an additional

Transformer (IPST) designed to learn inter-person relation-

ships among all body keypoints. The role of each Trans-

former is illustrated in Fig. 2 and detailed below. The input

Z(�−1) ∈ R
T×N×K×D at each layer � goes through SPST,

IPST, and SJTT to contextualize within the sequence, and

outputs the same sized tensor Z(�) ∈ R
T×N×K×D.

Single Person Spatial Transformer (SPST). Located
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at the first stage of each layer �, SPST learns spatial cor-

relation of each person’s joints in each frame. From the

input X ∈ R
T×N×K×D, SPST takes K tokens of size

D corresponding to Xt,i ∈ R
K×D for t ∈ {1, ..., T} and

i ∈ {1, ..., N}, separately at a time. In other words, SPST

takes K different body keypoints belonging to a same per-

son i at a specific frame t. The output Y ∈ R
T×N×K×D

has the same shape, where each token Yt,i,k is a transformed

one by contextualizing across other tokens belonging to the

same person.

Inter-Person Spatial Transformer (IPST). After SPST,

IPST learns correlation among multiple individuals in the

same frame. Through this, the model learns spatial inter-

personal relationship in the scene. IPST is newly designed

to extend the previous 3DSPPE model to 3DMPPE. More

formally, IPST takes N ×K tokens of size D as input at a

time; that is, given the input X ∈ R
T×N×K×D, all N ×K

tokens in the frame Xt ∈ R
N×K×D are fed into IPST, con-

textulize from each other, and are transformed to the output

tokens Yt. This process is separately performed for each

frame at t = 1, ..., T . After IPST, each token is knowledge-

able about other people in the same scene.

This is a novel part of our method to deal with multiple

individuals. Different from the TDBU-Net [5], which uses

a discriminator to validate relationship between subjects at

the final stage, IPST progressively enhances its contextual

understanding on inter-personal relationship by iterative at-

tentions.

Single Joint Temporal Transformer (SJTT). From the

input X ∈ R
T×N×K×D, we create N × K input se-

quences of length T , corresponding to X·,i,k ∈ R
T×D for

i = 1, ..., N and k = 1, ...,K. Each sequence is fed

into SJTT, temporally contextualizing each token in the se-

quence, and the transformed output tokens Y·,i,k are re-

turned. Completing all N ×K sequences, the transformed

sequence Y ∈ R
T×N×K×D is output as the result of the

�-th layer of our 2D-to-3D lifting module, Z(�).

These 3 blocks constitute a single layer of our 2D-to-

3D lifting module, and multiple such layers are stacked. A

learnable positional encoding is added to each token at the

first layer (� = 1) of SPST and SJTT. No positional en-

coding is added for IPST, since there is no natural ordering

between multiple individuals in a video.

Regression Head. After repeating L layers of {SPST,

IPST, SJTT}, we get the output tokens for all body key-

points, Z(L) ∈ R
T×N×K×D. This is fed into a regression

head, composed of a multilayer perceptron (MLP). It maps

each body keypoint embedding in Z(L) to the correspond-

ing 3D coordinates, Ŷ ∈ R
T×N×K×3.

4.3. Training Objectives

Given the predicted Ŷ ∈ R
T×N×K×3 and ground truth

Y ∈ R
T×N×K×3, we minimize the following two losses.

Mean per Joint Position Error (MPJPE) Loss is the

mean L2 distance between the prediction and the target:

LMPJPE =
1

TNK

T∑
t=1

N∑
i=1

K∑
k=1

‖Ŷt,i,k −Yt,i,k‖2. (1)

Mean per Joint Velocity Error (MPJVE) Loss [41] is

the mean L2 distance between the first derivatives of the

prediction and the target with regards to time, measuring

smoothness of the predicted sequence:

LMPJVE =
1

TNK

T∑
t=1

N∑
i=1

K∑
k=1

∥∥∥∥∥
∂Ŷt,i,k

∂t
− ∂Yt,i,k

∂t

∥∥∥∥∥
2

.

(2)

The overall loss L is a weighted sum of the two losses;

that is, L = LMPJPE + λ · LMPJVE, where λ controls the

relative importance between them. Optionally, different

weights can be applied to the root joints and others.

4.4. Inference and Scalability

To perform inference on a long video, we first track every

subject throughout the whole frames, then the tracked 2D

keypoints are lifted to 3D at the regularly-split clip level.

The final result is obtained by concatenating the clip-level

lifting. In this way, our approach is scalable for a long video

without extremely growing computational cost.

5. Geometry-Aware Data Augmentation
Being free from the pixel-level details, we can freely

augment the training data as proposed below, making

POTR-3D robust on diverse inputs, resolving the data

scarcity issue for this task.

Specifically, we take N samples Y(i) ∈ R
T×K×3 cap-

tured by a fixed camera from a single-person dataset, where

i = 1, ..., N . We simply overlay them onto a single ten-

sor Y ∈ R
T×N×K×3, and project it to the 2D space by

applying the perspective camera model, producing X ∈
R

T×N×K×2. A point (x, y, z) in the 3D space is mapped to

(u, v) by ⎡
⎣
u
v
1

⎤
⎦ ≈

⎡
⎣
fu 0 cu
0 fv cv
0 0 1

⎤
⎦
⎡
⎣
x
y
z

⎤
⎦ , (3)

where fu, fv are the focal lengths, and cu, cv are the prin-

cipal point in the 2D image coordinates. This (X,Y) is an

augmented 3DMPPE training example, and repeating this

with different samples will infinitely generate new ones.

Furthermore, we consider additional augmentation on

the trajectories, e.g., randomly translating or rotating them,

to introduce additional randomness and fully take advantage

of existing data. However, there are a few geometric factors

to consider: the ground plane and potential occlusion.

14776



Figure 3. Illustration of the proposed data augmentation methods.

5.1. Ground-plane-aware Augmentations

Although translating or rotating a trajectory in 3D space

sounds trivial, most natural scenes do not fully use the three

degrees of freedom, because of an obvious fact that peo-

ple usually stand on the ground. Geometrically, people in

a video share the common ground plane, with a few excep-

tions like a swimming video. As feet generally touch the

ground, we estimate the ground plane by collecting feet co-

ordinates from all frames captured by a fixed camera and fit

them with linear regression, producing a 2D linear manifold

G within the 3D space. We choose its two basis vectors,

{b1,b2}, perpendicular to the normal vector of G.

We generate abundant sequences mimicking various

multi-person and camera movements by combining 4 aug-

mentation methods, illustrated in Fig. 3:

• Person Translation (PT): The target person is trans-

lated randomly along the basis {b1, b2} on the ground

plane. Each individual moves by a random amount of

displacement (α, β) towards {b1, b2}.

• Person Rotation (PR): The person is rotated by an

angle θ across the entire sequence to preserve natu-

ral movement, with respect to the normal vector of the

ground plane about the origin at the averaged root joint

over time of all subjects.

• Ground Plane Translation (GPT): The entire ground

plane is shifted through the depth (z) axis by γ, to-

wards (γ < 0) or away from the camera. Applied to

the ground plane, it affects everyone homogeneously.

• Ground Plane Rotation (GPR): The entire ground

plane is rotated by ϕ with respect to b1, whose di-

rection is more parallel to the x-direction of camera

(∼pitch rotation). This is to generate vertically diverse

views, which are challenging to create with the other 3

augmentations.

5.2. Reflecting Occlusions

2D pose estimators often suffer from occlusion. In or-

der for the model to learn how to pick useful and confident

information without being confused and be robust against

occlusion, we simulate occlusion on our data augmentation.

Figure 4. Our volume representation of a person to simulate
occlusion. • indicates the keypoints, and © indicates the 3D balls

of radius R (i.e. 14cm).

As the human body has some volume, two body parts

(either from the same person or from different ones) may

occlude if the two keypoints are projected close enough,

even though they do not exactly coincide. From this ob-

servation, we propose a simple volume representation of a

person, illustrated in Fig. 4. The volume of each body part

is modeled as a same-sized 3D ball centered at the corre-

sponding keypoint. Once projected to the 2D plane, a ball

becomes a circle. The circles are considered to overlap if

the distance between their centers is shorter than the larger

one’s radius. Then, the one with the smaller radius, which

is farther away, is regarded as occluded. If a keypoint is oc-

cluded, we either perturb it with some noise or drop it out,

simulating the case where keypoints predicted by the off-

the-shelf model with low confidence are dropped at infer-

ence. Dropped keypoints are represented as a learned mask

token.

Although there exist more sophisticated methods like a

cylinder man model [6], computation overhead of judging

overlaps also gets more severe. Our sphere model is simpler

and computationally cheaper. Especially on 3DMPPE, we

expect less gap between the two, as the size of targets is

relatively smaller than usual distance between them.

Once a training example is generated, its validity needs

to be checked, e.g., positivity of the depth z for all targets,

validity of the randomly chosen displacements, and more.

See Appendix B for more details.

6. Experiments
6.1. Experimental Settings

Datasets. MuPoTS-3D [25] is a representative dataset

for monocular 3DMPPE, composed of 20 few-second-

long sequences with 2–3 people interacting with each

other. Since this data is made only for evaluation pur-

pose, MuCo-3DHP [25] is widely paired with it for train-

ing. MuCo-3DHP is artificially composited from a single-

person dataset MPI-INF-3DHP [24], which contains 8 sub-

jects’ various motions captured from 14 different cameras.

We follow the all annotated poses evaluation setting, as op-

posed to the detected-only.

CMU Panoptic [15] is another popular 3D multi-person

dataset, containing 60 hours of video with 3D poses and

14777



Test set Entire test set Occlusion subset

Metric PCK
↑
rel PCK

↑
abs MPJVE

↓
rel MPJVE

↓
abs PCK

↑
rel PCK

↑
abs MPJVE

↓
rel MPJVE

↓
abs

TDBU-Net [5]† 89.6 48.0 29.6 43.3 84.2 41.7 35.6 54.6

3DMPPE [26] 81.8 31.5 24.0 120.4 76.7 30.8 28.0 137.0

SMAP [44] 73.5 35.2 – – 64.4 31.3 – –

SingleStage [14] 80.9 39.3 – – – – – –

BEV [34] 70.2 – – – – – – –

VirtualPose [31] 72.3∗ 44.0 23.1 41.5 69.0∗ 36.4 23.4 47.2

POTR-3D (Ours) 83.7 50.9 10.9 16.3 82.1 47.2 12.2 17.3

Table 1. Comparison on MuPoTS-3D. The best scores are

marked in boldface. TDBU-Net [5]† is not comparable with other

methods as it uses GT at testing. (*indicates our reproduction.)

tracking information captured by multiple cameras. Fol-

lowing [2], we use video sequences of camera 16 and 30 for

both training and testing. This training set consists of se-

quences with Haggling, Mafia, and Ultimatum, and the test

set consists of sequences with an additional activity, Pizza.

We train our model on a synthesized set using the pro-

posed augmentation in Sec. 5. We use MPI-INF-3DHP as

the source of augmentation for MuPoTS-3D experiment.

For CMU-Panoptic, we augment on its training partition.

Evaluation Metrics. Following the conventional setting,

we measure Percentage of Correct Keypoints (PCK; %)

for MuPoTS-3D, and MPJPE(mm) for CMU-Panoptic. In

addition, we further consider MPJVE(mm) to measure

smoothness, which is barely investigated in 3DMPPE for

both datasets. While measuring PCK, a keypoint predic-

tion is regarded as correct if the L2 distance between the

prediction and the ground truth is within a given thresh-

old τ = 150mm. We report PCK metrics with (PCKrel)

and without (PCKabs) the root alignment. Higher PCK in-

dicates better performance. MPJPE (Eq. (1)) measures ac-

curacy of the prediction, while MPJVE (Eq. (2)) measures

smoothness or consistency over frames. Lower MPJPE and

MPJVE indicate better performance.

Competing Models. We compare POTR-3D with 6

baselines: VirtualPose [31], BEV [34], SingleStage [27],

SMAP [44], SDMPPE [26], and MubyNet [39]. Models

that additionally use ground truth at testing [5, 20] are still

listed with remarks.

Implementation Details. The input 2D pose sequences

are obtained by fine-tuned HRNet [32] and ByteTrack [42].

More details are in Appendix A. These off-the-shelf models

are used only at testing, since we solely train on the aug-

mented data. If the number of tracked or augmented per-

sons is less than N , we pad zeros. We use Adam optimizer

[18] with batch size of 16, dropout rate of 0.1, and GELU

activation. We use two NVIDIA A6000 GPUs for training.

6.2. Quantitative Comparison

MuPoTS-3D. Tab. 1 compares 3DMPPE peformance in

four metrics, on the entire MuPoTS-3D test set and on its

subset of 5 videos (TS 2, 13, 14, 18, 20) with most severe

Metric MPJPE
↓
rel MPJVE

↓
rel

Sequence Haggling Mafia Ultimatum Pizza Avg. Avg.

HMOR [20]† 50.9 50.5 50.7 68.2 55.1 –

MubyNet [39] 72.4 78.8 66.8 94.3 78.1 –

SMAP [44] 63.1 60.3 56.6 67.1 61.8 –

BEV [34] 90.7 103.7 113.1 125.2 108.2 –

VirtualPose [31] 54.1 61.6 54.6 65.4 58.9 13.7

POTR-3D (Ours) 60.0 57.0 55.5 58.9 57.8 3.9

Table 2. Comparison on CMU Panoptic. Models are trained on

{Haggling, Mafia, Ultimatum}, and generalized to Pizza. The best

scores are marked in boldface. HMOR [20]† is not comparable

with other methods as it uses GT depth at testing.

Model PCK
↑
rel MPJVE

↓
rel

MixSTE 57.3 11.8

VideoPose3D 52.8 11.4

POTR-3D (Ours) 83.7 10.9

Table 3. Comparison with 3DSPPE methods on MuPoTS-3D

occlusion. Ours achieves the best scores on both test sets,

significantly outperforming all baselines in all metrics. The

performance gap is larger on the occlusion subset. POTR-

3D also outperforms on sequences with some unusual dis-

tance from the camera (e.g., TS6, 13). These results indicate

the effectiveness of our method and the augmentation. (See

Tab. I in Appendix C for performance on individual videos.)

As MPJVE has not been reported in previous works, we

reproduce it only for methods open-sourced. POTR-3D sig-

nificantly outperforms other methods in MPJVE. This is ex-

pected, since POTR-3D is directly optimized over the same

loss. In fact, most baseline models cannot be optimized

over MPJVE by nature and have overlooked it, since they

operate in frame2frame. However, the MPJVE that our

model achieves is still significant, considering that it out-

performs the other seq2seq baseline [5] which uses GT pose

and depth at inference.

CMU-Panoptic. As seen in Tab. 2, POTR-3D also achieves

the state-of-the-art performance on CMU-Panoptic, 1.1mm

or 1.9% leading the strongest baseline [31]. In contrast to

MuPoTS-3D, CMU-Panoptic contains videos with a denser

crowd of 3–8 people, making the tracking more challeng-

ing. The result indicates that POTR-3D operates well even

in this challenging situation. Also, POTR-3D achieves sig-

nificantly higher performance than others on the Pizza se-

quence unseen at training, with 5.7mm or 9.9% gain, veri-

fying its superior generalizability.

Comparison with 3DSPPE Models. We also compare ours

with 3DSPPE methods [41, 29] on MuPoTS-3D, by lift-

ing individual tracklets using each model and then aggre-

gating them. As these models do not estimate the depth,

assuming only a single person to exist, only relative metrics

could be used to measure the performance. As shown in

Tab. 3, POTR-3D outperforms 3DSPPE models by a large
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MuPoTS-3D (full) MuPoTS-3D (heavy-occlusion)

Method PCK
↑
r PCK

↑
a MPJVE

↓
r MPJVE

↓
a PCK

↑
r PCK

↑
a MPJVE

↓
r MPJVE

↓
a

w/o SPST -47.3 -40.1 +3.5 +23.0 -45.9 -39.6 +2.4 +8.2

w/o IPST -2.3 -3.9 +0.2 +1.6 -3.6 -7.4 +0.5 +3.5

w/o SJTT -0.7 -8.8 +8.0 +31.8 +0.2 -4.3 +5.7 +23.4

Full 83.7 50.9 10.9 16.3 82.1 47.2 12.2 17.3

Table 4. Ablation on transformer blocks for 2D-to-3D lifting

margin, indicating the importance of simultaneous reason-

ing of multiple persons for disambiguation.

6.3. Ablation Study

Model Components. Our 2D-to-3D lifting module con-

sists of three types of Transformers, SPST, IPST, and SJTT.

Each module is expected to discover different types of rela-

tionships among body keypoints from multiple individuals,

as described in Sec. 4.2. Particularly, IPST is expected to

be beneficial for handling occlusions as it deals with every

person all at once.

We conduct an ablation study for each Transformer, on

the full and heavy-occlusion subset (2, 13, 14, 18, 20) of

MuPoTS-3D. From Tab. 4, we observe that 1) SPST has

the biggest impact when removed, but we also see mean-

ingful performance drops (marked green) without IPST and

SJTT; 2) Without IPST, PCK drops significantly, especially

with heavy occlusion, indicating that it plays an important

role in disambiguating multiple subjects; and 3) Without

SJTT, MPJVE is significantly hurt, proving its role in learn-

ing temporal dynamics. Overall, the results align with our

expectations.

Augmentation Strategies. We further investigate the best

data augmentation strategy proposed in Sec. 5. We ini-

tially observe that augmenting only with PT+PR performs

the best on the benchmark, leaving the impact of GPT and

GPR marginal. This might be caused by the limited diver-

sity in the datasets. Most of cameras used for MuPoTS-3D

are located near the ground, as the scenes are taken outside

using a markerless MoCap system. CMU-Panoptic has the

same camera setting for both training and testing. Thus, we

conclude it is not a suitable setting to test generalizability

of the augmentation method.

For this reason, we conduct this ablation study to eval-

uate zero-shot performance on a heterogeneous setting.

Tab. 5 compares on MuPoTS-3D the performance of our

models that are trained on CMU-Panoptic, using multiple

combinations of augmentation methods. We observe that

using more variety and larger scale of augmentations gener-

ally benefits. A similar experiment is conducted on CMU-

Panoptic, summarized in Tab. 6. Here, we further evalu-

ate on videos of Haggling, Ultimatum captured by differ-

ent cameras (camera 6, 13) from the ones used for training

(camera 16, 30). (See Fig. I in Appendix Appendix C for

illustration.) Again, we confirm the benefit of the full aug-

PT PR GPT GPR Size PCK
↑
rel PCK

↑
abs MPJVE

↓
rel MPJVE

↓
abs

� 0.5M 50.8 13.6 13.7 35.8

� � 0.5M 58.9 24.9 12.7 22.4

� � � 0.5M 54.9 22.0 12.7 27.2

� � � � 0.5M 63.1 29.9 11.8 21.1

� � � � 0.8M 67.1 32.0 12.2 23.1

Table 5. Ablation on augmentation strategies (MuPoTS-3D)

PT PR GPT GPR Size MPJPE
↓
rel MPJVE

↓
rel

� 0.5M 142.9 3.1
� � 0.5M 136.8 6.1

� � � 0.5M 138.2 5.3

� � � � 0.5M 67.2 3.7

� � � � 0.8M 58.4 2.7

Table 6. Ablation on camera setting (CMU-Panoptic)

Sim. Thresh. PCK
↑
rel PCK

↑
abs MPJVE

↓
rel MPJVE

↓
abs

77.0 25.1 27.9 59.4

� 83.7 48.7 12.0 18.8

� � 83.7 50.9 10.9 16.3

Table 7. Ablation on occlusion handling (MuPoTS-3D)

mentations and larger size. These results prove that GPR

benefits the model to be robust to camera view changes,

aligning with our expectation. Without a limit, the proposed

data augmentation may further improve the result with a

larger training set.

Occlusion Handling. We investigate the effect of our

occlusion handling strategy: 1) simulating occlusion by

adding noise to or dropping out occluded keypoints during

augmentation with the person volumetric model (Sim.), and

2) filtering out 2D pose prediction with low confidence at

inference (Thresh.). As shown in Tab. 7, simulating occlu-

sion during augmentation significantly improves the over-

all performance, especially for absolute position prediction.

This indicates that training the model not to be confused by

noisy information at training is actually effective. Thresh-

olding at inference gives further incremental improvement

in most metrics.

6.4. Qualitative Results

Fig. 5 shows the estimated 3D poses from ours and sev-

eral baselines on two challenging sequences of MuPoTS-

3D. Baseslines fail to estimate exact depth when the camera

distance is unusual (Left), and totally miss individuals when

heavy occlusion occurs (Left, Right). However, POTR-3D

successfully reconstructs every individual in the 3D space,

even including omitted persons in GT annotations far away

from the camera.

Beyond the benchmark datasets, we evaluate POTR-3D

on a lot more challenging in-the-wild scenarios, e.g., group

dancing video or figure skating. Fig. 6 demonstrates the

performance of our model on a few examples of in-the-wild
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Figure 5. Qualitative Results on MuPoTS-3D of ours and recent baselines. The challenges are (Left) unusual camera distance, and (Right)
heavy occlusions. Ours works most successfully despite the challenges.

Figure 6. Demonstration of POTR-3D on in-the-wild videos.

videos. In spite of occlusions, we see that POTR-3D pre-

cisely estimates poses of multiple people. To the best of our

knowledge, this is the first work to present such accurate

and smooth 3DMPPE results on in-the-wild videos.

Meanwhile, ours is somewhat sensitive to the perfor-

mance of the 2D pose tracker. The tracker we use often fails

when extreme occlusion occurs or persons look too homo-

geneous. More examples including some failure cases are

provided in Appendix D.

7. Summary
In this paper, we propose POTR-3D, the first realization

of a seq2seq 2D-to-3D lifting model for 3DMPPE, powered

by geometry-aware data augmentations. Considering im-

portant geometric factors like the ground plane orientation

and occlusions, our proposed augmentation scheme benefits

the model to be robust on a variety of views, overcoming

the long standing data scarcity issue. The effectiveness of

our approach is verified not only by achieving state-of-the-

art performance on public benchmarks, but also by demon-

strating more natural and smoother results on various in-

the-wild videos. We leave a few interesting extensions, size

disambiguation or more proactive augmentation on the pose

itself, as a future work.
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